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Abstract: Light propagation in a 2-D array of coupled optical cavities with Kerr nonlinearity
driven by a plane holding beam is numerically studied. Optical bistability together with its
modulational instability (MI) are investigated, and 2-D discrete cavity solitons are simulated.
These simulations revealed the switching on/off of the solitons along with the ability of a
proper Gaussian beam (GB) to control their positions. Soliton–soliton and soliton–GB
interactions are considered, and finally, all-optical NOR, XNOR, and NAND gates are proposed
as realized by this device.

Index Terms: Nonlinear, Kerr effect, soliton, ultra fast devices.

1. Introduction
Recently, experimental and theoretical studies on light localization in discrete optical systems have
taken much interests; a typical example of such cases is an array of coupled waveguide. The
peculiarities of discrete diffraction allow for the formation of new types of spatially localized
solutions, so-called discrete solitons [1]–[3]. An array of coupled-waveguide resonators is
constructed through addition of mirrors to the input and output facets of the waveguide array,
which is excited by an external driving field [4]. Multiple reflections of light on the mirrors increase in
light interaction with the nonlinear material inside the cavity causes to form discrete cavity solitons
(DCSs) at substantially less powers in comparison with conventional spatial solitons in single pass
configuration. Simultaneous excitation of bright and dark DCSs in the same array of coupled
waveguides in one of unique features of these systems. The existence of DCSs in system with
internal feedback, which is a result of the interplay among nonlinearity, diffraction as well as gain,
losses has been predicted for quadratic [5], saturable [6], [7], and Kerr media in one-dimension
[8]–[10]. The investigation of the coupling between highly equivalent waveguides and nonlinear
localization along with strong boundary effects is the key to understand nonlinear discrete
propagation in 2-D lattices for future applications [11]. The first observation of a 2-D discrete
soliton was achieved in optically induced waveguide arrays in photorefractive materials [12]. The
possibility of realizing useful functional operations with discrete solitons such as blocking, routing,
and gating can be provided by 2-D networks of nonlinear waveguides [13], [14]. There is a great
interest in all-optical switching devices based on the optical Kerr effect in a nonlinear waveguide
for high-bit rate optical communication and ultrafast information processing systems [15], [9], [10].
In the past, several all-optical switching devices have been proposed by using a nonlinear
interferometer [16], [17], a nonlinear directional coupler [18], and a nonlinear waveguide junction
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[19]–[21]. Furthermore, a number of experimental and theoretical studies on all-optical logic gates
using optical Kerr effect as a switching mechanism have been reported [22]–[25].

The purpose of this work is to introduce 2-D DCSs in Kerr media. This feature of solitons is
different compared with its one-dimension counterpart, detailed investigations of which can be
found in [8] and [10]. We will show that appropriate Gaussian beam (GB) can be used as a control
beam to switch on/off DCSs and to route them, providing an effective tool to use in all-optical logic
gates. After introducing the model in Section 2, the bistability of plane wave (PW), DCS is
numerically simulated, and their stability is studied in Section 3. In Section 4, the possibility of
optical controlling of solitons and its mutual interactions is investigated by demonstrating NOR, XNOR,
and NAND logic gates. Finally, Section 5 is devoted to conclusion.

2. Model
We consider a 2-D array of weakly coupled parallel waveguides with Kerr nonlinearity (see Fig. 1).
The main assumption is that the evolution of the slowly varying envelopes of the individual guided
modes can be described by a discrete equation, taking into account the nearest neighbor
interaction of the weakly overlapping guided modes. We assume that the cavities are in resonant
with the operating frequency and a mean-field approach can be applied. General discrete model for
the normalized amplitude un;m excited by external driving field E0 is (Fig. 1):

i
@un;m
@t

þ C1ðunþ1;m þ un�1;m þ un;mþ1 þ un;m�1 � 4un;mÞ

þ C2ðunþ1;mþ1 þ unþ1;m�1 þ un�1;mþ1 þ un�1;m�1 � 4un;mÞ
þ ð�þ iÞun;m þ �jun;mj2un;m ¼ E0eiðq1nþq2mÞ: (1)

All quantities are dimensionless, the evolution time, t , is scaled to photon lifetime and the field
amplitudes to effective nonlinear coefficient [8], [26]. un;m is the field amplitude in site ðn;mÞ, �
stands for detuning from the cavity resonance, and C1 and C2 are different neighbor coupling
between nondiagonal and diagonal cavities, respectively. The evanescent coupling coefficient
decreases exponentially with increasing distance between adjacent waveguides. For simplicity, the
ratio C1=C2 is kept constant to

ffiffiffi
2

p
. The last term at left is self-focusing Kerr nonlinearity in

waveguides for � ¼ þ1. q1 and q2 are terms for vertical and horizontal phase shifts between the
fields in adjacent cavity inputs that depend on inclination of the holding beam with amplitude E0.

3. Bistability and Stability Analysis
This system provides two kinds of steady solutions: PW (homogeneous) and localized (DCS)
solutions, if ð@=@tÞ ¼ 0.

Fig. 1. Two-dimensional array of coupled cavities endowed with a Kerr nonlinearity.
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3.1. Homogeneous Solution
Optical bistability and the parametric domain in which system shows two different homogeneous

solutions for the same control parameter are essential in existence of solitons. Considering
homogeneous solution as un;mðtÞ ¼ ueiðq1nþq2mÞ gives bistability relation as:

E0 ¼ 1þ�2
eff

� �
juj2 þ 2�eff�juj4 þ �2juj6: (2)

This is demonstrated in Fig. 2(a).
The effective detuning is given by:

�eff ¼ �þ 2C1ðcosq1 þ cosq2 � 2Þ þ 2C2 cosðq1 þ q2Þ þ cosðq1 � q2Þ � 2ð Þ:

For bistability to be independent of holding beam’s phase shift, we consider �eff is a constant
value (in this case, �eff ¼ �3).

Linear stability analysis is used to investigate stability of homogeneous solutions for different
parameters and various pump field inclination angles. We study the effects of a small perturbation,
with amplitude an;m and wavenumber Q1, Q2.

We suggest the solution as:

un;mðtÞ ¼ u þ an;me�tþiðQ1nþQ2mÞ
h i

eiðq1nþq2mÞ: (3)

After some calculation, the eigenvalue � gives:

�¼�2iC1½sinq1sinQ1 þ sinq2sinQ2� � 2iC2 cosðQ1 þq1ÞcosðQ2 þ q2Þ � cosðQ1 � q1ÞcosðQ2 � q2Þ½ �

�1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ �juj2

� �
�þ 3�juj2

� �r
(4)

where � is:

� ¼ 2C1½cosQ1cosq1 þ cosQ2cosq2 � 2� þ 2C2 cosðQ1 þ q1ÞcosðQ2 þ q2Þ � 2½ � þ�:

This solution becomes unstable if the real part of eigenvalue is positive and vice versa, so to
determine the boundary condition for PW stability, we assume � ¼ 0. Modulation instability (MI)
domains of PW in �ðjuj q1Þ-parameter space for different values of q2 are plotted in Fig. 2(b)–(e) for
two different configurations in which the effect of diagonal waveguides is once taken into account
and neglected the other time. Fig. 2(f) is to compare stability domain for well-known 1-D case [8].

Fig. 2(a) depicts the modulationally unstable domains of PW in ðjuj q1Þ-parameter space for
various q2 values, whereas the dotted lines mark the boundaries of homogenous instability.

It is evident from Fig. 2(b)–(e) the MI domain broadens if one considers the effect of diagonal
waveguides. Some initial part of the upper branch is unstable that its top edge is inversely
proportional to both q1 and q2 values. If the effect of diagonal waveguides is neglected, the lower

Fig. 2. Bistability curve in terms of PW modulus, juj, versus holding beam amplitude, E0 (a).
Modulationally unstable PW domains in ðjuj � q1Þ-parameter space for various horizontal phase shift,
q2, (b) (c) (d) and (e). MI boundary in the case of considering (neglecting) diagonal waveguide effect is
depicted by red-solid (black-dashed) lines. MI for 1-D case is plotted in panel (f) for comparison.
(Parameters: C1 ¼ 0:8, C2 ¼ 0:57, �eff ¼ �3.)
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PW branch is always stable; however, considering diagonal waveguides, sometimes it becomes
unstable in parts.

3.2. DCS
The phenomenological theory of DCSs is often based on the discrete NLS equation, and it is valid

for weakly coupled waveguides. Here, bright DCSs that propagate along 2-D arrays of cavities
endowed with a Kerr nonlinearity are found numerically for a 1-D and a 2-D lattice (see Fig. 3) when
holding beam incident normally to the input facet ðq1 ¼ q2 ¼ 0Þ. Newton–Raphson and fourth-order
Runge–Kutta methods are used to estimate steady solution of (1) and to investigate time evolution
of outgoing beam, respectively. Fig. 3 shows that stable DCS in 2-D not only has larger peak
intensity but also exists in a wider range of holding beam with respect to its 1-D counterpart.

4. Controlling of DCSs
The interaction between spatial solitons has attracted much attention because they resemble real
particles in the interaction properties. These optical solitons have been concentrated not only for
their fundamental interest but also for their potential applications in photonics, optical waveguiding,
optical communications, and optical interconnects [27], [28]. In order to optimize the routing/steering
process, all-optical control of spatial solitons is highly desirable [25]. In this section, we demonstrate
some all-optical controlling of DCS by applying appropriate Gaussian control beam to write, erase
and to route. Several all-optical gates are introduced subsequently.

4.1. Switching (Writing and Erasing)
In previous section, existence of bright DCSs and their stability have been investigated. In order

to write and erase DCSs in a given site ðn;mÞ, we assume holding beam E as a superposition of
PW, E0 and a GB, E1 as:

E ¼ E0 þ E1e�ðn2þm2Þ=w2
ei� (5)

where w and � specify width and phase of GB, respectively. Other parameters are fixed as previous
section as E0 ¼ 2, C1 ¼ 0:8, C2 ¼ 0:57, and normal incident holding beam is considered, i.e.,
q1 ¼ q2 ¼ 0.

The process of writing and erasing of DCS is almost the same, in which GB is injected during tinj ,
ð� ¼ 0Þ for writing and out of phase ð� ¼ �Þ for erasing.

The switching process involves two stages: first, injecting of GB, and in the second stage, the
system is left to relax to its final stable state. Intensity distributions in adjacent waveguides are
shown in Fig. 4. Time evolution of the amplitude during writing and erasing processes and time are
plotted in Fig. 5.

Width, intensity, and injection time of applied Gaussian control beam is important in on/off
switching. Successful writing and erasing takes place when injection time of GB exceeds a lower
threshold depending upon E1 and w (see Fig. 6). For this purpose, we achieved minimum injection

Fig. 3. (a) Families of bright DCSs are shown as maximum modulus of the field amplitude for 1-D
(diamond) and for 2-D (circle) with PW solution (solid line: stable and dashed: unstable) versus holding
beam amplitude, E0. (b) Amplitude distribution of 2-D stable DCS. (c) Profiles of DCSs in 1-D (diamond)
and 2-D (circle) waveguide array. (Parameters: E0 ¼ 2, C1 ¼ 0:8, �eff ¼ �3.)
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time of control beam for switching (writing and erasing) by increasing control beam amplitude as
well as increasing its beam width.

4.2. All-Optical NOR, XNOR, and NAND Gates Based on DCS Interaction
One of the main characteristics of bistable systems is having two distinguished states for the

same parameters, which can be considered as logic signal 0 or 1. Furthermore, DCSs in our system
that provides locally independent optical information could play a significant role in optical
processing issues. So, possibility of designing all-optical logic gates based on DCSs is investigated
in this section. Consider two near waveguides named A and B are our input for logic signals. A
stable bright soliton in A or B means our signal sets as 1; otherwise, it is 0. For these two near
guides to be independent, their distance was chosen to be about 4 waveguides.

The control beam that determines the type of gates is considered as a GB in the form of (5)
injected at the waveguide C placed between guides A and B in a short time interval tinj . The gate
output is also taken from C after a short time. Interaction of control beam with optical fields in A and
B depends on the beam’s intensity. Different kinds of gates (NOR, XNOR, and NAND) are designed by
well adjusting the intensity of control beam and keeping the injection time fixed at tinj ¼ 8, all of
which are described in the following subsections in detail.

4.2.1. NOR Gate
The mechanism of a negative-OR (NOR) gate is illustrated in Fig. 6, whereby the information

(signals) is guided by two input channels A and B, which are considered to be at n ¼ 10 and 14,
whereas the device response is controlled at guide C, placed in the middle at n ¼ 12,which also
used to select gate type. If a GB is injected with E1 ¼ 3, the result would be a NOR gate. In the

Fig. 6. Injection time versus amplitude of GB E1 for writing and erasing processes in (a) and (b),
respectively, for two different beam widths.

Fig. 5. Time evolutions of peak amplitude during writing and erasing processes in (a) and (b),
respectively.

Fig. 4. Panel shows the space–time contour plot of the modulus amplitude of holding beam during
writing (left) and erasing (right) processes.
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absence of any signal in A and B, the injection in C causes a writing process in it, resulting 1 at the
end (first row in Fig. 7). However, injection in C has a destructive effect if one of A or B signals is on,
resulting 0 (second row). Finally, injection has a transient effect in A and B if both set to 1 and will
result 0 (third row). The time evolution of intensity in guides A, B, and C is plotted in Fig. 7(a). Spatial
intensity distribution is depicted in Fig. 7(b) for any combination of signals, A and B.

4.2.2. XNOR Gate
Fig. 8 illustrates an exclusive-NOR (XNOR) gate if the injected amplitude of control beam in C is

E1 ¼ 9. Control beam can deflect the signal-carrying solitons A or B in each neighbor waveguides,
whereas the out port is active only when both or none of A and B are launched.

Fig. 8. XNOR gate with three soliton-forming beams. The control and two signal beams time evolutions
(a) and intensity distribution in adjacent waveguides with respect to time for various combinations (b).
From top to bottom: both A and B are off (00) only A (B) on (10), (01), both A and B on (11). The arrow
indicates the output channel. Control beam amplitude is E1 ¼ 9, and injection time is tinj ¼ 8. Other
parameters are E0 ¼ 2, C1 ¼ 0:8, C2 ¼ 0:57, �eff ¼ �3.

Fig. 7. NOR gate with three soliton-forming beams: A and B are the input signals, and C is the control
beam. The table refers to the output. The time evolutions of control and two signal beams (a) and
intensity distribution in adjacent waveguides with respect to time for various combinations (b). From top
to bottom: both A and B are off (00), only A (or B) on (10), (01) and finally both A and B on (11). The
arrow indicates the output channel. Control beam amplitude is E1 ¼ 3, and injection time is tinj ¼ 8.
Other parameters are E0 ¼ 2, C1 ¼ 0:8, C2 ¼ 0:57, �eff ¼ �3.

IEEE Photonics Journal Two-Dimensional Discrete Cavity Solitons

Vol. 4, No. 4, August 2012 Page 1152



4.2.3. NAND Gate
Finally, Fig. 9 is an example of a NAND gate that shows the propagation of A, B, and C, whereas

soliton C displays the signal output. As it is apparent from Fig. 9, the output is on when both of the
signals are present or absent (with C injected by E1 ¼ 5).

The numerical results show that the proposed all-optical waveguide structure could function as
NOR, XNOR, and NAND logic gates by simply setting nonlinear media in selected output guides and
properly launching the input power. The all-optical logic gates have potential applications in ultrafast
all-optical signal processing and computing systems because of the instantaneous nature of the
Kerr nonlinearity, which has no fundamental limits to the achievable speed of operation.

5. Conclusion
In this paper, for the first time to our knowledge, we have investigated 2-D arrays of coupled optical
fiber shape cavities. The MI of discrete PWs is analyzed for an arbitrary inclination angle of the
holding beam. Existence of single peak spatial soliton is proved numerically in such discrete
systems and compared with 1-D case. Successful switch (on/off) of solitons takes place if injection
time of writing/erasing beam exceeds a minimum threshold, which is inversely proportional to the
amplitude as well as width of the beam. The subsequent section involves the interaction of three
propagating beams in 2-D adjacent waveguides. This property is used to demonstrate all-optical
logic gates, namely, NOR, XNOR, and NAND. The suggested devices can be used for rapid routing and
processing of data in form of optical pulses. This technology also could allow for several further all-
optical devices for communication and information processing.
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