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Abstract: We study numerical solutions of the generalized nonlinear Schrödinger equation
(GNLSE), focusing on the advantage of integrating the nonlinear part of the equation in the
frequency domain (FD), rather than in the time domain (TD), when simulating super-
continuum generation in optical fibers. We show that integration of the nonlinear operator in
the FD is more efficient than its integration in the TD. We analyze different adaptive step-
size algorithms in combination with the interaction picture integration method and show that
their performance strongly depends on whether integration of the nonlinear operator is
performed in the FD or TD. We find that the most efficient procedure for supercontinuum
simulation in optical fibers results from solving the nonlinearity in the FD and applying the
recently introduced conservation quantity error adaptive step-size algorithm.

Index Terms: Fiber nonlinear optics, supercontinuum generation.

1. Introduction: Modeling and Integration Algorithms

1.1. GNLSE: Time and Frequency Domain Formulations
Fast simulation methods are required to study supercontinuum generation. Computational time

becomes an even more important concern when large data sets are required. This is the case, for
instance, in studies on optical rogue waves [1], where statistical approaches are used, or on
dissipative soliton resonance [2], where finding the region of parameters in which these solitons
exist requires an enormous number of numerical simulations. In those cases, conventional compu-
tational methods could become prohibitively slow.

Supercontinuum generation in optical fibers can be modeled through a nonlinear propagation
equation that includes dispersive, Kerr, instantaneous and delayed Raman response, and self-
steepening effects [3]. The common practice is to write this equation in the time domain (TD)
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where RðtÞ ¼ ð1� fRÞ�ðtÞ þ fRhRðtÞ, Aðz; tÞ is the electric field complex envelope, t is the retarded
time for a reference frame travelling at the envelope group velocity, �k are the usual dispersion
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coefficients associated with the Taylor series expansion of the propagation constant �ð!Þ around
the carrier frequency !0, � is the nonlinear coefficient of the fiber fundamental mode, and 0 G fR G 1
represents the fractional contribution of the delayed Raman response hR , which is usually
approximated by hRðtÞ / expð�t=�2Þsinð�1Þ. In this paper, we adopt the more accurate function

hRðtÞ ¼ ðfa þ fcÞhaðtÞ þ fbhbðtÞ
haðtÞ ¼ �1 ��21 þ ��22

� �
e�t=�2sinðt=�1Þ; hbðtÞ ¼ 2�b � tð Þ=�2b

� �
e�t=�b (2)

where �1 ¼ 12:2 fs, �2 ¼ 32 fs, �b ¼ 96 fs, fa ¼ 0:75, fb ¼ 0:21, fc ¼ 0:04, and fR ¼ 0:24 [4].
The main drawback of implementing (1) is that time derivatives lead to numerical errors due to the

discretization of the time window. These derivatives vanish when transforming (1) into the
frequency domain (FD), leaving only the discrete longitudinal step size as a source of numerical
errors. By defining � ¼ !� !0, ~Aðz;�Þ as the Fourier transform of Aðz; tÞ, and dropping the
arguments in both ~Aðz;�Þ and Aðz; tÞ, the FD formulation of (1) becomes [5]
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where F stands for direct Fourier transform, F�1 for the inverse transform, and ~hR ¼ F ðhRðtÞÞ.
Numerically, F and F�1 are computed using the fast Fourier transform (FFT) and inverse FFT
(IFFT), respectively.

Adaptive step-size methods can be applied more successfully in the FD, as we show in the next
section. Equation (3) has the additional advantage that the frequency dependence of the nonlinear
coefficient �ð!Þ can be included in straightforward fashion with the simple substitution � ! �ð!Þ.
This approach provides only an approximated solution but it has been shown to allow a satisfactory
modeling of the frequency dependent loss, dispersion, and nonlinearity [6], [7].

1.2. Fourth-Order Runge–Kutta in the Interaction Picture Method Algorithm
The split-step Fourier method (SSFM) has been extensively used in past years to solve (1) [3],

[8]–[17]. The dispersive part of the equation is solved in the FD, whereas the nonlinear part, i.e., the
right-hand side (RHS) of (1), is solved in the TD. Recently, a faster integration procedure, closely
related to the SSFM and originally developed for the study of Bose–Einstein condensates, was
shown to be more efficient. It is called the fourth-order Runge–Kutta in the interaction picture
method (RK4IPM) [15], [16]. The integration over one longitudinal step h is written as
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where ~D ¼ �ið�ð�Þ � �0 � �1�Þ, and NðAðz; tÞÞ is the nonlinear operator, i.e., the RHS of (1),
applied to Aðz; tÞ. The RK4IPM can also be applied in the FD. By defining ~Nð~Aðz;�ÞÞ as the
application of the nonlinear operator in the FD, i.e., the RHS of (3), we have
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The total number of FFTs performed using (4) or (5) is 16 in both cases. The four IFFTs explicitly
appearing in (4) are balanced by four additional FFTs in (5) that must be computed when
implementing the nonlinear integration in the FD. An implementation of these equations in MATLAB
can be found in [18]. Note that even when applying the nonlinear operator N in the TD, the
convolution in the RHS of (1) is usually performed in the FD.

1.3. Adaptive Step-Size Methods
In order to optimize simulation times, the step size h can be interactively adjusted. An estimation

of the error incurred at each integration step can be used to set its value. For instance, the local
error method (LEM) [19] estimates the local error by taking a full step h to compute a coarse
solution, then independently taking two half-steps to obtain a finer solution. The magnitude of the
error can then be estimated by comparing both results. The conservation quantity error method
(CQEM) [20] uses another approach. It estimates the error by calculating the photon number before
and after the integration. Since (1) and (2) conserve the photon number, any deviation can be
interpreted as a numerical error, and its magnitude estimated. See [20] for a description of the
algorithms used to determine the step size in both LEM and CQEM.

A third method is the uncertainty principle method (UPM) [21]. Rather than estimating a local
error, the UPM uses the uncertainty relation between the linear and nonlinear operators to calculate
a maximum local error. The step size can then be reduced until the calculated maximum local error
is arbitrarily small [21]. The main disadvantage of the UPM is that it only works with generalized
nonlinear Schrödinger equations (GNLSEs) with Hermitian nonlinear operators, which is not the
case in (1) and (3). Nonetheless, we estimated the maximum error by only considering the
imaginary part of the nonlinear operator. This assumption works for moderate-power regimes, but
as we show next, its performance degrades when high powers are considered.

2. Results
We assess the efficiency of the TD or FD integration of the nonlinear operator N by modeling
supercontinuum generation in optical fibers. We explored a wide range of system parameters and
show results for two representative cases. Simulation parameters are those of [20], representing
the propagation of femtosecond pulses in the anomalous dispersion region of a highly nonlinear
photonic crystal fiber (PCF). The fiber zero-dispersion wavelength is 780 nm, and the correspond-
ing dispersion coefficients were taken from [3]. The input pump pulse is centered at 835 nm with a
hyperbolic-secant profile Að0; tÞ ¼

ffiffiffiffi
P
p

sechðt=t0Þ, where t0 ¼ 28:4 fs, P ¼ 10 kW (first case), and
P ¼ 50 kW (second case). The propagation distance is 10 cm. Output spectra, obtained using (5),
for both cases are shown in Fig. 1. We use a time window of 32 ps and 215 samples.

Fig. 2 illustrates, for P ¼ 10 kW, the efficiency of the six approaches studied in this paper. We
find the solution using TD or FD integration of the nonlinear operator and in each case test the LEM,
CQEM and UPM for the adaptive adjustment of h. To compare results, we calculate the global error
" for each simulation, which is defined as [22]

" ¼
XN
k¼1
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k
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k



 

2


 



Nmax Atrue

k



 

2� 	 (6)

where n is the number of field samples, Asim is the simulated field at the output of the PCF, and Atrue

is a reference solution obtained at the highest achievable numerical precision. Note, however, that
this definition of the global error, which has also been adopted in [20] and [22], is insensitive to
phase errors. As such, we verified the convergence of our simulations adopting an alternative
global error definition that takes into account phase errors [22] and obtained similar results.

We verified that simulation results do not depend on which method is used to obtain Atrue as long
as the same precision is reached and the same implementation in TD or FD is used (see Section 3.1
for further discussion). The number of FFTs performed in a given simulation is used as a measure of
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Fig. 1. Simulated output spectra. (a) P ¼ 10 kW. (b) P ¼ 50 kW. See the text for simulation parameters.

Fig. 2. Simulation global error versus number of FFTs using six different approaches: LEM, CQEM, and
UPM solving the nonlinear operator in either time or frequency domain, for an input pulse peak power of
10 kW.
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its computational cost, as done in previous publications [19], [21]. We verified that this number is
proportional to the simulation time (see Section 3.4 for further explanation).

Fig. 2 illustrates that the different methods show similar computational performance for
P ¼ 10 kW. The application of the FD approach in (5) together with the CQEM (CQEM-FD) is
the most effective method, in the sense that it requires fewer FFTs to achieve a given global error.
When the nonlinear integration is performed in TD, the LEM is the most efficient method until the
accuracy reaches a value of 10�8. For higher accuracies, i.e., for smaller global errors, the UPM
performs better. The CQEM is not suitable for TD calculations.

For P ¼ 50 kW, Fig. 3 shows the same trends as in Fig. 2, but the difference in performance is
more dramatic. In the FD and for acceptable global errors (smaller than 10�3), the CQEM achieves
approximately an order of magnitude higher accuracy than the LEM for the same number of FFTs.
These results confirm the observation in [20] that the CQEM performs better for more complex
problems.

The upper limit to the curves in these figures, which is always around 10�2, is determined by the
highest possible target value imposed to the local error, above which simulations no longer
converge. This limits the minimum number of FFTs that a given method requires to achieve
convergence. For instance, the UPM-FD and UPM-TD need 4 � 102 FFTs to reach a global error of
10�2 (see Fig. 3) and when one attempts to perform less FFTs, by decreasing the target local error,
the field diverges.

We also observe that for P ¼ 50 kW, the LEM is far more efficient than the UPM, for a given
global error, when nonlinear integration is carried out in the TD. For the higher peak power even the
CQEM-TD is more efficient than the UPM-TD. We attribute this to the fact that, for higher peak
powers, the real part of the nonlinear operator cannot be neglected and the approximation made in
the implementation of the UPM no longer holds.

3. Discussion

3.1. FD versus TD Integration
The TD formulation of the GNLSE (1) contains time derivatives, which can only be calculated

approximately in the discrete numerical case with a finite number of sample points. Therefore,
additional derivative-related numerical errors are introduced, which are independent of the longi-
tudinal step size and cannot be minimized by an adaptive step-size algorithm. The calculation of
time derivatives can be avoided transforming the GNLSE into the FD (3). Since the only remaining
source for numerical errors is the finite step size, which can be efficiently controlled by adaptive
methods, it is to be expected that any of these methods will perform better in the FD. This is

Fig. 3. Simulation global error versus number of FFTs using all six approaches. Input parameters are
the same as those in Fig. 2, but the input pulse peak power is 50 kW.

IEEE Photonics Journal Procedures for Supercontinuum Simulation

Vol. 4, No. 2, April 2012 Page 556



confirmed in our simulations, as shown in Figs. 2 and 3. FD implementations of all investigated
adaptive step-size methods perform more efficient than their TD counterparts, with the exception of
one case (using LEM-TD) in Fig. 3. However, the performance difference between TD and FD
implementation varies significantly for the investigated methods. This way, it is important to select
the correct adaptive method for a given implementation: a point discussed in Section 3.2.

There is another consequence of solving the GNLSE in the FD. Solutions found in TD and FD are
not identical. This means that the reference solution Atrue, calculated at the highest numerical
precision for the longitudinal step size, is different for TD and FD implementations. For P ¼ 10 kW,
this difference was found to be very small, i.e., the spectrum shown in Fig. 1 is nearly identical either
using TD or FD nonlinear integration. On the other hand, for P ¼ 50 kW the difference is dramatic,
as shown in Fig. 4. This is due to the fact that (1) is a 2-D problem. Even if the error in z is
minimized, the derivative-related errors in t remain the same, since the number of samples is kept
constant. Therefore, due to the approximate nature of numerical calculations of derivatives, the
solution found in the TD is basically less accurate than the solution found in the FD. If the time
resolution is increased, either by using a larger number of sampling points or a smaller time window,
the accuracy in the derivatives calculations increases as well, and the TD solution converges
towards the solution found in the FD (with less sampling points) as shown in Fig. 4(b). When the
number of samples is increased to 216, keeping the total time window of 32 ps, TD integration
produces the same spectrum as FD integration [see Fig. 4(c)]. However, the additional sampling
points are associated with a severe increase in computational cost. If highly accurate solutions are

Fig. 4. Simulated output spectra. (a) P ¼ 50 kW, with 215 sample points, using TD integration,
(b) P ¼ 50 kW, 215 points, FD integration, and (c) P ¼ 50 kW, 216 points, TD integration. Other
simulation parameters can be found in the text.
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required, it is therefore advisable to work entirely in the FD. For our error calculations in (6), we used
a separate Atrue for time and frequency implementations to ensure a fair comparison of the adaptive
step-size methods, because these methods are only able to minimize the error in the propagation
direction and should not be evaluated based on inherent errors of the particular implementation.

3.2. Optimum Adaptive Step-Size Method for TD or FD Integrations
If (4) is applied, i.e. the nonlinear operator is solved in TD as it is usually done, the LEM is much

more efficient than the CQEM. We attribute this to the fact that the CQEM is sensitive to errors
introduced by the calculation of numerical derivatives in the TD solution of N , as these errors
change the photon number. As such, the algorithm keeps the step size small in order to com-
pensate, but since errors are not related to the finite step size, this behavior leads, in fact, to a worse
performance. In contrast, the LEM is only sensitive to errors introduced by the discrete step size,
and therefore performs more efficiently if there are other errors present which are not step-size
related.

3.3. CQEM Disadvantages
We note that the smallest global error the CQEM can achieve is limited even when the nonlinear

integration is performed in the FD. In Figs. 2 and 3, the CQEM-FD does not reach global errors
smaller than 10�8 and 10�7, respectively. When we tried to reach higher accuracies by imposing a
smaller limit to the photon number mismatch after each integration step, the simulation stopped.
This limitation is due to the fact that calculations in the default MATLAB package use double
precision numbers which are accurate to the 15th digit, whereas to obtain smaller global errors
through the CQEM-FD relative photon number errors smaller than 10�15 are necessary. For these
calculations, the default MATLAB package is not accurate enough and therefore the CQEM
algorithm reduces the step size in an endless loop.

In principle, one can solve this problem by either using a larger precision programming language
or including additional multiple precision toolboxes into MATLAB, but this is certainly a limit to the
CQEM-FD. In practice, however, one rarely requires such small global errors.

A second drawback of the CQEM-FD appears when we look at the local versus global error and
perform a linear fit. Ideally, the slope of this curve should be 1, indicating that the global error
accuracy could be improved by simply setting a proportional change in the tolerated local error [19],
[21]. In Fig. 5, we show these plots for the two most efficient integration procedures, i.e., CQEM-FD
and LEM-FD. It is clear that the LEM-FD produces slopes closer to 1.

3.4. FFT as a Measure of Computational Cost
A natural question related to Figs. 2 and 3 is whether the number of FFTs represents a good

measure of computational cost or simulation time. This is the case for large values of sample points
n, since it is well known that each FFT performs between 4nlog2ðnÞ to 5nlog2ðnÞ arithmetical
operations, depending on the implemented algorithm [20], whereas the number of all other
operations in any of the methods grows linearly with n.

As stated before, we used n ¼ 215 samples. To check this point, we divided the simulation time in
our computer by the number of FFTs for each simulation. The CQEM-FD and LEM-FD give the same
value (0.011 s/FFT), whereas the UPM-FD gives a slightly higher value (0.013 s/FFT). This indicates
that if we plotted results against simulation time instead of number of FFTs, the LEM-FD and CQEM-
FD would show the same behavior, whereas the UPM-FD would perform slightly worse than shown
in Figs. 2 and 3. The same result holds for simulations using TD nonlinear integration. We then
choose the number of FFTs as a measure of computational cost because it can be reproduced
easily, whereas the simulation time depends on the particular hardware and software conditions. Our
codes are open to the community in order to facilitate reproduction of the results presented in this
paper [18].
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4. Conclusion
As mentioned above, solutions to the GNLSE with nonlinearity dispersion are naturally computed in
the FD. In this case, both LEM and CQEM have been successfully employed for the step-size
adaptation [6], [14], [23]. In this paper, we showed that the use of the FD approach integration is
advisable, even when the nonlinear coefficient is taken to be constant over the spectral bandwidth,
as the numerical solution in the FD is inherently more accurate and faster, for a given acceptable
global error, than the TD approach.

As pointed out in Section 1.1, to consider nonlinearity dispersion, the use of (3) with the
substitution � ! �ð!Þ, has been commonly employed. This, however, is an ad hoc procedure, and a
proper derivation requires a generalization of the effective-area concept. To this purpose, a new
equation is rigorously derived in [6]. As it has the same form as (3), the results presented in this
paper remain valid.
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