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DOI: 10.1109/JPHOT.2012.2186124
1943-0655/$31.00 �2012 IEEE

Manuscript received November 29, 2011; revised January 17, 2012; accepted January 23, 2012. Date
of publication January 26, 2012; date of current version March 15, 2012. Corresponding author:
C. G. Someda (e-mail: someda@dei.unipd.it).

Abstract: The behavior of two waveguides, which are decoupled at a single frequency
when a broadband pulse is launched into one of them, was studied recently in the time
domain. We reinvestigate it in the frequency domain. This contributes to the clarification of
the scope of the validity of previous results and allows extending them to dispersive
waveguides. New results include a power spectral density conservation law and a revised
calculation of the pulse breakup distance.

Index Terms: Waveguides, pulse shaping, slow and fast light (SFL).

1. Introduction
The question of whether twin waveguide cores at finite distance can be decoupled or not was studied
20 years ago in theoretical terms [1] but became of practical interest more than a decade later,
thanks to the advent of photonic band gap (PBG) waveguides [2]–[8]. Recent contributions (e.g., [9])
have shown that closely spaced waveguides are still of interest, regardless of the fabrication
technology. Also, theoretical interest in the question has been revitalized by Liu and Chiang [10].
They pointed out that the spectrum of short optical pulses can extend far out of the frequency range
where the decoupling recipe [1]Vwhich, in principle, works at a single antiresonant frequencyVis an
acceptable approximation. Working in the time domain, they reached the conclusion that an input
pulse, of completely arbitrary shape aðtÞ, launched into one of the cores breaks into four output
pulses, namely, a pair in each core, separated by a time gap that grows linearly with distance, as the
pulses travel down the waveguides. This result looked surprising at first sight, but was nicely
explained [10] in terms of differential group velocities of the even and odd supermodes of the twin
waveguides and has been demonstrated experimentally under various circumstances [13], [14].

In our opinion, those results deserve further investigation. To explain why, let us focus on the
group velocities of the subpulses. If we take properly into account that, in the notation used in [10],
t ¼ 0 at a distance z at the time of arrival of a pulse traveling in the individual waveguide t 0 ¼ z=vg ,
where vg is the waveguide group velocity, we find the propagation velocities of the subpulses

v 0
g� ¼ vg=ð1� C 0vgÞ (1)

where C 0 is the derivative with respect to ! (at the decoupling frequency !0) of the coupling
coefficient. Therefore, the statement [10] that the subpulses Bpropagate at slightly different group
velocities[ applies only for jC 0jvg � 1. There is no indication in [10] of any restriction of this kind. If
this restriction is violated, then the decoupled twin-core waveguides become a suitable candidate
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for slow and fast light (SFL). Given that, as we said before, decoupling is due to an antiresonant
behavior, this SFL device would belong to the class of cascaded resonators (see, e.g., [11]).

Aiming at clarifying this issue, in the next Section, we will rephrase the problem in the frequency
domain. We will reach the conclusion that the results of [10] are mathematically correct but imply a
behavior of the coupler versus frequency which cannot be realistic over an arbitrarily broad
frequency range. Clearly, we restrict ourselves to the linear regime, while [10] could take into
account SPM. What we gain, on the other hand, isVin addition to our main task, which is to shed
some light on the scope of validity of the resultsVto

1) show that the results of [10] can be extended to dispersive waveguides;
2) derive a simple conservation law for power spectral density, which is physically obvious but

not easy to grasp from the time-domain formulation.
Incidentally, we will also recalculate the distance the subpulses must travel in order to be

resolved in time. It was rather strange that the result found in [10] was independent of the group
velocity. In fact, we will show that this is an acceptable approximation as long as jC 0jvg � 1.

2. Frequency-Domain Equations and Their Solution
Consider two infinitely long parallel waveguides, at finite distance from each other in the transverse
plane. Suppose that the region between them has been tailored [1] so that the cores are decoupled
at the angular frequency !0. Then, taking the Fourier transforms of [10, eqs. (1) and (2)] and using
the same notation, dropping the SPM terms, we get

j
d 1

dz
��!C 0 2 þ

�2
2
�!2 1 ¼ 0 (2)

j
d 2

dz
��!C 0 1 þ

�2
2
�!2 2 ¼ 0 (3)

where �! ¼ !� !0, C 0 was defined in the introduction, �2 is the group velocity dispersion (GVD),
and  i ði ¼ 1; 2Þ are the Fourier transforms of the time-domain envelopes ai of the waves which
travel in the þz direction.

In the nondispersive case ð�2 ¼ 0Þ, differentiating the first equation with respect to z, and
replacing  2 from the second one, we see immediately that both  i satisfy a harmonic equation.
Hence, if at z ¼ 0 waveguide 1 is excited and waveguide 2 is at rest ða2ðz ¼ 0Þ ¼ 0Þ, we get

 1 ¼Að�!Þcosð�!C 0zÞ (4)

 2 ¼ �jAð�!Þsinð�!C 0zÞ (5)

where Að�!Þ is the Fourier transform of the input pulse envelope aðtÞ. The inverse Fourier
transforms of the cosine and sine factors are, respectively, half the sum and half the difference of
two Dirac delta functions centered at t ¼ �C 0z. Hence, the convolution theorem tells us that, for any
shape of the input pulse, the output consists indeed, as stated in [10], of four pulses, i.e., two in
each waveguide, with a time shift of �C 0z. The pulses in waveguide one have equal signs, and
those in waveguide two opposite signs.

All this seems to confirm that the scope of validity of the results found in [10] is extremely wide.
However, before drawing such a conclusion, notice that (4) and (5) indicate that any time-harmonic
component of the input signal of angular frequency ! ¼ !0 þ�! undergoesVin spaceVa periodic
transfer from one waveguide to the other and back, like in an ordinary directional coupler. The beat
length is LB ¼ 2�=ðC 0�!Þ. This indicates that there is an implicit assumption behind the equations
that we just solved, as well as those that were solved in [10], namely, that the coupling coefficient
between the two waveguides varies linearly with �!, from minus infinity to plus infinity. This
assumption does not look realistic. In fact, the physical explanation of the decoupling recipe is an
antiresonance [1], indicating that a Lorentzian-type line shape would be far more realistic. As is very
well known, the frequency range (normalized to the central frequency) over which the imaginary
part of a Lorentzian can be approximated with a straight line is of the order of the Q-factor. This
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appears to set a limitation to the scope of validity of the results of [10]: The slope of the coupling
coefficient versus frequency jC 0j must be small enough so that the whole spectrum of the input
pulse fits into the frequency range where the linear approximation for C versus �! holds.

We will come back to jC 0j, i.e., (4) and (5), for further comments, in the next Section. Let us first
show that, in the frequency domain, results can be quickly extended to dispersive waveguides. With
the following change of variables:

�i ¼  iexp j
�2
2
�!2z

� �
; ði ¼ 1; 2Þ (6)

combined with (2) and (3), we see that the new unknowns �i ’s satisfy two equations which are
formally identical to those that the  i ’s satisfy in the dispersionless case. Therefore, in the
dispersive case, when, at z ¼ 0, waveguide 1 is illuminated and waveguide 2 is not, the relevant
solutions read

 1 ¼Að�!Þcosð�!C 0zÞexp �j
�2
2
�!2z

� �
(7)

 2 ¼ �jAð�!Þsinð�!C 0zÞexp �j
�2
2
�!2z

� �
: (8)

The inverse Fourier transform of the factor expð�j�2�!2z=2Þ, for �2 6¼ 0, is (see, e.g., [12])
½

ffiffiffi
2

p
=ð1þ jÞ�expðjt2=2�2zÞ. Then, applying twice the convolution theorem to the double product on

the right-hand side in (7) and (8), we find that also in the dispersive case the output consists of
four subpulses, whose envelope amplitudes undergo the same delays as in the dispersionless
case, but which are chirped, with a phase delay proportional to the distance z through a coefficient
C 02=ð2�2Þ.

3. Further Comments
The elementary identity cos2 þ sin2 ¼ 1 tells us that, regardless of the waveguides being dispersive
or not, power at any frequency (and hence, the overall power spectral density) of the input signal
remains constant, while the pulses propagate through the waveguides. The device being linear and
lossless, this result is physically obvious. Still, it is not easy to grasp it from the time domain results.

Behind the apparent invariance of the pulse shapes, the power of each spectral component
shuttles back and forth from one core to the other. Hence, the statements [10] that Ba pulse does not
couple back and forth[ and that Bwhen the fiber is long enough . . .mode coupling stops completely[
must be taken with a grain of salt. To show that the two waveguides do interfere with each other
also when the front and tail pulses do no longer overlap in time, suppose that one of the two cores
ends abruptly. From there on, the time gap between the pulses in the surviving core will remain
constant. Hence, as long as the time gap was growing linearly with z, there was an interplay with
the other waveguide.

Incidentally, let us recalculate the distance zw , after which, the two subpulses in the same
waveguide are time resolved. As we said before, in the notation of [10], at a distance z, we have
t ¼ 0 at the arrival of a pulse in the isolated waveguide t 0 ¼ z=vg . The subpulses are resolved (in
space) when the separation between their centers �vgz=vg , (where �vg is the difference between
the subpulses velocities) exceeds the spatial length of the input pulse, vgT0, T0 being the input
pulse length in time. Then, using (1), a straightforward calculation yields

zw ¼ T0 1� C 02v2
g

� �
=2jC 0j: (9)

The disagreement with [10, eq. (7)] seems to be due to taking into account the z-dependence of
the instant t ¼ 0. The disagreement is negligibly small for jC 0jvg � 1 so that the numerical
examples presented in [10] are essentially correct, but it may become relevant in a device designed
for slow-light applications.
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Equation (9), in combination with what we said in the previous section about the spectral width of
the antiresonance, indicates that the magnitude of jC 0j plays a crucial role. The smaller the jC 0j, the
broader the allowed spectral range, and therefore, the shorter the pulses that the device can handle
without distortion. On the other hand, the smaller the jC 0j, the longer the splitting distance (9), which
might hinder the practical use of the device for SFL applications. Leaving apart multiple-step index-
guiding structuresVwhich were considered in the early paper [1] and in the references therein, but
are now out of fashionVlet us focus on PBG structures. We see from the literature (e.g., [2, Figs. 3
and 8]) that the slopes of the dispersion curves of the even and odd supermodes, and henceforth
jC 0j, depend very strongly on several parameters of the structure: at the least, the lattice type, the
pitch, and the hole radius. The problem does not appear to lend itself to an analytical approach and
must be tackled numerically. This is an open and promising subject for further investigation.

Let us now go back again to the frequency-domain results of the previous Section. The beat
length LB ¼ 2�=ð�!C 0), being inversely proportional to �! (assuming C 0 is constant over the whole
band of interest), causes a nonmonochromatic signal not to be, in general, a periodic function of z. It
becomes periodic in space, however (in the dispersionless case), if the input signal is time-periodic,
like a sequence of identical pulses. In such a case, we find Bcopies[ of the input pulse train at
distances z ¼ nTr=C 0, n ¼ 1;2; . . ., where Tr is the period of the input sequence. In the dispersive
case, the phase factors have another period in space Le ¼ 4�=ð�2�!2Þ. Hence, for the signal to be
a periodic function of z, LB=Le must be a rational number. The meaning and the physical feasibility
of this condition are not easy to grasp.

4. Conclusion
Propagation of a broadband pulse in twin cores, which are decoupled at the pulse central fre-
quency, has been reinvestigated in the frequency domain. The analysis was motivated by the fact
that the scope of validity of the previous time-domain results was not easy to assess. Our results
reconfirm that the key point of [10]Vi.e., that, irrespectively of its shape, the pulse breaks up into
four subpulses, i.e., two in each core, with a time gap that grows linearly with distanceVis mathe-
matically correct. On the other hand, though, we have shown that these results are based upon a
model of the frequency behavior of the device, which is tenable only under some restrictions.
Namely, the pulse spectrum must stay within the range where the coupling coefficient between the
guides varies linearly versus frequency deviation. Each spectral component of the pulse shuttles
back and forth between the cores, and the total power spectral density of the entire signal (taking
into account the fields in both cores) is preserved. The results have been extended to the case of
dispersive waveguides, where the output signal is chirped, but there are no other major changes.

Another limitation has been shown to underlie some calculations and comments. It involves
group velocity, namely, it was implicitly assumed in [10] that vg jC 0j � 1j. This restriction seems to
be independent of the one concerning the pulse spectral width. However, this point deserves further
investigation because, if the restriction can be removed, then the twin cores may become a
candidate for SFL applications. In particular, what looks attractive is the fact that the two subpulses
in the Bslave[ waveguide are of opposite sign, making it possible, at least in principle, to generate a
zero-mean signal by means of a device which is passive and linear.
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