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Abstract: A method that characterizes two-mode waveguides whose modes cannot be
selectively excited (such as buried waveguides) is presented and demonstrated. The theo-
retical results are presented for N modes, although for the sake of simplicity, only the two-
mode case is developed. The values of the optical mode fields are recovered from several
images of the waveguide exit face, where both modes interfere with different relative
intensity in each image. From these mode fields, both the squared index distribution, except
in an additive constant, and the effective index difference can be obtained by inverting the
Helmholtz equation. As in the case of the standard monomode intensity method, the relative
values of effective indices and index distributions become absolute if the modes are re-
trieved in a point of known index, for instance, in the substrate. The method can also be
applied to multimode guides if only two modes are excited. In fact, an inexpensive setup is
proposed to excite the first two modes of a multimode buried waveguide. This waveguide
was fabricated by ion exchange in glass and buried by electromigration. The shape of the
squared refractive index recovered by the proposed method agrees with that reported in the
literature.

Index Terms: Visible lasers, waveguide devices, waveguide characterization.

1. Introduction
One of the main tasks in integrated optics is the characterization of waveguides. Optical characteri-
zation spans a wide range of measurements of waveguide characteristics, such as, for example,
refractive index profile, mode effective indices, modal intensities, modal losses, modal dispersion,
and so on. Many different characterization methods implemented by diverse techniques have been
proposed ever since the beginnings of integrated optics, and they have set down the foundations of
many other techniques. Thus, interferometry techniques are among the most used [1]–[6] to mea-
sure mainly the refractive index profiles of integrated waveguides, however they used to be very
laborious and destructive. Another well-known method of slab waveguide characterization is the
M-line one, based on the prism-guide coupling technique, to measure the effective indices, and,
accordingly, to model the refractive index profile and the optical modes [7], [8]. This method is very
useful and powerful when there are several guided modes; however it requires that the integrated
guides be found on the surface of the substrate, otherwise (buried guides) the prism-guide coupling
technique cannot be applied because the coupling between the guided modes and the prism
radiation modes is negligible. An adaptation was also proposed for the measurement of effective
indices of surface channel waveguides [9], but the recovery of the 2-D index profile is not obvious.
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Another interesting technique of characterization is the measurement of the modal intensity,
which allows us to recover the index distribution by inverting the Helmholtz equation. The mode is
usually obtained in far-field regime, either from the diffracted modal fields [10] or by imaging the exit
face of the guide on an image sensor [11]–[13], although the near field scanning was also used [14].
This technique is particularly useful for monomode guides because their mode can be excited by
the end-fire coupling method. For multimode guides we should excite the modes in a selective way,
as for example the modes of a surface (nonburied) slab guide which are excited by prism-guide
coupling. In other cases, such as optical fibers or buried (channel or slab) guides with two or more
modes, the end-fire coupling technique also fails because a selective modal excitation is not
possible. In this paper, we focus our attention on this last case, that is, on the buried guides with
more than one mode.

We must underline that although the transmission and/or interconnection in integrated optics is
usually made in a monomode regime, a recent interest is arising in few-mode fibers to improve the
data throughput of monomode fibers [15]. Furthermore, the most of the integrated devices are
based on components working at a regime of a few modes. Basic examples of such components
are the couplers of two monomode guides or even couplers of one guide with two modes. If these
components were buried then the most direct and nondestructive technique of modal charac-
terization would be the direct measurement of simultaneously excited modal fields. In particular, we
will analyze a slab buried guide obtained by electric field-assisted ion exchange in glass by using
image intensity measurements at the exit face. Since the modes cannot be excited in a selective
way, then we will have in each point of the image the interference of the excited modes in the guide.
Our method is based on the capture of several images of the waveguide exit plane, each one for a
different modal excitation. This allows us to determine the contribution of each mode at each image
point and therefore to obtain the values of the modal fields. From these modal fields, the difference
between their effective indices and the index profile can also be obtained in the same way as the
monomode intensity method. In that sense, our method can be considered as a generalization of
the former one. The theoretical results are presented for the case of N modes, although we must
underline that the method takes a simple form in the two-mode case N ¼ 2 which is developed.
Likewise, the results of the two-mode case can be used in multimode guides under particular modal
excitation conditions, for instance, a modified end-fire coupling method, which primarily excites the
first two modes, is proposed.

The plan of this paper is as follows: In Section 2, we present the main theoretical results for N
modes concerning the method of characterization based on the multimode intensity measurements,
as well as the main steps of the algorithm to be used in the data processing of the two-mode case.
Section 3.1 is devoted to describe the fabrication of a slab buried waveguide by a field-assisted ion-
exchange process while the optical setup to perform the intensity measurements is presented in
Section 3.2. Section 4 deals with the image intensity data processing when only two modes are
excited, and accordingly, the retrieval of the modal amplitude, the relative modal phase, the
refractive index profile, and the effective index difference are discussed. Conclusions are given in
Section 5.

2. Coupling Theory
In this section, we present the main theoretical results to be used throughout the work. First of all,
we deal with the modal coupling problem of an input optical field Ei into an integrated N-mode
waveguide in order to derive a consistent multimode optical intensity function. Next, we present a
general method to recover the modal amplitude values (characterization) starting from intensity
measurements. Finally, we apply this method to the two-mode case, leading to explicit and, above
all, manageable results.

2.1. Multimode Intensity
Let us consider a multimode optical waveguide represented by a refractive index profile nðx ; yÞ

and supporting monochromatic guided modes E�ðx ; y ; z; tÞ, H�ðx ; y ; z; tÞ (in which, for the sake of
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simplicity, we choose only a modal subindex �) propagating along z. These modes can be repre-
sented by the following vectorial complex expressions:

E�ðx ; y ; z; tÞ ¼ E�ðx ; y ; zÞ e�i!t ¼ E�ðx ; yÞ ei½��z�!t � (1)

H�ðx ; y ; z; tÞ ¼H�ðx ; y ; zÞ e�i!t ¼ H�ðx ; yÞ ei½��z�!t � (2)

where fE�ðx ; yÞ;H�ðx ; yÞg and �� are the modal complex vectorial amplitude and the propagation
constant of the �-mode. It must be noted that the transverse and longitudinal modal components are
real and imaginary, respectively.

On the other hand, the quasi-complete orthonormalization condition of two modes: � and �0, on a
cross section of an optical guide, is given by the following expression [16], [17]:

2 sgn�

ZZ
e�0 ^ h?�
� �

uz dx dy ¼ �j�j; j�0 j (3)

where �j�j; j�0j is the Kronecker delta, the function sgn� is defined as þ1 if � 9 0 (forward modes) and
as �1 if � G 0 (backward modes), and e�, h� are the normalized modes, that is, e� ¼ E�=kE�k and
h� ¼ H�=kH�k, with [17]

kE�k � kH�k ¼ 2 sgn�

ZZ
E� ^ H?

�

� �
uz dx dy

� �1=2

(4)

that is, the modal norm. Note that the orthonormalization condition (3) is determined only by the
transverse field components of the guided modes and it is a quasi-complete orthonormalization
condition since for cases such as � ¼ ��0, (3) is not equal to zero; however, it is an exact expres-
sion for copropagating (forward) modes which are considered throughout this work.

It is well known that any optical field can be expressed as a linear superposition of normalized
modes, thus the spatial complex amplitude fE;Hg of a forward field at any plane z of the guide can
be written by means of forward modes as follows:

Eðx ; y ; zÞ ¼
X
�

a� e�ðx ; yÞ ei��z Hðx ; y ; zÞ ¼
X
�

a� h�ðx ; yÞ ei��z (5)

where

a� ¼ 2
ZZ

Eðx ; y ; 0Þ ^ h?�
� �

uz dx dy : (6)

Thus, starting from (5) and taking into account the modal normalization condition given by (3), the
following expression for the total power P of the optical field E is derived:

P ¼ 2
ZZ

E ^ H?f guz dx dy ¼
X
�

ja�j2 þ Pr (7)

with ja�j2 the power coupled to each guided mode (guided mode power) and where, for the sake of
consistency, we have added the power coupled to radiation modes Pr . It would even be necessary
to add other powers such as reflection power, absorption power, and so on; therefore, Pr can also
be understood as the contribution of all of them. In Section 2.2, we will take into account these
powers Pr in order to define the power coupled to each mode in a compatible way with the
experimental intensity measurements.

On the other hand, we can define the intensity I of the optical field E as a function of the
amplitudes of the optical modes, that is, the multimode intensity

Iðx ; y ; zÞ ¼ E ^ H?f guz ¼
X
�;�0

a� e�ðx ; yÞ ei��z ^ a?�0 h
?
�0 ðx ; yÞ ei��0z

( )
uz : (8)
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This equation can be simplified by means of very usual assumptions on modal fields. Thus, in the
case of modes of slab guides, that is, with refractive index profile nðxÞ, we can distinguish
between TE and TM modes because the TE modes fulfill the relationship: ��Ey� ¼ �!�oHx� and
Ex� ¼ 0 and the TM modes fulfill the relationship: ��Hy� ¼ �!�oEx� and Ey� ¼ 0. These relation-
ships are quasi-exact for most of the channel waveguides and in particular for those whose width
is larger than their height, and therefore these modes are called QTE (quasi-TE) and QTM (quasi-TM)
modes.

Note that the expansion coefficients a� correspond to the case of an optical field E inside the
guide, however the practical problem always involves the coupling of an input optical field E i from,
for instance, the vacuum. Therefore, we must slightly change the expansion coefficients, that is,
within the paraxial approximation and in a good approximation for an input optical field with plane
phase, that is, E i a real function at z ¼ 0, we can write

c� � 2
ZZ

t� E iðx ; y ; 0Þ ^ h?�
� �

uz dx dy (9)

where t� ¼ 2N�=ð1þ N�Þ are the transmission coefficients for each mode � which has an effective
index N�. Thus, taking into account the last relationship and that in most integrated waveguides
the effective indices fulfill the relation N� � N 0� � N1, then (8) can be approximately rewritten as
follows:

Iðx ; y ; zÞ � N1

c�o

X
�

jc�j2e2
� ðx ; yÞ þ

X
� 6¼�0

c�c�0ei���0 e�ðx ; yÞe�0 ðx ; yÞ
( )

(10)

with ���0 ¼ ð�� � ��0 Þz, e� � ey� and, in a good approximation, for calculations concerning the
intensity, we have chosen N� � N1, 8�. Note that all coefficients c� are real because t�, hy� , and
E iðx ; y ; 0Þ are also real; therefore, the only complex numbers are the phases ei���0 .

2.2. Modal Amplitudes From Intensity Measurements
By taking into account the results of the above subsection, we describe a general procedure to

obtain the modal amplitudes starting from measurements of multimode intensity at a plane z of a
multimode guide. Let us consider a slab guide, although the results can be extended to channel
guides in a straightforward way. Let us consider N modes in a guide; then we perform a first set of
measurements of intensity at N points at the exit plane of the waveguide excited by an input real
field E i ðx ; y ;0Þ, that is, ðIð1Þe ð1Þ; . . . ; Ið1Þe ðNÞÞ, with subindex e indicating the experimental values;
next, we modify the input field, for instance, by shifting it or by changing its size (by image system)
but keeping the phase of the input field constant; thus, we obtain a new set of measurement, and
we continue until reaching the M -set, that is, ðIðMÞe ð1Þ; . . . ; IðMÞe ðNÞÞ.

On the other hand, from a theoretical point of view, we have N equations for the modal coupling
intensity of the points j ¼ 1; . . . ;N , that is

IðjÞ � N1

c�o

X
�

jc�j2e2
� ðjÞ þ

X
� 6¼�0

c�c�0ei���0e�ðjÞe�0 ðjÞ
( )

: (11)

Note that we have N equations and N � 1 parameters c� because of the condition given by (7)
applied to the modal coupling coefficients c�, that is, because of the power conservation. Never-
theless, as commented above, there is coupling to the radiation modes, the reflective modes and so
on, accordingly we must modify slightly the condition (7) to be compatible with both experimental
measurements and with (11), that is, we define new coefficients ~c� fulfilling

X
�

j~c�j2 ¼
X
�

jc�j2

P � Pr
¼ 1 (12)
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where the factor P � Pr ¼ Pt is nothing but the transmitted power; therefore, by taking into account
these new coefficients, we can rewrite (11) as follows:

IðjÞ �
X
�

j~c�j2e2
� ðjÞ þ

X
� 6¼�0

~c� ~c�0ei���0e�ðjÞe�0 ðjÞ (13)

where IðjÞ ¼ c�oIðjÞ=N1Pt . In short, the above equations define a hypersurface in an abstract
N-dimensional space and in a parametric form with N � 1 free parameters ~c�, that is, all multimode
intensity values on the N points are found on a hypersurface whose constant values e�ðjÞ at the
N points together with the phases ���0 (which are the same at all points) must be calculated. For that
purpose, we must note that such values of the modal amplitudes e�ðjÞ and phases ���0 at N points
are those that minimize the distance between the experimental values of the multimode intensity and
their respective theoretical values on the hypersurface. If we want to recover more values of the
modal amplitudes e� we should repeat all the process withN new points, and so forth. Obviously, this
is a huge task even from a numerical point of view; however, for two modes (and even for three and
four modes), it gives rise to a reasonable volume of calculation, as shown in the next section.

2.3. Modal Amplitudes From Two-Mode Intensity
When we consider only two excited modes, although the guide owns more than two modes, a

drastic reduction of calculation time is obtained. Indeed, (11) for two points j ¼ 1; 2 ð¼ u; vÞ and two
modes � ¼ 1;2 turn into the following two simple equations of two-mode intensity:

Iu �
N1

c�o
jc1j2e2

1u þ jc2j
2e2

2u þ c1c2ei�12 e1ue2u þ c:c:
n o

(14)

Iv �
N1

c�o
jc1j2e2

1v þ jc2j
2e2

2v þ c1c2ei�12 e1ve2v þ c:c:
n o

: (15)

In this case, the modal intensity equations define a curve on the abstract plane Iu � I v where the
values of interest to be determined are e1u , e2u , e1v , and e2v . Next, we must derive the curve
defined by the above equations. To this end, and as in the multimode case, by taking into account
(12), we write

jc1j2

P � Pr
þ jc2j2

P � Pr
� j~c1j2 þ j~c2j2 ¼ 1 (16)

therefore, starting from the condition j~c1j2 þ j~c2j2 ¼ 1 we can define ~c1 ¼ cos� and ~c2 ¼ sin�.
Next, by taking into account (13), we rewrite (14) and (15) in a parametric way as follows:

Iu � e2
1u cos

2 �þ e2
2u sin

2 �þ 2e1ue2u cos�12 cos� sin� (17)

Iv � e2
2v cos

2 �þ e2
2v sin

2 �þ 2e1ve2v cos�12 cos� sin�: (18)

In order to make easier the calculation of the curve defined by the above equations, we introduce
the following useful parameters:

�l j ¼
e2
1j þ e2

2j

2
; �Ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2
1j � e2

2j

2

 !2

þðe1j e2j cos�12Þ2
vuut (19)

’ ¼ arctan
2e1ve2v cos�12

e2
1v � e2

2v

� arctan
2e1ue2u cos�12

e2
1u � e2

2u

: (20)

Next, after a long but straightforward calculation, we obtain the following implicit equation:

Iu ��l u
�Iu

� �2

þ Iv ��l v
�Iv

� �2

�2 Iu �
�l u

�Iu

Iv ��l v
�Iv

cos’ ¼ sin2 ’: (21)
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This equation states that the normalized intensities Iu and Iv at any two points of a two-mode
waveguide are correlated. In particular, we have obtained an ellipse centered on the point ð�lu ;�l v Þ of
the plane Iu � Iv . This ellipse is inscribed in a rectangle with sides �Iu and �Iu , and rotated an angle
� given by the expression

tan 2� ¼ 2
�Iu�Iv

ð�IuÞ2 � ð�Iv Þ2
cos’: (22)

By taking into account (21), a few useful remarks can be made. The horizontal coordinate of the
ellipse center ð�l uÞ is small only if the modal amplitudes of the point u are small, that is, in the mode
tails. Likewise, the horizontal half size of the ellipse ð�IuÞ must be always smaller than �l u to
preserve Iu 9 0. Besides, �Iu cancels only if the relative phase of the two modes ð�12Þ is �=2 and its
amplitudes take the same value at the point u. Similarly, the mode amplitudes at the waveguide
point v set the vertical position and the size of the circumscribing rectangle. If the points u and v are
near each other, their modal amplitudes are similar, ’ is small and the ellipse comes close to a
diagonal of the rectangle. Inversely, the ellipse is referred to its axes when ’ is equal to �=2. For
example, if v is a point where the first and the second modal amplitudes are equal ðe1v ¼ e2v Þ and u
is at the node of the second mode ðe2u ¼ 0Þ, then ’ ¼ �=2, as seen in (20).

AfterM measurements at the selected two points, that is, fðIð1Þeu ; I
ð1Þ
ev Þ; . . . ; ðIðMÞeu ; IðMÞev Þg, we must find

the best fitting of these points to an ellipse in the abstract space Iu � Iv . We need at least five points in
that space to obtain the above five parameters, that is, five different input fields are indispensable
ðM � 5Þ, although much more of them are desirable. The improvement given in [18] about the
algorithm of Fitzgibbon et al. [19] is used to carry out the fitting. This algorithm is very appropriate
because it is linear, fast, simple to implement and moreover specific to ellipses (parabolas or
hyperbolas are never obtained). This algorithm returns the parameters â, b̂, ĉ, d̂ , ê, and f̂ of the
following equation:

âI2u þb̂IuIv þĉI2v þd̂ Iu þêIv þf̂ ¼ 0:

We need to relate the parameters of the above equation with the parameters �l u ,�l v , �Iu , �Iv , and
’ of (21); after some algebra, the following is obtained

�l u ¼
b̂ê � 2ĉd̂

4âĉ �b̂2 ; �Iu ¼ 2
ffiffî
c
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
âê2 þĉd̂2 �b̂d̂ ê � ð4âĉ �b̂2Þ f̂

q
4â ĉ �b̂2

�l v ¼
b̂d̂ � 2âê

4âĉ �b̂2 ; �Iv ¼ 2
ffiffî
a
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
âê2 þĉd̂2 �b̂d̂ê � ð4âĉ �b̂2Þ f̂

q
4âĉ �b̂2 ; cos’ ¼ � b̂

2
ffiffiffiffiffi
âĉ
p :

Next, we define new parameters 	u and 	v in order to invert (19) and (20), that is

cos 	u ¼
�Iu
�Iu

cos 	v ¼
�Iv
�Iv

:

Therefore, the phase and modal amplitudes tan2 �12, e1u , e2u , e1v , and e2v can be expressed as
follows:

tan2 �12 ¼
tan2 	u þ tan2 	v � 2tan 	u tan 	vcos’

sin2 ’
(23)

e�u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Iu 1� ð�1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 	u �

sin2 	u
tan2 �12

s0
@

1
A

vuuut ; e�v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Iv 1� ð�1Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 	v �

sin2 	v
tan2 �12

s0
@

1
A

vuuut :

We must stress that this procedure can also be applied to guides with more than two modes if
only two modes are excited simultaneously. For instance, in the case of a three-mode symmetric
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guide, we could excite the first and the third mode by using symmetric input fields of variable width
or shape in order to achieve the M measurements.

3. Experimental Implementation

3.1. Slab Buried Waveguide Fabrication
A standard microscope slide (1-mm-thick piece of soda-lime glass) was immersed in a mixture of

molten salts. The selected salt composition was: 47.5 mol% NaNO3, 47.5 mol% KNO3, and 5 mol%
AgNO3, since it presents a melting point of 220 �C [20], which allows us to use a diffusion tem-
perature as low as 240 �C. Under these ion-exchange conditions only two modes are obtained after
24 min of diffusion (see Table 1). As this waveguide is a surface slab one, its effective indices were
measured by prism coupling method with a Model 2010 prism coupler from Metricon. A simple
sodium/silver salt would require too short diffusion time for the same penetration depth of silver
cations. We must note that the Kþ cations did not influence the waveguide formation because they
have a much lower tendency to enter into the glass than Agþ cations. A second diffusion step was
carried out to bury this waveguide some micrometers under the glass surface. The sample was
placed in a quartz support that allowed us to put in contact each sample side with its respective
molten salt at a different electrical potential. In order to remove silver cations from the surface,
a 50 mol% NaNO3 : 50 mol% KNO3 salt composition at 272 �Cwas used as anode in contact with the
guiding surface. However, a 50 mol% AgNO3 : 50 mol% KNO3 salt mixture was used as cathode.
This silver/potassium composition is nearly eutectic, with the melting point lower than 160 �C [20]; a
good electric contact is achieved at the cathode when this salt melts. Initially, the sample was
immersed for 10 min without current flow; next, a potential difference of 155 V was applied for
30 min to perform a field-assisted diffusion. However, it is interesting to underline that, since the
anode and cathode salts have different composition, an effective potential actually occurs, which
can be different from the applied one by some Volt [21]. Once the field-assisted diffusion process
was finished, a 7.02-mm-long piece of sample was prepared by cutting and polishing two faces
perpendicular to the waveguide and parallel to each other.

3.2. Optical Setup
The optical setup is prepared for illuminating one polished face of the sample (input face defined

by z ¼ 0) with a cylindrical focused beam whose focal line is parallel to the waveguide (Y axis). In
this way, only two modes (as shown later) of the waveguide are excited, and they propagate to the
other face (end face). Moreover, the setup contains a microscope objective which forms an image of
the end face of the waveguide on a CCD camera to obtain the intensity profile resulting from the
interference between both modes.

As the input beam profile is a Gaussian one along the confinement direction of the waveguide
(vertical or X axis), and it is collimated along the perpendicular direction, the phase is uniform at the
waist plane, where the input face is. It ensures that both modes have the same phase at the input
face (except in a � relative phase), irrespective of the height of the beam center or the size of the
waist, and therefore, their phase difference at the end face takes always the same value. A variation
of the coupling coefficient to each mode is needed in order to apply the algorithm presented in
Section 2. A relative vertical shift between the illumination system and the rest of the optical system
(sample, imaging objective and CCD) could be an effective way to achieve such variations, but this
requires a big stage with submicron resolution. A more cheap and convenient solution that performs
the same task is sketched in Fig. 1.

TABLE 1

Effective indices after first ion-exchange
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First, let us see Fig. 1(a), which shows a vertical section of the system. A He-Ne laser beam is
refracted through a low-power positive lens (0.5 diopter) that can be moved up and down to redirect
the beam with a negligible change in its original divergence. The following lens is a negative
cylindrical one with its power meridian along the horizontal axis; therefore, it does not affect the rays
of the vertical section. Next, a high-power positive lens (10 diopter) focuses the rays contained in
the vertical plane and projects an image of the low-power lens on the back focal plane of a finite-
conjugated (DIN standard) 10	 microscope objective. The distances between lenses were ar-
ranged in such a way that this image was 160 mm apart from the beam focus. Thus, the objective
focuses a high-quality beam again. To place just the input face on the beam waist, the back-
reflected beam from this face must maintain the same transversal size as the incident beam along
the illumination system. Besides, to ensure that the beam initially falls on the waveguide, its output
face is illuminated with a retractable white LED; therefore, both the laser back-reflection (suitably
attenuated) and the input face are simultaneously seen through the 10	 microscope objective
using a cube beam-splitter placed between the high power positive lens and an eyepiece (not
shown in Fig. 1). This illumination system allows us a great control of the beam height since a
macroscopical rise (1 mm) of only one element (the first low-power lens) generates a microscopical
beam drop at the input face (5 �m). Note that the central ray of this beam is kept parallel to the
optical axis; then, its phase is constant along the input face.

If the beam waist at the input face is fitted to the mode size, the beam matches the fundamental
mode very well for a particular beam height. In this way, the best coupling coefficient to the first
mode is achieved, while the excitation of the second and third mode becomes negligible. A small
beam shift from this position increases mainly the coupling coefficient to the second mode (at the
expense of the fundamental one) but retains a negligible third mode excitation under moderate
shifts. Consequently, only two modes are involved within an interval. As the required waist is wider
than the objective resolution, the Gaussian beam must illuminate only a portion of the objective
aperture stop. The appropriate expansion of the beam was obtained by taking advantage of its own
divergence under a particular propagation distance from the laser to the first lens.

On the other hand, in Fig. 1(b), a projection on the horizontal plane of the beam as it propagates
through the system is shown. The main difference with respect to the vertical section is the pre-
sence of the power meridian of the cylindrical lens whose axial position was fitted to obtain a
horizontally collimated beam at the waveguide input face.

In short, the illumination system generates a high-quality cylindrical beam with its focal line on the
input face of the waveguide and parallel to it. Moreover, the beam can be finely moved along the
perpendicular direction to moderately change the coupling efficiencies to the first and second mode.

Fig. 1. Simplified diagram of the optical setup.
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The end face was imaged with a standard 40	 microscope objective on to an analog Pulnix
TM-765 CCD camera, and the signal was digitized to a frame of 767 	 575 pixels and an 8-bit depth
by an acquisition board. For each particular beam height, the intensity was adjusted by a set of
attenuators, both to achieve a good illumination and to prevent saturation. Then, 256 images were
captured and averaged to improve the signal-to-noise ratio (SNR). Next, the beam was vertically
shifted 0.5 �m, the intensity was adjusted again, a new averaged image was captured, and so on.
Moreover, an averaged final image was taken with the laser obstructed; this final image was
subtracted to the previous ones to remove both the background and the camera dark current. In this
way, a series of 37 irradiance distributions at the end face was obtained. Some representatives of
such distributions are shown in Fig. 2.

4. Image Processing and Results

4.1. Mode Amplitudes
The proprietary software MATLAB was used to apply the algorithm of Section 2 to these images,

although the free software Octave could have also been used. The first task is the selection of the
region of interest in the images which contains 100 	 60 pixels. Ideally, as the intensity profile
should not depend on the y coordinate, each image could have been collapsed to a function by
averaging it along this dimension, resulting in a new SNR improvement. Actually, a smooth variation
can be seen along the y dimension, probably due to some lack of uniformity in the waveguide (see
Fig. 2). For this reason, groups of only five contiguous columns were collapsed into a new column
by applying a median filter. Thus, most defective pixels caused by dust in the cover plate of the
CCD camera are discarded. Note that the discrepancy between columns gives us an idea of the
accuracy achieved, since each collapsed column will be processed independently. Next, the mode
intensity is normalized along the x direction according to (12); that is, every column is divided by the
sum of the values of its elements. It results in a series of compacted images of 20 	 60 pixels each.
The intensity of a given pixel oscillates along the series. According to the general theory, an ellipse
arc must be obtained when the intensity of two pixels is plotted one versus another (Fig. 3). Note
that this plot contains as many points as images are in the series. However, only 16 images in the
center of the series have suitable values to be fitted to ellipses. Modes other than the first and
second were noticeably excited in the rest of images that were discarded. From the five ellipse
parameters, the absolute value of each mode amplitude at each pair of points, together with the
squared tangent of the relative phase, are calculated. This procedure has two inherent shortcom-
ings: the sign of the second mode is lost and the lowest amplitude is always assigned to the first
mode, while the highest one is given to the second mode. A posteriori, each amplitude value must
be assigned to the right mode and the sign of the second mode must be restored. When the second
mode at the point u ðvÞ is negative, 	u ð	v Þ must also be considered negative in (23). The depths

Fig. 2. Some irradiance distributions at a selected region of the end face of the waveguide. The images
in (a) and (f) were discarded for processing. In these images, the X axis is upwards, while the Y axis is
horizontal.
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(x values) where both amplitudes meet, or where the second mode cancels, remain the same for
every y value, which is an indicator of the consistency of this method.

As the intensities at any pair of points can be fitted to ellipses, all combinations within a given
column are checked. Those pairs of points that fit to ellipses which are not fully contained within the
first quadrant are discarded, since they provide negative intensities. The modal amplitudes and the
phase resulting from the resting pairs are averaged. Thus, 20 profiles (one per column) of the first
and second mode are obtainedVf�V. From their dispersion, we can estimate the uncertainty of the
experimental modal amplitudes of both modesV
f� ðxÞVwhich are shown in Fig. 4. The absolute
value of the relative phase between both modes is 1.06 
 0.17. Likewise, we can check that the
modes are approximately orthonormal (see Table 2). However, the point of the second mode
closest to its node seems slightly deviated for most of profiles, that is, it contains a bias; therefore, it
was removed from subsequent calculations.

Fig. 4. Retrieved the first and second mode (a.u.) and j�12 � p�j in radians at the output face, where p
an unknown integer. Each graph is an average along the slab guide; it is represented by two lines that
indicate one standard deviation below and above the mean.

Fig. 3. Experimental normalized intensity of some pairs of points at the waveguide exit face. The
intensity of one point ðIv Þ is graphed against the other ðIuÞ for several coupling heights of the input
beam. The intensities from the same point pair were joined to show their elliptical-like form.
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The left tails of both modes are slightly higher than expected, probably due to a residual excitation
of the third mode, which achieves large values in this region. The existence of the third mode is
clear in Fig. 2(f), where two intensity minima can be seen.

4.2. Squared Refractive Index Profile
As the experimental modal amplitudes are known, we can retrieve the squared index profile,

except an additive constant, starting from the scalar Helmholtz equation, that is

n2ðxÞ � N2
� ¼ �

1
k2
0e�

d2e�
dx2 ; � ¼ 1; 2

by computing

n2ðxÞ � N2
� � m�ðxÞ � �

f�ðx � h; yÞ þ f�ðx þ h; yÞ � 2f�ðx ; yÞ
f�ðx ; yÞh2k2

0

	 

y

(24)

where k0 is the wavenumber, f�ðx ; yÞ are the experimental modal amplitudes, h is the step to obtain
the second derivative, and the symbol h iy means an average along y direction. This calculation
must be made carefully since the experimental modal amplitudes contain noticeable noise, that is

f�ðx ; yÞ ¼ e�ðxÞ þO 
f� ðxÞð Þ

where 
2f� ðxÞ are the variances of f�ðx ; yÞ. On the one hand, since the second derivative [denoted as
f 00� ðx ; yÞ] is computed by a typical finite difference scheme, two sources of uncertainty arise: one
from the noise and another from the discretization; specifically

f 00� ðx ; yÞ �
f�ðx � h; yÞ þ f�ðx þ h; yÞ � 2f�ðx ; yÞ

h2 ¼ e�ðx � hÞ þ e�ðx þ hÞ � 2e�ðxÞ
h2 þO

4
f� ðxÞ
h2

� �

¼ d2e�
dx2 þO h2 d

4e�
dx4

� �
þO

4
f� ðxÞ
h2

� �
:

The last line of this equation shows that very small or very high value of h gives rise to high errors.
In our case, a good balance was achieved when h is equal to four pixels, although a three-pixel step
was used sometimes to prevent the use of the discarded point. Moreover, a linear variation of the
second derivative along x of f� was assumed at both the end points and its neighbors.

On the other hand, low values of f� have high relative uncertainty which leads to remarkable
errors in specific regions when computing n2ðxÞ � N2

� by (24). In other words, if the variance of
m�ðxÞ is calculated as


2m�
ðxÞ ¼ ny

ny � 1
f 00� ðx ; yÞ
f�ðx ; yÞk2

0

� �2
* +

y

�m2
� ðxÞ

2
4

3
5

where ny ¼ 20 is the number of compacted columns, the standard deviations 
m�
ðxÞ are noticeably

dependent on x , as can be seen in Fig 5(a). Fortunately, regions of high values of 
2m1
and 
2m2

only
overlap at the far tails since the mode orthogonality constrains the node of the second mode near
the maximum of the first mode, and conversely, the left tail of the first mode starts where the second
mode still takes high values. This fact suggests to combine information from both modes to

TABLE 2

Orthonormality check of the retrieved modes. The values of the table are ð2ns=c�0Þ
R
f� f�0 dx dy , where

� and �0 are the row and column of the table. The ideal values are indicated in parenthesis
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construct the refractive index profile more accurately. However, the profiles obtained from each
mode differ in a constant N2

1 � N2
2 that must be calculated previously. This constant was computed

as a weighted mean difference between both profiles; the weight must be high only where both
profiles have low variance. Therefore, we choose as weight 1=ð
2m1

ðxÞ þ 
2m2
ðxÞÞ, which leads to

N2
1 � N2

2 ’ �m �

P
x

m2ðxÞ�m1ðxÞ

2m1
ðxÞþ
2m2

ðxÞP
x

1

2m1
ðxÞþ
2m2

ðxÞ
:

A value of ð514
 26Þ � 10�5 was obtained for N2
1 � N2

2 . Once �m is known, the final squared index
profile can be obtained as a weighted mean of both profiles, but now, the weight of each one is
inversely proportional to its variance

n2ðxÞ � N2
2 ’

m1ðxÞþ�m

2m1
ðxÞ þ

m2ðxÞ

2m2
ðxÞ

1

2m1
ðxÞ þ

1

2m2
ðxÞ

:

The resulting profile is shown in Fig. 5(b). As expected, the standard deviation of n2ðxÞ � N2
2 keeps

low or moderate for a wide central region and increases strongly in few points at both ends.
Specifically, half of the points have a standard deviation of nðxÞ � N2 ’ ðn2ðxÞ � N2

2 Þ=ð2N1Þ be-
tween 2 � 10�4 and 6 � 10�4; and it keeps below 2 � 10�3 in the 88% of the points. For comparison,
the refractive index accuracies of the interferometric methods are 2 � 10�3 in [2] or 5 � 10�4 in [4] at
every point of the profile. In respect of the shape, a clear asymmetry of the squared index profile can
be seen in Fig. 5(b). The index decreases slowly toward the waveguide surface ðx ¼ 0Þ at the left of
the maximum, while the reduction toward the substrate is more abrupt. This result is consistent with
the one previously reported for buried waveguides fabricated by field-assisted ion exchange in
glass [13], [22].

4.3. Effective Index Difference
A parameter of great importance in devices such as directional couplers or multimode interfer-

ence (MMI) couplers is the coupling length or alternatively the coupling coefficient. It is well known that
its value is directly related to the effective index difference, which can be obtained from �m, that is

N1 � N2 ¼
N2

1 � N2
2

N1 þ N2
’ �m

2ns
¼ ð170
 13Þ � 10�5 (25)

where the effective indices of the denominator were approximated by the substrate index
ns ¼ 1:5100. The inaccuracy from this approximation is low for the expected values of N1 and N2.

On the other hand, we can improve the above result since we know the propagation distance z,
therefore we can relate the phase difference between both modes and the difference of effective

Fig. 5. (a) Squared refractive index profile retrieved from the first (blue) and second mode (green). Each
graph is an average along the slab guide; it is represented with two lines that indicate one standard
deviation below and above the mean. (b) Combination of such profiles by a weighted average,
represented in the same way; a histogram of its standard deviation is shown in the inset (number of
points against standard deviation).
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indices as follows:

�12 ¼
2�
�
ðN1 � N2Þz:

If the accuracy of N1 � N2 allows us to find which quadrant �12 is in, a more accurate value of this
phase may be derived from its squared tangent provided by the fitting to ellipses. Once �12 is
improved, N1 � N2 and the coupling length or the coupling coefficient can be also refined by again
applying the last equation. Unfortunately, the variance of �12 calculated from the effective index
difference exceeds 2� in our case because of the large value of z, and hence, this improvement
was not made.

Finally, the values of N1 � ns and N2 � ns can be obtained from the squared index profile if the
tails of each mode could be recovered in the substrate region. This does not happen in our sample,
but the step index waveguides are good candidates for that. Provided that ns is known, we may
obtain the effective indices. In this case, the difference N1 � N2 could also be directly obtained from
these values, but probably (25) will be more accurate, mainly if N1 and N2 are used to evaluate the
denominator.

5. Conclusion and Perspectives
When a waveguide is illuminated with a field with constant phase at the input face that excites
N modes, the normalized intensities at N points of its exit face are correlated, that is, there is a
constraint between these intensities on a hypersurface in an abstract N-dimensional space, which
arises from the interference between the excited modes. This interference is very stable since it
takes place after a common path along the waveguide. If only two modes are excited, such a
constraint is an ellipse. When the normalized intensity of a point is represented against the one of
any other point, then the ellipse is mapped by changing the coupling condition. From the ellipse
parameters (center coordinates, height, width and tilt), we can retrieve the squared tangent of the
relative phase between both modes as well as the absolute value of their amplitude at the considered
two points, although the equations do not indicate which value corresponds to each mode.

By repeating the procedure for different point pairs, it is possible to assign the amplitude values to
the right mode and fix the sign, that is, it is possible to reconstruct the amplitude of both modes. The
self-consistence of the results can be checked in several ways: ellipses fully contained in the first
quadrant, redundancy in both the relative phase and the amplitudes from the multiple way to select
the point pairs, orthogonality of the final modes or fulfilling some symmetry of the waveguide, etc.
Once the modes are obtained, the difference of effective indices and the squared refractive index
profile, except an additive constant, can be also retrieved. Moreover, both the index profile and the
effective indices may be obtained without ambiguity in those cases in which the retrieved mode tails
reach the substrate region.

The proposed method was successfully applied to a buried slab waveguide fabricated by field-
assisted ion exchange in glass. Since this guide is multimode (actually a few modes), an optical
system to excite almost exclusively the first two modes with a variable relative efficiency was also
proposed. This optical system is simple, inexpensive, and accurate since it makes the most of the
reduction that the focusing objective provides. The shape of the index profile agrees with that
obtained in similar waveguides from other methods previously reported.

Since each mode is extracted from two-mode interferences, the proposed method can be con-
sidered as an extension (essentially a preliminary step) of the monomode intensity method to
multimode buried waveguides in which the prism-coupling method is not possible. Therefore, our
method is an alternative to interferometric methods, although a comparison is not simple. Interfe-
rometric methods provide the index profile in a wide region with a uniform accuracy that depends
strongly on the system geometry, but the sample preparation is destructive and very time-consuming.
On the other hand, our two-mode intensity method is restricted to the waveguide region but has a
good repeatability for the most part (between 2 � 10�4 and 6 � 10�4 in half of the points). Moreover,

IEEE Photonics Journal Two-Mode Waveguide Characterization

Vol. 4, No. 1, February 2012 Page 77



we should stress that it also provides the mode profiles and the mode effective indices or, at least,
their difference ð
13 � 10�5Þ, and this information is of great importance in many cases.

The coupling to the third mode was a limitation in recovering the first and second modes, and
therefore, we expect better results in two-mode guides. For instance, monomode dielectric guides
at 1.31 or 1.55 �m could be characterized as two-mode guides within the red wavelength range or
at least below 1000 nm, provided that the dispersion is known. This could allow the use of common
silicon-based cameras whose technology is more mature than that of infrared cameras. Similarly,
optical elements for visible spectrum are much more common than infrared optics.

The diffraction is another limit of the proposed setup, which is especially relevant when the mode
size is smaller than a wavelength, for instance, in some silicon waveguides. The diffraction limit can
be circumvented by a near-field scanning technique, in the same way that some versions of the
monomode intensity method do.

The characterization of few-mode fibers, directional couplers or MMI couplers is a natural ap-
plication of this method. In the last two cases, the difference of the effective indices is especially
useful since it sets the coupling length, which is an important parameter of these devices. Even
more, if the propagation distance is moderate, the relative phase between the modes can be
obtained without ambiguity from its squared tangent. This will lead to a more accurate value of the
coupling length.

In short, there are few methods to characterize multimode buried waveguides, and we have
proposed and checked a new method to solve this problem.
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