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Abstract: Tilted Bragg grating refractometers are ideal devices for sensing applications.
They work by diffracting light from a confined core mode into a series of well-defined
cladding modes that are sensitive to the refractive index of an adjacent fluid. Using the
Cauchy integral method, we find the modes of a ridge waveguide refractometer. To gain
good agreement with the experiment, the method requires us to take into account the
dispersion and the 2-D geometry of the waveguide. The resulting modes are then used to
predict the coupling dips in the reflection spectrum. Comparison with experimental
measurements verifies the ability of this method to accurately determine the mode structure
in the waveguide and, with minimal calibration, the refractive index of the adjacent fluid with
error less than 2� 10�4 riu.

Index Terms: Waveguides, plasmonics, gratings, sensors.

1. Introduction
Optical and plasmonic waveguides are used for a wide variety of refractive index sensing appli-
cations [1]. There are several different designs used for such devices. These sensors use Surface
Plasmon Resonance (SPR) [2], [3], long range SPR [4], interferometers [5], [6], resonators [7], and
optical fibers with tilted and nontilted Bragg gratings [8].

Tilted Bragg gratings are often used in fiber-based sensors to diffract a well-confined core mode
into a discrete set of cladding [9] or plasmonic modes [10]. The structure of these modes, which can
be determined from the transmission spectrum of the fiber, is dependent on the surrounding
refractive index. Tilted gratings are advantageous over the conventional nontilted devices as their
core modes are insensitive to external perturbations. In addition, they do not require the lapping and
polishing of a cladding layer or the use of hazardous chemical etchants, such as hydrofluoric acid
[8], to expose the grating in the fiber core.

In contrast to the developments in fiber tilted Bragg gratings [9]–[14], little has been reported on
planar geometries. This may be due to the difficulties in achieving a discrete set of resolvable
cladding modes. Recently, our group has demonstrated the first device which achieves this
through physically micromachining two trenches either side of an ultraviolet (UV) written tilted
Bragg grating [15]. The major advantage and novelty of these devices is that the fluid is well
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separated from the waveguide core and is contained in micromachined channels. The fabrication
process used in these devices is very fast (10�3 ms�1 cutting speeds) and does not use
hazardous chemical etchants. The size of these channels also means that they can be easily
integrated in microfluidic devices.

In this paper, we provide the first steps toward a theoretical study of the mode structure of such
devices. This study is verified through experimental comparison. The modes of the waveguide are
found using the Cauchy integral method, which is a numerical method for finding the zeros of a
complex valued function [16]. The use of this method to find the modes of an optical waveguide was
initially developed by Anemogiannis and Glytsis [17]. This method is capable of accurately finding
all the modes of a waveguide and, unlike similar methods [18], [19], requires no a priori knowledge
of the number of modes. The dispersion relation of a waveguide, the solutions of which determine
the mode indices, forms a multivalued Riemann surface; for details, see [20]. However, rather than
searching through the different layers of the surface, it is easier and more efficient to use a
conformal mapping technique to unfold this surface [21]. It is this approach that we follow here.

The Cauchy integral method has been widely used for different waveguide structures, including
SPR sensors [2], [3], waveguides with superconducting layers [22], metal–insulator–metal
waveguides [23], waveguides with surface corrugations [24], and liquid crystal waveguides [25].
Here, we apply it to provide a thorough understanding of the mode structure in dielectric
waveguides, which will lead to waveguide optimization.

The approach described in this paper allows us to determine the refractive index of the measured
fluid to a high level of accuracy over a large range using only a single calibration run making it ideal
for monolayer measurements. The fitting procedure is a two-step process. First, the spectrum of the
waveguide in air is fitted using a least squares method. This single calibration fit constrains all the
physical parameters of the waveguide. Secondly, the spectrum of the waveguide is measured a
second time with an oil of known refractive index adjacent to the waveguide. This set of data is
compared with numerical results using the refractive index of the oil as an unconstrained fitting
parameter. The resulting fit allows us to determine the refractive index of the oil with error less than
2� 10�4 refractive index units (riu) after only a single calibration, which corresponds to 0.02% of the
known value.

This paper is arranged as follows: In Section 2, we provide an overview of the theory and
numerical implementation of the Cauchy integral method for a general analytic function. The
application of this method for ridge waveguides is described in Section 3. In Section 4, we provide
an experimental verification of the method using the ridge waveguide structure described in [15].
Finally, in Section 5, we discuss the importance of the results obtained and how these results can
be extended to understand and optimize complex metal clad dielectric waveguides.

2. Contour Integration
Finding the modes of a waveguide can be reduced to finding the zeros of a complex valued analytic
function. One of the more powerful methods of doing this is the Cauchy integral method [16]. This
method, as applied to waveguides, is described in detail in [17]. Here, we provide a brief summary
of it. Using the residue theorem, it is possible to prove that

Sk � 1
2i�

I
C

zk f
0ðzÞ
f ðzÞ dz ¼

X
n

�kn (1)

where k ¼ 0; 1; 2; . . . and �n is the n-th zero of the analytic function f ðzÞ. The number of zeros of f ðzÞ
within a given contour is given by S0. Further application of (1) allows the locations of the zeros to
be found. This is achieved by defining the polynomial

PðzÞ ¼
XS0

m¼0

Cmzm (2)

IEEE Photonics Journal Tilted Bragg Grating Refractometers

Vol. 3, No. 5, October 2011 Page 862



such that the zeros of PðzÞ coincide with the zeros of f ðzÞ. The coefficients Cm are found
recursively using the formula

Cm ¼ 1
m � S0

XS0�m

j¼1

SjCmþj (3)

with CS0 ¼ 1. The roots of the polynomial PðzÞ can be found using standard numerical methods
and, as a final step, are used as the starting point for a nonlinear root finding algorithm, e.g.,
Newton’s.

There are several potential pitfalls in the implementation of this algorithm. First, numerical root-
finding methods for polynomials are only accurate for low-order polynomials [26]. Therefore, for the
method to be accurate, we require that the number of zeros of the function is small. In general, this
requirement leads to subdivision of the initial contour. Second, should the integration contour pass
directly through a zero, then Sk is singular. If this occurs, then the integration contour must be
shifted away from this area.

To overcome these potential problems, a careful search of the initial contour is required. We start
with a rectangular contour defined by the bounds on the refractive indices. Using (1), the number of
zeros is computed. The numerical quadrature we are using is a Gauss–Kronrod Quadrature [27]
with nodes and weights generated using the method of Laurie [28]. This method provides an
approximation of the integral and an approximation of the numerical error. If either the error or the
number of zeros found are too large, then the contour is divided. A typical maximum acceptable
number of zeros per contour is 4. This procedure is repeated until convergence is reached. If the
value of the integral in (1) is too large, then it is assumed that the integration contour is too close to a
root. If this is the case, then the contour is shifted, and the integration is repeated.

Once the modes are isolated, the polynomial fitting and nonlinear root finding are standard and
allows us to find the zeros of the function to high accuracy. We now consider how this method can
be applied to ridge waveguides.

3. Modes of a Ridge Waveguide

3.1. Effective Index Method
We consider the propagation of light in the waveguide geometry shown in Fig. 1. We focus on the

case where the electric field is predominantly in the y , z-plane. The aim of the effective index
method is to reduce the ridge waveguide structure to two planar waveguide structures, the modes of
which are found sequentially. Therefore, we shall adopt the planar waveguide notation of Trans-
verse Magnetic (TM) and Transverse Electric (TE) polarization to denote modes with magnetic and

Fig. 1. Structure of ridge waveguide. Left-hand image shows schematic of waveguide structure. The
right-hand image shows a cross-sectional area in the ðx ; yÞ-plane of the waveguide core and cladding
layers.
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electric fields polarized in the x direction, respectively. As an example, we only derive the equations
which describe the TM modes of a planar waveguide and highlight the required changes for TE
modes. The TM modes can be described entirely in terms of their magnetic field, which we write as
a series of modes

HðxÞ ¼
X
j

ĥjHjðx ; yÞeiðnj k0z�!tÞ (4)

where k0 ¼ 2�=� is the free space wave number; � is the free space wavelength; ! the optical
angular frequency; and nj , ĥj , and Hjðx ; yÞ are the effective refractive index, polarization, and
spatial profile of the j-th mode, respectively. We have also scaled space x ¼ k0~x , where ~x is the
non-scaled spatial coordinate. The dielectric function for the structure is piecewise constant and is
defined as �ðx ; yÞ ¼ "p;q ; where the regions p, q are defined in Fig. 1. Substituting (4) into Maxwell’s
equations we obtain the scalar Helmholtz equation for the magnetic field

r2Hj þ n2
j � �ðx ; yÞ

h i
Hj ¼ 0: (5)

Due to the complex geometry of the waveguide, there is no known analytic form for the solutions
to (5). Therefore, in order to find the modes, we use the effective index method [29]. This is a two-
stage method which allows us to approximate the 2-D waveguide structure, shown in Fig. 1, as a
series of slab waveguides.

The first step is to consider each region q separately. For the ridge waveguides shown in Fig. 1,
the region p ¼ 2 is of higher index than the regions p ¼ 1; 3. This creates a series of slab
waveguides which must be solved for the TE solutions. The method by which these modes are
found will be described in Section 3.2.

The ridge waveguides are designed such that the core in the x direction (region p ¼ 2) is thin:
typically �ð~x2 � ~x1Þ G �

ffiffiffiffiffiffiffiffi
"2;q

p
for all q. Therefore, each individually considered slab waveguide will

be single mode. The second stage in the effective index approximation is to use the mode indices
for each slab q ¼ 1; 2; . . . ; 5 as the refractive indices in each layer of the y -direction guide. The
modes of the whole structure are given by the TM modes of this composite waveguide. The method
for doing this will be described in Section 3.2. This approximate analysis has allowed us to reduce
the problem to that of finding all the modes of several slab waveguides. The error induced by these
approximations is relatively small because the waveguide is single mode in the x -direction, and
therefore, the majority of the mode power is confined within the region p ¼ 2.

3.2. Transfer Matrix
The modes of a slab waveguide can be found by solving Maxwell’s equations in each region and

matching the boundary conditions. Here, we consider only the TM polarized case in detail. The
alterations required for the TE polarized case are also given. The starting point for this method is the
Helmholtz equation for the magnetic field in each region

@2Hj ;q

@y2 � n2
j � "q

h i
Hj ;q ¼ 0 (6)

where the subscript j , q refers to the j th mode in region q, and we have dropped the subscript p
from the dielectric function. For a given mode j , (6) has solutions

Hq ¼ Aqcosði�qxÞ þ Bqsinði�qxÞ (7)

where �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � "q

p
are the transverse components of the wave vector, and for compactness of

notation, we have dropped the subscript j . The boundary conditions for a TM wave require that H
and ð1=�Þ@H=@x are continuous across each boundary and for a TE wave the electric field and its
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normal derivative are continuous across each boundary. The field coefficients Vq ¼ ½Aq ;Bq �T are
therefore linearly related to those in the following layer Vqþ1 ¼ MqVq , where

Mq ¼ cosði�qLqÞ � 1
�q
sinði�qLqÞ

�qsinði�qLqÞ cosði�qLqÞ

� �
: (8)

Here, �q ¼ �q="q and �q ¼ �q for TM and TE polarizations, respectively, and Lq is the thickness of
layer q. We consider only the finite set of bound modes and the countably infinite set of leaky
modes [30]. Therefore, the solution in the two outer layers q ¼ 0 and q ¼ N is

H0=N ¼ A0=Ne
�0=Nx (9)

where the sign associated with the real part of �0=N determines whether the modes are bound or
leaky in each of the semi-infinite external layers. Using (8) and (9), we find that bound or leaky
modes can only propagate along the waveguide if the dispersion relation

F n2
j

� �
� �0T11 þ �0�NT12 þ T21 þ �NT22 ¼ 0 (10)

is satisfied. Here, Tij are the components of the transfer matrix for the internal layers, which is
defined as

T ¼
YN�1

q¼1

Mq : (11)

To proceed, we use the method of Smith et al. [21]. Equation (10) is an implicit function for the
effective indices nj . It turns out, due to the presence of the square roots which define the various �q ,
that this function is multivalued with branch cuts at the discontinuities n2 ¼ ð"0; "NÞ. For a given nj ,
there are four possible values for the function [20]. To overcome this, we make use of the mapping

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � "0

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � "N

p
(12)

to Bunfold[ the dispersion relation and map the singularities to the origin. The transverse com-
ponents of the wave vector in terms of u are

�0 ¼
u2 þ ð"N � "0Þ

2u
(13a)

�N ¼ u2 � ð"N � "0Þ
2u

(13b)

�q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"N þ �2N � "q

q
; ðq 6¼ 0;NÞ: (13c)

Substituting these expressions into (10), we obtain that the modes of the waveguide correspond to
the solutions of �ðuÞ � F ðnðuÞ2Þ ¼ 0. For the case of interest, here, "0 ¼ "N . Therefore, (12), (13a),
and (13b) reduce to u ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � "0

p
, �0 ¼ �N ¼ u=2, removing the singularity at the origin. The

Cauchy integral method can now be applied in terms of the independent variable u. The derivative
of the dispersion relation for use in (1) is given in Appendix A. Typically, searches for the modes
of a waveguide in the complex plane require multiple scans of different regions in order to find the
guided, semileaky, and leaky modes. However, for a glass waveguide the leaky modes do not
play a large part in determining the form of the reflection spectrum. Therefore, we need only
search the region of the complex plane in which the guided modes are found [21], [31]. This is
along the set interval of the real axisffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j"N � "0j
p

� <ðuÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"max � "0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
"max � "N

p
: (14)

In practice, we search a thin strip around the real axis. As there is very little absorption in a glass only
waveguide, this region can be correspondingly thin. Typically, we have used �0:01 � =ðuÞ � 0:01,
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where this range has been chosen arbitrarily to have a nonzero thickness whilst only integrating a
small area.

4. Experiment

4.1. Fabrication
The waveguide, as described in [15], is fabricated by first growing a 16.5 �m thermal oxide

underclad on a 1 mm thick silicon wafer. Two silica layers, which form the core and overclad, are
then deposited and consolidated using flame hydrolysis deposition (FHD). The core layer is 6.2 �m
thick, and the overclad is 15.1 �m thick. The core layer is doped with germanium and boron to
provide UV photosensitivity. This is further enhanced through hydrogen loading for 1 week at 12 MPa
prior to UV writing.

The single mode waveguide and Bragg grating is fabricated using a dual beam interferometer
technique [32], illustrated in Fig. 2. The technique involves interfering two coherent UV laser beams
to create a single spot of width 6 �m. The interference pattern has period 540 nm, and the grating
vector is tilted in the ðy ; zÞ-plane at an angle � with respect to the z axis. To fabricate the channel
waveguide and Bragg grating, the sample is translated, using a set of high precision translation
stages, beneath the focused beams. This technique defines only a few periods per exposure before
translation by a single period. Therefore, the induced stitching error is expected to be roughly
periodic, resulting in a slight broadening in the spectral response of the device.

Once the grating has been written, the ridge structure of the waveguide is created using a dicing
saw (Loadpoint, Microace). The cuts were made using a 70 �m wide diamond impregnated nickel
bonded blade. This technique is capable of cutting ridges as thin as 10 �m [9], [33]. The final
fabricated device studied here is 40 �m wide and 10 mm long, with an 8-mm-long grating which is
tilted by 10�.

Light is coupled into and out of the single mode core using a polarization maintaining (PM) fiber
pigtail. This is secured using UV curing epoxy. After curing, the pigtail is mechanically robust and
has a low coupling loss that is less than 0.3 dB.

4.2. Experimental Comparison
Experimental verification of the modes supported by the device is obtained from the transmission

and reflection spectra measured using an optical spectrum analyzer with 10 pm resolution. Light is
injected into the core mode of the waveguide at a range of different frequencies. As the light
propagates through the waveguide, it is diffracted by the grating into the backward propagating

Fig. 2. Fabrication process. Left-hand image shows direct UV writing of waveguide and Bragg grating
using two beam interferometer technique. Right-hand image shows cutting of trenches.
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modes. Due to the experimental setup the measured spectrum is a superposition of the reflection
and transmission spectra. Light diffracted into the backward propagating core mode is measured
through the single fiber pigtail and is seen as a peak in the measured spectrum. The transmitted
light is also measured due to the �4% Fresnel reflection from the glass air interface at the far end of
the device. Therefore, the light diffracted from the core into the cladding modes is seen as a dip in
the measured spectrum. Data is collected using an optical spectrum analyzer for a variety of
different Cargille refractive index oils (series AAA and AA). Due to mode orthogonality, the grating
must be tilted to allow efficient coupling between different modes. In order for the modes to be
matched with zero phase detuning, we require

nj ð�Þ ¼
�cos�
�

� n0ð�Þ (15)

where � is the grating period, and � is the grating tilt angle in the y , z-plane with respect to the z-axis.
The mode dispersion njð�Þ is calculated using the Cauchy integral method for a variety of
wavelengths. The reflection dips will occur whenever the numerically calculated mode dispersion
relations intersect (15); see Fig. 3.

The location of the spectral features are determined by fitting a Gaussian curve to each dip. The
minimum of this curve is taken as the wavelength at which diffraction occurs. In order to accurately
fit the experimental data, the waveguide dispersion relation must be taken into account. This is
given by a Sellmeier equation with small corrections for the index of the core and cladding layers.

The physical parameters needed for the model are known to within a small uncertainty, i.e.,
�1 �m for the waveguide dimensions and �5� 10�3 for the refractive indices. To determine their
value more precisely, we fit them in the absence of an index oil. The parameters used to obtain the
initial fits are the guide width Wg ¼ ~y4 � ~y1 ¼ 42:25 �m, the core width Wc ¼ ~x2 � ~x1 ¼ ~y3 � ~y2 ¼
5:50 �m, the projected grating pitch �g ¼ 549:1 nm, the offset of the core from the center of the
guide 	W ¼ 0:09 �m, and the refractive indices, which are given by a Sellmeier equation [34]. The
variation in index in the different layers is given by a constant corrections to the Sellmeier equations:
	nuc ¼ �3:8� 10�3, 	noc ¼ �3:1� 10�3, 	nco ¼ 9:5� 10�3, and 	ncl ¼ �1:4� 10�3 in the under-
clad, overclad, core, and cladding regions, respectively. This gives refractive indices nuc ¼ 1:4440,

Fig. 3. Mode matching. The dispersion of the waveguide modes as calculated by the Cauchy integral
method is given by the horizontal lines. The component of the diffracted wave vector in the direction of
the mode propagation is shown by the diagonal line. Mode coupling occurs at the points where these
lines cross (circles), resulting in a dip in the spectrum.
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noc ¼ 1:4447, ncl ¼ 1:4464, and nco ¼ 1:4573 in the underclad, overclad, cladding, and core at
� ¼ 1550 nm, respectively.

Once a fit has been obtained (see Fig. 4), the same parameters are used for the same waveguide
but with an oil with known dispersion relation in the trenches. The verification process is repeated
for a range of refractive index oils from noil ¼ 1:2962 to noil ¼ 1:4298 at � ¼ 1550 nm with high-
quality fits being obtained in all cases. An example fit for the case of noil ¼ 1:3250 at � ¼ 1550 nm is
shown in Fig. 5.

The fit is seen to be of very high quality with the reflection dips corresponding to the theoretical
predictions with very small maximum error, typically 0.1 nm per mode. The spacing between the
dips in the reflection spectrum is approximately 3.75 nm, giving an error of approximately 3% in
calculating the location of each feature. On close inspection, we observe that each of the
resonances displays multiple features. We believe that these features result from a chirping effect
due to ridge width variation and not polarization effects which have been observed in other systems
[35]. This is supported experimentally, as launching an orthogonal polarization (TE) into the device
results in comparable spectral resonance features that are spectrally resolved from the features of
the TM polarization.

The lowest wavelength dips in the reflection spectrum occur for modes which have effective index
lower than the index oil. These correspond to leaky modes with high propagation loss and,
therefore, have the majority of their power outside of the waveguide. For this reason, the coupling
coefficient between the core mode and the leaky mode becomes very small, and only the leaky
modes which are close to the guided mode cutoff can be seen. The quality of this fit in both the
fitting case and the test case verify the model’s ability to predict these modes and, hence, the
accuracy of the modeling assumptions used.

In order to evaluate the accuracy of the model, we consider the case where the refractive index of
the oil is not known a priori. The refractive index of the Cargille index oils is given in the form of a
three term Cauchy equation. However, over the range of wavelengths measured experimentally,
the refractive index has very little change: 	Oð10�6Þ riu nm�1. Therefore, we assume a constant
refractive index noil over the range of interest.

By using this value as a fitting parameter, it is possible to accurately determine the index of the
fluid. For the example case n ¼ 1:3250 at � ¼ 1550 nm, the refractive index of minimum error is

Fig. 4. Experimental spectrum (blue) and theoretical waveguide modes (vertical black lines) with air in
the channels adjacent to the waveguide. Theoretical model is fitted using parameters described in the
text.
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noil ¼ 1:3249, which corresponds to a maximum refractive index error of 2� 10�4 in the wavelength
range tested. The fit has average error of 0.15 nm per mode and is seen to increase to approxi-
mately 0.17 nm per mode for noil ¼ 1:33 or noil ¼ 1:32, the two Cargille refractive index oils having
values adjacent to the one used. It may be possible to determine the dispersion of the oil to a higher
degree of accuracy if a device with a larger spectral bandwidth was used. However, from the
measurements conducted here, only the constant part of the refractive index can be accurately
found.

5. Discussion and Conclusion
The understanding of the mode structure of tilted Bragg grating waveguides for biosensors is of
fundamental importance if these devices are to be optimized and used for sensing applications. The
theoretical analysis presented here forms the groundwork for future experimental measurements
and theoretical studies of these waveguides.

The use of the effective index approximation to reduce the ridge waveguide structure to a series
of slab waveguides does not detract from the quality of the fit. The combination of the effective index
method, the Cauchy integral method and the materials dispersion relations provides a complete
description of the underlying mode structure.

Through careful analysis of the model, it can be seen that the dispersion of the waveguide and
the application of the effective index method are key to obtaining precise fits. The accuracy of the
model is shown by fitting the refractive index to the experimentally determined spectrum. This
allows us to determine the refractive index at a given optical frequency precisely, with error less
than 10�4, over a large range with only a single calibration. These properties make this method ideal
for low-index sensing applications, including refractive index measurement of monolayers in air.

There are several potential methods which could be used to increase the accuracy of the sensor.
Surface roughness and core alignment play an important role in the spectral response of the
refractometer. Decreased tolerance in the core alignment and flame brushing of the guide is
expected to increase the uniformity in the guide and, hence, increase the signal-to-noise ratio.
Further increases in sensitivity could also be achieved using a higher resolution spectrometer
providing resolutions as low as 0.1 pm in contrast with 10 pm used in this paper.

Fig. 5. Experimental spectrum (blue) and theoretical waveguide guided (vertical black lines) and leaky
(dotted black lines) modes with oil in the channels adjacent to the waveguide. The waveguide
parameters were fitted using the experimental data in air. No fitting parameters are used in the
comparison with the oil data.
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There are two immediate extensions of this method to optimize waveguides for sensing. The first
is the inclusion of a thin gold layer to the outside of the waveguide. This will allow the structure to
support the highly sensitive plasmonic modes which are required for the most precise of sensing.
The second is the study of the mode–mode interactions to optimize the coupling between sensing
modes and core modes. Both of these extensions are work in progress.

The accuracy of this fitting will be of fundamental importance in the design and optimization of
planar waveguide structures for sensing applications. The theory outlined here is of very general
application and will provide the means to increase the sensitivity of such devices and their
integration to become a reality.

Appendix
In this Appendix we provide expressions for the derivative of (10). Whilst the original method used a
contour integral method to obtain this [17], it is computationally more efficient and accurate to
differentiate (10) through repeated application of the chain rule:

�0ðuÞ ¼�0T 0
11 þ �0�NT 0

12 þ T 0
21 þ �NT 0

22 þ ðT11 þ �NT12Þ�0
0 þ ðT22 þ �0T12Þ�0

N (16)

T 0 ¼
XN�1

q¼1

Yq�1

k¼1

Mk

" #
M 0

q

YN�1

k¼qþ1

Mk

" #( )
(17)

M 0
q ¼

�iLq�0qsinði�qLqÞ � iLq
�q

�0qcosði�qLqÞ þ
�0
q

�2
q
sinði�qLqÞ

�q iLq�0qcosði�qLqÞ þ �0
qsinði�qLqÞ �iLq�0qsinði�qLqÞ

0
@

1
A (18)

where �0
q ¼ �0

q in the TE case, and �0
q ¼ �0

q="q in the TM case. Finally

�0q ¼ "N � "q þ �2N
� ��1

2�N�
0
N (19)

�00 ¼ 1� u2 þ ð"N � "0Þ
2u2 (20)

�0N ¼ 1� u2 � ð"N � "0Þ
2u2 : (21)
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