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Abstract: In 2010, most high-capacity transmission experiments have been demonstrated
over low-loss and/or low-nonlinearity dispersion unshifted fibers. Not only the research
interest but the discussions of actual deployment of such linearity-enhanced fibers as well
were starting to increase network capacity with systems based on greater than 100-Gb/s
symbol rate. In addition, evolutional optical fibers that dramatically increase capacity in a
single fiber, including multicore fibers and photonic crystal fibers, have been proposed.

Index Terms: Optical Transmission Fibers, Fiber Nonlinear Optical Effects.

Along with the rapid spread of bandwidth-hungry services, large volumes of data are required to
be transmitted over a long reach. As a corollary, the demand for broadband Internet-traffic con-
tinues to increase at about 2 dB per year [1], and it is said that Bcapacity crunch[ in the very near
future will become a possible reality [2]. A straightforward way to keep up with the explosive traffic
growth is to increase the transmission capacity per a single fiber, and therefore, there have been
continuous and strong demands for advanced transmission fibers. The type of advanced fibers has
been historically changing every several years along with the development of transmission systems
and signal processing [3].

In 2010, the most advanced fiber for high-capacity long-haul transmission experiments completely
changed to linearity-enhanced fibers, that is, low-loss and/or low-nonlinearity dispersion-unshifted
fiber. Actually, this class of fibers has been utilized as the transmission line in 10 out of 11 high-
capacity transmission experiments, which was presented as postdeadline paper in [4] and [5]. In
addition, to further expand capacity over the coming decade, many different kinds of evolutional fibers
have been proposed and fabricated.

Here, state-of-the-art linearity-enhanced fibers for long-haul systems will be described. Then, the
required performance of transmission fibers for tomorrow’s high-capacity long-haul systems will be
discussed. In addition, some prospects of evolutional fibers, including photonic crystal fiber (PCF),
multicore fiber (MCF), and multimode fiber (MMF), will be also described.

Recent capacity progress depends on the spectral efficiency increase using higher order signal
formats with a coherent detection. Actually, 10-Tb/s transmission systems based on a 100-Gb/s
symbol rate with quadrature phase shift keying (QPSK) are launching the service in 2010. In the
digital coherent transmission systems, a digital signal processor (DSP) that can equalize for prac-
tically any amount of linear transmission impairments has been utilized [6]. In this system, accu-
mulated chromatic and polarization-mode dispersions are no longer obstacles, and therefore,
dispersion compensation in the transmission line has become unnecessary. In fact, the larger
chromatic dispersion improves transmission capacity and distance [7]. With such electronic
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processing, required performances for optical system came to be simple, increasing the optical
signal-to-noise ratio (OSNR) [8]. As for fiber properties, reduction of the attenuation and nonlinear
coefficient ð�Þ are essential, because the lower fiber attenuation can directly increase the output
power for a certain input power, and the lower � can allow the higher input power managing the
transmission impairment due to Kerr nonlinear effects accumulated in a fiber [9].

Pure-silica core fiber (PSCF) has an improved attenuation of 0.15 to 0.17 dB/km at 1550 nm [10],
which is significantly lower than the attenuation around 0.19 dB/km of a standard single-mode fiber
(SSMF) doped with GeO2 in the core. In order to decrease the �, reduction of the nonlinear
refractive index of n2 and enlargement of the effective area of Aeff are key issues, because the � is
defined as � ¼ n2=Aeff � 2�=�, where � is the lightwave wavelength. The n2 is determined with the
composing material, and a PSCF is about 10% lower (�0.3 dB) than that of a GeO2-doped SSMF
[11]. To decrease the �, it is more important to enlarge the Aeff. The challenge is to cope with poor
macro- and microbending loss performance by employing an appropriate refractive index profile
and a low Young’s modulus primary coating. Applying a trench-assisted profile, a fiber with the Aeff

of 120 �m2, which is 1.5 times larger than that of SSMF, and the better microbending loss
performance than SSMF’s, was demonstrated [12]. Another issue of large-Aeff fiber is the huge
splicing loss to an existing SSMF because of a large amount of mismatching in mode-field diame-
ters between fibers. Considering the splicing loss, we found that that the Aeff around 135 �m2 would
be the most suitable as a long-haul transmission fiber [13] and actually demonstrated PSCF with
the Aeff of 134 �m2 and low attenuation of 0.161 dB/km having the equivalent bending sensitivities
to that of actually deployed fibers, as shown in Fig. 1(a) [3], [13].

A lot of high-capacity transmission experiments through linearity-enhanced fibers were
presented in 2010 [14]–[17]. For example, the record-high total capacity of 69-Tb/s transmission
over 240-km-long PSCF with the Aeff of 110 �m2 and attenuation of 0.160 dB/km [14], and total
capacity of 12.5 Tb/s transmission over 9360 km-long large Aeff fiber of 150 �m2 with the attenuation
of 0.183 dB/km [15], was demonstrated, respectively. Here, the question is, Bwhich is the best fiber
for high-capacity and long-haul transmission?[ In a system with the span length of L [km], the figure
of merit (FOM) for a fiber having the Aeff ½�m2� and an attenuation of � [dB/km] will be described as
[3], [18]

FOM ½dB� ¼ 10logðAeff � �Þ � �� L: (1)

The first term means that the allowable signal launched power limited by Kerr nonlinearities is
determined with a product of Aeff � �, and the second term represents the output power after
L km-long fiber propagation. Therefore, the better ONSR a system has over a fiber with the higher
FOM [9]. Providing an SSMF with the � of 0.19 dB/km and Aeff of 80 �m2 as a reference, the relative

Fig. 1. (a) Attenuation spectra of pure-silica core fibers with Aeff of 134 �m2 and the characteristics at
1550 nm and (b) contour map of relative FOM normalized to SSMF.
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FOM can be calculated. Fig. 1(b) shows the contour map of the relative FOM as a function of Aeff and
attenuation for span length L of 60 km and 120 km. As can be seen in Fig. 1(b), reported linearity-
enhanced fibers have improved FOMs by 3 to 5 dB as a result of improvements to both Aeff and
attenuation. It should be noted that the lower attenuation has the more advantageous impact on the
FOM rather than the larger Aeff for the longer span length. In order to apply this class of linearity-
enhanced fibers to a terrestrial transmission system, there are still things to be solved, including
establishment of a unified standard and evaluation of mixability with various types of fibers that have
actually been deployed [19].

To further decrease the nonlinearity, a PCFwith dramatically enlargedAeff of 220�m2 with practically
lowbend-induced losswas demonstrated [20]. However, its attenuation is as high as 1.2 dB/km, and it is
expected that the attenuation of large-Aeff PCFwill be able to be reduced to a comparable valuewith the
lowest attenuation of a PCF ever reported (0.18 dB/km) [21].

In order to avoid the capacity crunch, the advent of some evolutional fibers is anticipated over the
next decade, and new multiplexing schemes other than time and wavelength have been seriously
considered [20]. MCF has several cores in a single fiber, and space-division multiplexing through
the MCF is expected to dramatically increase the transmission capacity [21]. In order to apply a
MCF to a long-haul transmission, the challenge is to reduce intercore crosstalk, and the efforts to
manage the crosstalk were actively reported in 2010 [22]–[25]. We and Fini et al. independently
revealed that the crosstalk is significantly affected by a bend in MCF and is a stochastic value, both
with theoretical [22], [23] and experimental [22] evaluation. In 2011, it is promising that an MCF
having negligible crosstalk will be demonstrated.

Propagation mode division multiplexing (MDM) using a multiple-input and multiple-output (MIMO)
algorithm over MMF is also a hot topic, and transmission of two modes � 4 Gb/s over a 5 km-long
MMF was demonstrated [26]. The transmission capacity and reach are still not very impressive
compared with that in today’s WDM systems, and the development of fiber structure suitable for the
MDM and improvement of the MIMO algorithm are strongly expected.

In summary, advanced transmission fibers are strongly expected in order to keep up with
explosive increase of traffic growth. Linearity-enhanced PSCFs would be promising because of the
potential attenuation as low as 0.15 dB/km and Aeff as large as 135 �m2. For the next decade, some
Bevolutional[ fibers will be expected to prevent transmission capacity from crunch.
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