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Abstract: We derive closed-form expressions for nonlinear transmission performance of
dual-polarization closely spaced coherent optical orthogonal frequency-division multiplexing
(CO-OFDM) systems. We find that the fiber nonlinear noise exhibits a signature of the flicker
noise or 1=f noise beyond the corner frequency that is inversely proportional to the total
participating bandwidth. We derive a noise enhancement factor that captures the interfer-
ence effect of nonlinear noises among different spans. For a 10 � 100-km standard single-
mode-fiber (SSMF) link with no dispersion compensation at an optimal launch power density
of �15.9 dBm/GHz, the spectral efficiency of 9.90 b/s/Hz can be achieved for dual-
polarization transmission, which is about 93% increase over single-polarization transmis-
sion. The closed-form expressions are also applicable to the closely spaced coherent
single-carrier systems where the symbol rate is much larger than the dispersion walk-off
bandwidth, and the optical dispersion is uncompensated.

Index Terms: Fiber nonlinearity, polarization effects, coherent communications, orthogonal
frequency-division multiplexing (OFDM).

1. Introduction
The maximum spectral efficiency of optical fiber transmission can be achieved by removing the
frequency guard bands between wavelength channels. The potential crosstalk due to such dense
wavelength packing can be resolved with the concept of coherent optical orthogonal frequency-
division multiplexing (CO-OFDM) [1]. In such systems, the CO-OFDM wavelength channels can be
either continuously spaced without frequency guard band [2]–[5] or densely spaced with extremely
small frequency guard band [6], [7]. Most recently, the nonlinear transmission performance of
CO-OFDM systems has been reported, including analytical results for single-channel transmission
without consideration of chromatic dispersion in [8], complete analytical expressions involving
summation of a large number of nonlinearity products in [9], and computer numerical simulation of
CO-OFDM system performance in [10]–[12]. It would be of great interest to derive concise closed-
form solutions that capture the dependence of nonlinear performance on some major system
parameters such as chromatic dispersion and dispersion compensation ratio. This body of analytical
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work on nonlinear system performance was pioneered in [13] and [14], where nonlinear launch
power and information capacity are derived in closed form. However, there are two limitations for the
reports in [13] and [14]: i) They assume that nonlinear phase noise is generated independently in
different spans, ignoring an important phase array effect of the four-wave-mixing (FWM) products
that accounts for the interference among multiple spans [9], and ii) they only present the results for
single polarization and thereby cross-polarization nonlinear interaction is not included. In this paper,
we extend our previous work on single-polarization transmission [15] and derive closed-form
analytical expressions for nonlinear system performance of dual-polarization CO-OFDM systems.
The closed-form solution entails the results for achievable Q factor, optimum launch power density,
nonlinear threshold of launch power density, and information spectral efficiency limit. These
analytical results clearly identify the nonlinear performance dependence on system parameters
including fiber dispersion, number of spans, dispersion compensation ratio, and overall bandwidth.

2. Analytical Derivation of Polarization Dependent FWM Noise
Because of random fluctuation of the birefringence eigen axis in the fiber, the optical OFDM signal
will go through many small segments of birefringence fiber in a commonly used transmission fiber.
Wai et al. have developed a nonlinear Schrödinger equation that includes both linear and nonlinear
polarization effects given by [16], [17]
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where ~�0ðzÞ and ~�0ðzÞ are the Polarization-Mode Dispersion (PMD) and Polarization-Dependent Loss
(PDL) vector in the direction of the eigen axis of a local large segment of the fiber [18], [19], � and �2,
respectively, represent the fiber loss and chromatic dispersion, ~� is the Pauli matrix vector [16]–[19],
�0 is the third-order nonlinear coefficient for a fiber with a fixed birefringence eigen axis, superscript
BT [ stands for matrix transpose, the bold font stands for Jones vector or Jones Matrix, the overhead
arrow stands for 3-D vector, and Aðz; tÞ is the time-domain CO-OFDM signal expressed as

AðtÞ ¼
XN=2

k¼�N=2þ1
c0kexpðj2�fk tÞ; fk ¼ k�f (2)

AðtÞ ¼ ½Ax ;Ay �T ; c0k ¼ c 0kx ; c
0k
y

h iT
(3)

where fk is the frequency for the k th subcarrier, �f is the subcarrier spacing, N is the number of
subcarriers, c0k is the OFDM information symbol for the kth subcarrier as a Jones vector.Aðz; tÞ is the
time-domain signal using the rotating local polarization co-ordinate and is subsequently different from
the signal using the fixed coordinate [16], [17]. Nevertheless, these two representations are only
different by a linear transform in the frequency domain, and therefore, which coordinate to use does
not matter as far as the system performance is concerned. In this paper, we investigate the densely
spaced OFDM (DS-OFDM) systems where the frequency guard band is much narrower than the
bandwidth of each wavelength [15]. As such, the frequency guard band can be omitted in the
remainder of the investigation. In such DS-OFDM systems, all the nonlinear effects such as XPM,
FWM, and SPM can be considered as FWM between all the subcarriers if we treat multiple densely
spaced wavelength channels as an effective big Bsingle-band[OFDM channel that encompasses all
the subcarriers [15]. Additionally, we omit the effects of PDL and PMD, the study of which warrantees
a separate treatment. With these assumptions, setting both ~�0ðzÞ and ~�0ðzÞ to zero, we are left with
much simplified Manakov equation
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where � ¼ 8�0=9 is the third-order nonlinear coefficient for a fiber with randomly varying birefringence
eigen axis, which is applicable to any commonly deployed transmission fiber.
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FWM is the third-order nonlinearity effect and its impact on optical fiber communications has been
extensively studied [20], [21]. Due to the FWM, the interaction of subcarriers at the frequencies of fi ,
fj , and fk produces a mixing product at the frequency of fg ¼ fi þ fj � fk . For explanatory simplicity,
we assume for now the existence of only three initial subcarriers at fi , fj , and fk , which produces the
fourth frequency at fg . The overall FWM effects will be a summation over the arbitrary fj , and fk ,
which will be discussed later in this section. With this assumption, optical signal in the time-domain
in (2) becomes

AðtÞ ¼ c0i expð j!i tÞ þ c0j expð j!j tÞ þ c0k expð j!k tÞ þ c0g expð j!gtÞ (5)

where !i ; j ;k ;g ¼ 2�fi ; j ;k ;g . Substituting (5) into the Manakov Equation (4) and after some simple
reordering according to expð j!i ; j ;k ;gtÞ, the propagation equation for the subcarrier fg is given by [20]
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where the superscript Bþ[ stands for transpose conjugate. We have assumed that the FWM
product c 0g is much smaller than the inducing field c0i ; j ;k . We now adopt the commonly used un-
depleted subcarrier approach where each subcarrier field c 0i ; j ;k can be expressed as [20]

c0i ; j ;k ðzÞ ¼ c i ; j ;k exp � 1
2
�z � i�i ; j ;kz

� �
(7)
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2
i ; j ;k (8)

where c i ; j ;k is the OFDM symbol for i , j , or k th subcarrier at the input of the fiber. This distinguishes
from the OFDM symbols during the transmission c0i ; j ;k , represented by the prime in the superscript.

Substituting (7) into (6), the magnitude of the FWM product c0g after transmission of one-span of
the transmission fiber is given by

c0g ¼ � cþk c i
� �

c j þ cþk c j
� �

c i
� 	

e��L=2�i�gL
1� e��Le�j��ijk L

j��ijk þ �
: (9)

We now extend to Ns spans of fiber link with a periodic dispersion map. Each span consisting of a
transmission fiber, and a dispersion compensation fiber (DCF) sandwiched between two EDFAs, as
shown in Fig. 1. For simplicity, we assume that the FWM products are dominated by those from the
transmission fiber, and the complete analysis including the nonlinearity and loss effects of DCF will
be performed in the Appendix B. Summing the FWM mixing over Ns spans, the accumulated FWM
products at the Nsth span c 0g;Ns

becomes

c0g;Ns
¼ c0g

XNs�1

M¼0
expð jM �� ~�ijk Þ ¼ c0g

1� expð jNs �� ~�ijk Þ
1� expð j� ~�ijk Þ

(10)

��ijk � �i þ �j � �k � �g (11)

� ~�ijk ¼��ijk Lþ��ijk ;1L1 (12)

Fig. 1. Schematic of one span of fiber link consisting of a transmission fiber and a dispersion
compensation fiber (DCF), which is sandwiched between two Erbium-doped-fiber-amplifiers (EDFA),
i.e., EDFAs I and II.
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where ��ijk is the phase mismatch in the transmission fiber, and L is the transmission fiber length
per span. In (12), the subscript B1[ stands for the parameters associated with the dispersion
compensation fiber (DCF). c0g is the FWM product for one-span as shown by (9). The expression of
(10) derived here from the Manakov equation extends the result in [22] by including the multispan
chromatic dispersion effects. It is noted that we have made an important assumption that the phase
mismatch and phase walk-off per span are dominated by the chromatic dispersion instead of PMD
effects as we omit the PMD and PDL impact in this analysis. From (9), the power of the FWM
component at subcarrier fg is

P 0g ¼ c0g;N



 


2¼ cþk c i
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c j þ cþk c j

� �
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2�2e��L�0 (13)

where �0 is the FWM coefficient which has a strong dependence on the relative frequency spacing
between the FWM components given by

�0 ¼ �01�02 (14)
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(15)
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1� expð jNs �� ~�ijk Þ
1� expð j� ~�ijk Þ













2

¼
sin2fNs� ~�ijk=2g

sin2� ~�ijk=2
: (16)

In (14), the overall FWM efficiency is decomposed into two separate contributions: i) �01, which is
the FWM efficiency coefficient for single span, and ii) �02, which is the interference effect among Ns

spans of FWM products, which is also known as phase array effect [9]. In (15), we have assumed
that the span loss e�L is much larger than 1, and therefore, e��Le�j��ijk L is removed from the
nominator. Substituting mth subcarrier frequency having the form of fm ¼ m ��f into (15) and (16),
the phase mismatch terms ��ijk and � ~�ijk can be rewritten as

��ijk ¼ � 4�2�2�f 2ði � kÞðj � kÞ (17)

� ~�ijk ¼ � 4�2�2�f 2Lð1� �Þði � kÞðj � kÞ (18)

where � is the dispersion compensation (or residual dispersion) ratio. We assume that the launched
OFDM information symbol c i ; j ;k for different subcarriers are statistically independent. It is shown in
Appendix A that
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where h i stands for ensemble average, and Pi ; j ;k is the launch power at the frequency of fi ; j ;k .
Consequently, the ensemble average of the FWM power becomes
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D E
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At the end of each span, the FWM product P 0g along with the signal will be amplified by a gain of G
equal to the loss of each span e�L and the FWM product becomes

hPgi ¼
3
2
�2PiPjPk�

0: (21)

We adopt the approach used in [13], where the nonlinear effect is considered as the multiplicative
noise to the signal. In essence, we consider i th subcarrier as the reference frequency, and j and k
frequencies as the interferers, namely, frequency j and frequency k generate a beating frequency
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component at ðfj � fk Þ, which in turn modulates the subcarrier i , creating fourth components of fg .
Consequently, the nonlinearity impinging on subcarrier i , Pi

NL is given by

Pi
NL ¼

3
4
�2Pi

XN=2
k¼�N=2

XN=2
j¼�N=2

PjPk�
0: (22)

A factor of one half is added in (22) because of the double counting in the dual summation. The
lower summation boundary is reduced by 1 for simplicity. Equation (22) can be understood as the
number of photons or amount of energy scattered off the subcarrier i and should be equivalent to
the photons scattered into this subcarrier i with large bandwidth assumption, which we will clarify
later. From now on, we drop index i and set it to zero, or equivalently, we are investigating the
performance of center wavelength channels in broad bandwidth DS-OFDM systems. We also
assume all the subcarriers have the same power of P for the sake of simplicity. The FWM power at
the center subcarriers becomes
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where fPA is defined as the phase array bandwidth indicating frequency range of the effectiveness
of phase array effects, and fW is the defined as the dispersion walk-off bandwidth indicating the
frequency range of the effectiveness of FWM nonlinearity in the presence of the dispersion.
Substituting a new variable m ¼ k � j , (23) becomes

PNL ¼
3�2P3

4�22ð2�Þ
4
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Similar to the single-polarization scenario [15], it can be shown that under the condition of

fPA ��f (25)

fW ��f : (26)

FMW expression of (24) can be converted from discrete summation to integration. We call the
conditions of (25) and (26) Bdense subcarrier[ assumptions. Under the assumptions of (25) and
(26), substituting the continuous integral variable f for m ��f , f1 for j ��f , the FWM power is
transformed into
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where B ¼ N�f is the total bandwidth of the DS-OFDM systems. According to the definition of m in
(24), the variable f represents the frequency of the multiplicative noise impairing the channel. We
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now introduce more convenient and fundamentally more important terms: power (spectral) densities
given by

INL �
PNL

�f
; I � P

�f
(28)

where INL and I are, respectively FWM noise (spectral) density and launch power (spectral) density.
Substituting (28) into (27), we arrive at the FWM noise density

INL ¼
3�2

4�22ð2�Þ
4 I

3
ZB=2�f1

�B=2�f1

ZB=2
�B=2

�1ðf ; f1Þ�2ðf ; f1Þ df1 df : (29)

The important conclusion from (29) is that under Bdense subcarrier[ assumption, the result of the
nonlinearity is independent of the subcarrier spacing.

Similar to the derivation in [15, App. A], the FWM power density can be rewritten as

INL ¼
3�2

�22ð2�Þ
4 I

3
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B0=2

Z1
0

�1ðf ; f1Þ�2ðf ; f1Þ df1 df (30)

B0 ¼ 2f 2W =B (31)

B � fW : (32)

Equation (32) is another important assumption that is used for deriving (30), which states that the
overall bandwidth is much larger than the walk-off bandwidth. We call this condition the Blarge
bandwidth[ assumption. Since f is the nonlinearity noise frequency, the integration over f1 in (30)
would produce the nonlinear noise spectral density. We rewrite (30) in terms of the one-sided
nonlinear multiplicative noise spectral density iNLðf Þ given by

INL ¼ I
ZB=2

B0=2

iNLðf Þ df ; iNLðf Þ ¼
3�2

�22ð2�Þ
4 I

2
Z1
0

�1ðf ; f1Þ�2ðf ; f1Þ df1: (33)

The nonlinear noise spectral density iNLðf Þ has the unit of dBc/Hz, which is similar to phase noise
or relative intensity noise (RIN). iNLðf Þ can be integrated in closed form, the derivation of which is
shown in [15, App. B]. The result of the integration gives

iNLðf Þ ¼ �2I2
3

4��j�2j
ðNs � 1þ e��	LNs � Nse��	LÞe��	L

ðe��	L � 1Þ2
þ Ns

2

 !
1
f
: (34)

Equation (34) is the first important result of the paper. The significance of (34) shows that the
multiplicative nonlinear noise spectral density is essentially a well-known flicker noise or 1=f noise.
This finding makes the authors deduce that our derivation may help explain one class of the flicker
noise, namely, third-order nonlinearity and dispersion may be one type of mechanisms to produce
of 1=f noise. B0 is the corner frequency of the 1=f noise below which the nonlinear noise starts to
roll off. It follows from (31) that the corner frequency B0 is inversely proportional to the bandwidth of
the participating noise B. Substituting (34) into (33), we finally arrive at the closed-form expression
for the nonlinear noise power density INL

INL ¼ �2I3
4

��j�2j
2ðNs � 1þ e��	L � Nse��	LÞe��	L

ðe��	L � 1Þ2
þ Ns

 !
¼ 3�2Ns lnðB=B0Þ � he

8��j�2j
I3 (35)

he �
2ðNs � 1þ e��	LNs � Nse��	LÞe��	L

Nsðe��	L � 1Þ2
þ 1 (36)
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where he is the (noise) enhancement factor accounting for the FWM noise interference among
different spans. We will discuss this interesting nonlinear enhancement factor he in more detail in
the next section. We further express the nonlinear noise power density INL of (35) in a more concise
form with the definition of nonlinear characteristic power density I0 as follows:

INL ¼
I
I0

� �2

I; I0 �
1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��j�2j

3Nshe lnðB=B0Þ

s
: (37)

2.1. Signal-to-Noise Ratio and Spectral Efficiency Limit in the Presence of Nonlinearity
The signal power in presence of the nonlinear interference can be expressed as [13]

I ¼ I exp �ðI=I0Þ2
� �

ffi I: (38)

The noise can be considered as the summation of the white optical amplified-spontaneous-noise
(ASE), i.e., n0, and the FWM noise and is shown given by [13]

n ¼ 2n0 þ I 1� exp �ðI=I0Þ2
� �� �

(39)

n0 ¼NsðG � 1Þnsph
 ffi 0:5Nse�Lh
 � NF (40)

where nsp is the spontaneous noise factor equal to half of the noise figure of the optical amplifier
NF , h is the Planck constant, and 
 is the light frequency. The factor of 2 in (39) accounts for
the ASE noise for both polarizations, namely, the signal power and noise power density in (38)
and (39) include the contribution from both polarizations. The signal-to-noise ratio (SNR) is thus
given by

SNR ¼
I exp �ðI=I0Þ2

� �
2n0 þ I 1� exp �ðI=I0Þ2

� �� � : (41)

For the SNR larger than 10, (41) can be approximated as

SNR ffi I

2n0 þ IðI=I0Þ2
: (42)

The simplification is generally valid for the case of interests where the signal power density is
much smaller than I0.

We have verified through our simulation under Bdense subcarrier[ and Blarge bandwidth[
assumptions of (25), (26), and (32) that the FWMnoise is of Gaussian distribution. This is also verified
previously in [23]. Under the assumption of Gaussian noise distribution, the information spectral
efficiency (defined as the maximum information capacity C normalized to bandwidth B) for dual-
polarization is readily given by [24]

S ¼ 2 log2ð1þ SNRÞ ¼ 2 log2 1þ
I exp �ðI=I0Þ2

� �
2n0 þ I 1� exp �ðI=I0Þ2

� �� �
0
@

1
A

ffi 2 log2 1þ I

2n0 þ IðI=I0Þ2

 !
: (43)

From (43), the maximum spectral efficiency Sopt in the presence of fiber nonlinearity can be easily
shown as

Sopt ¼ 2 log2 1þ 1
3
ðI0=n0Þ2=3

� �
: (44)
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2.2. Optimal Launch Power Density, Maximum Q, and Nonlinear Threshold of Launch
Power Density
In (43), the ultimate spectral efficiency is obtained. However, in practice, the performance is

always lower because of the practical implementation of modulation and coding. We therefore
derive a few important parameters that are commonly used in the optical communications com-
munity. The first one is the maximum achievable Q factor. Under the Gaussian noise assumption
and quadrature phase-shift keying (QPSK) modulation, the Q factor is equal to the SNR given by

Q ¼ SNR ¼
Iexp �ðI=I0Þ2

� �
2n0 þ I 1� exp �ðI=I0Þ2

� �� � ffi I

2n0 þ IðI=I0Þ2
: (45)

The optimum launch power density is another important parameter and is defined as the launch
power density where the maximum Q takes place. By simply differentiating Q of (45) over I and
setting it to zero, we obtain that the optimum launch power density and the optimal Q is given by

Iopt ¼ n0I20
� �1=3¼ 8n0��j�2j

3�2Nshe lnðB=B0Þ

� �1=3

(46)

Qmax ¼
1
3

I0
n0

� �2=3

¼ 8��j�2jð Þ1=3

3 3n2
0�

2Nshe lnðB=B0Þ
� �1=3 : (47)

One of the inconveniences of using the optimum launch power expression in (46) is that it is
dependent on the amplifier noise figure. The other commonly used term is nonlinear threshold
launch power density that is defined as the maximum launch power density at which the BER due to
the nonlinear noise can no longer be corrected by a certain type of forward-error-correction (FEC).
For standard Reed–Solomon code RS(255, 239), the threshold Q is 9.8 (dB), or linear q0 of 3.09.
In (45), setting n0 to zero and Q to q2

0 , we arrive at the nonlinear threshold of power density

Ith ¼
I0
q0
¼ 1

q0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��j�2j

3Nshe lnðB=B0Þ

s
(48)

where q0 is the correctable linear Q for a specific FEC.
The closed-form expressions for nonlinear noise spectral density iNLðf Þ in (34), nonlinear noise

power density INL in (35), nonlinear multispan noise enhancement factor he in (36), nonlinear
characteristic power density I0 in (37), information spectral efficiency S in (43) and its optimal value
in (44), system Q factor in (45) and its optimal value in (47), optimal launch power density in (46),
and nonlinear threshold of launch power density in (48) comprise the major findings in this work.

3. Application of the Closed-Form Expressions

3.1. Corroboration of the Theories With Numerical Simulation
We first conduct simulation of some commonly used systems to substantiate the theories
developed in Section 2. The parameters for the simulated dual-polarization transmission systems
are as follows: 16 wavelength channels, each covering 31-GHz bandwidth, giving total bandwidth B
of 496 GHz; OFDM subcarrier frequency spacing of 85 MHz; QPSK modulation for each subcarrier;
no frequency guard band between wavelength channels; 10-span of 100 km fiber link; fiber loss � of
0.2 dB/km; nonlinear coefficient � ¼ 1:22 w�1km�1; noise figure of the amplifier of 6 dB. The FWM
noise density is simulated by using a perfect optical notch filter to notch out a 100-MHz gap at the
center of the input signal spectrum, and the power density is measured at the output after 1000-km
transmission. Fig. 2(a) shows the simulated nonlinear noise density compared with the computed
nonlinear density using the closed-form expression of (37). Three transmission systems are
investigated: i) single-mode-fiber (SSMF) type system with CD of 16 ps/nm/km with no dispersion
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compensation, abbreviated as Bsystem I,[ ii) CD of 16 ps/nm/km but with dispersion 95%
compensated per span, abbreviated as system II, and iii) nonzero dispersion-shifted type fiber with
CD of 4 ps/nm/km, abbreviated as Bsystem III.[ For systems I, II, and III, the average difference of
FWM density is 25%, 20%, and 20%. This shows excellent match between the closed-form
formula and simulation, considering the extreme sensitivity of the FWM density as a function of
launch power density (cubic dependence). We also perform the simulation of the system Q factors
with the above-described three systems, the results of which are shown in Fig. 2(b). We can see a
good match between theoretical expressions based on (45) and simulation results. For instance,
the difference between the optimal Q from theory and simulation is within 0.2 dB for all
simulated dispersion maps. The difference of launch power between the simulation and closed-form
theory for the same Q factor is less than 0.3 dB for wide range of launch power density of �25 to
�12 dBm/GHz. All these confirm the excellent match between the simulation and the closed-form
expression of Q factors in (45).

3.2. System Q Factor and Optimum Launch Power
Because the concise closed-form expressions are available, we are ready to quickly identify their

dependence on system parameters including fiber dispersion, number of spans, dispersion com-
pensation ratio, and overall bandwidth. In this section, we will discuss in detail the achieved system
Q factor, optimum launch power density, information spectral efficiency, and multispan noise
enhancement factor.

The immediate benefits of having closed-form formulas of (46) and (47) for system Q factor and
optimum launch power density are their scaling over the underlying parameters. From (46) and (47),
it follows that for every 3-dB increase in fiber dispersion, there is a 1-dB increase in the optimal
launch power density and the achievable Q; for every 3-dB increase in fiber nonlinear coefficient �,
there is a 2-dB decrease in the optimal launch power density and achievable Q.

We can quickly generate the optimum launch power density and achievable Q for variety of
dispersion maps. In particular, we investigate the three systems: systems I, II, and III that are
described in Section 3.1. As shown in Fig. 3(a), system I has the best performance due to large
local dispersion and no per-span dispersion compensation. The advantage of system I over system
II increases with the increase of the number of spans, for instance, from 0 dB to 2.4 dB when the
reach increases from single-span to 10 spans. The advantage of system I over system III is
maintained at 1.7 dB, independent of the number of spans. Fig. 3(b) shows the optimal launch
power versus number of spans. The optimum launch powers for noncompensated systems, i.e.,
systems I and III, are constant. This is because both the linear and nonlinear noises increase
linearly with the number of the spans that leads to the optimum power independent of the number of
spans. However, for the dispersion compensated system II, the optimum launch power density
decreases with number of spans due to the multispan noise enhancement effect. Another
interesting observation from (46) and (47) is that both the optimal Q factor and launch power has

Fig. 2. Comparison of closed-form theory and simulation results for (a) FWM power density and (b) Q
factor as a function of the launch power density. Theo.: Theory; Simu.: Simulation; CD: Chromatic
dispersion with a unit of ps/nm/km; CR: (CD) Compensation ratio. Both (a) and (b) assume 10 � 100 km
dual-polarization transmission systems.
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very weak dependence on the overall system bandwidth: proportional to 1/3 power of logarithm of
the overall bandwidth. It can be easily shown that for both systems I and III, the Q is decreased by
only about 0.7 dB with the tenfold increase of the overall system bandwidth from 400 to 4000 GHz,
whereas system II incurs a larger decrease of the Q factor of 0.84 dB with the same bandwidth
increase.

3.3. Information Spectral Efficiency
The information spectral efficiency is important as it represents the ultimate bound of what we can

achieve by employing all possible modulations (of course not limited to QPSK) and codes. For large
SNR, we simplify (43) into

S ¼ 2 log2 1þ 1
3
ðI0=n0Þ2=3

� �
ffi 2 log2

1
3

8��j�2jð Þ1=3 3�2n2
0Nshe lnðB=B0Þ

� ��1=3� �
: (49)

Equation (49) clearly shows the challenges of improving spectral efficiency by redesigning the fiber
system parameters: To increase spectral efficiency by 2 bit/s/Hz, the dispersion needs to be in-
creased by a factor of 8, the nonlinear coefficient � needs to be decreased by a factor of 2.8, or the
number of spans needs to be reduced by a factor of 2, all of which are difficult to achieve. In a
nutshell, it is of diminishing return to improve the spectral efficiency by modifying the optical fiber
system parameters. The only effective method to substantially improve the spectral efficiency is to
add more dimensions such as resorting to polarization multiplexing that leads almost a factor of 2
improvement, as discussed in the paper, or fiber mode multiplexing by at least a factor of two or
more dependent on the capability of achievable digital signal processing (DSP). Fig. 4 shows the
achievable spectral efficiency for the three systems studied in Section 3.1. The only modification is
that we assume 40 nm or 5 THz for the total bandwidth. The spectral efficiency for the systems I, II,
and III are, respectively 9.90, 8.38, and 8.63 b/s/Hz over 10 spans of transmission. This shows a
total capacity of 49.5 Tb/s can be achieved for 10 � 100 km SSMF uncompensated EDFA-only
dual-polarization systems within C-band.

3.4. Multispan Noise Enhancement Factor
The multispan noise enhancement factor he of (36) is one of the most important findings in this

report. This noise enhancement effect is ignored in the prior analytical results [13], [14]. This
multispan interference effect can be understood as the phase array effect that has been discussed
in [9]. The noise enhancement is referred to the important fact that the overall nonlinear FWM noise
of multispan systems is enhanced by a factor of he over the scenario for which the nonlinear FWM
noise originated in each span is assumed independent without interference with each other. We
note the expression of he in (36) is the first concise closed-form result where the multispan
interference effects of all the FWM products are accounted for. From (36), we conclude that as long
as the factor �L	 is much larger than 1, he approaches 1, namely, the nonlinear noise generated in
each span can be treated independently in this regime. However, even when the fiber loss �L is

Fig. 3. (a) Maximum Q factor and (b) the optimal launch power density versus number of spans with
various dispersion maps. CD: Chromatic dispersion. CR: (CD) Compensation ratio.
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large but 	 is small, or dispersion compensation ratio is large, he can be significantly high. Fig. 5
shows the noise enhancement factor he as a function of dispersion compensation ratio � ¼ 1� 	 for
span losses of 10 and 20 dB. It can be seen that for a dispersion compensation ratio of 95%, the
nonlinear noise is enhanced by 8.5 and 7.3 dB for span losses of 10 and 20 dB, respectively. It
shows that multispan noise enhancement cannot be ignored, even when the span loss is as large
as 20 dB if the compensation ratio is higher than 50%.

3.5. Comparison Between Single-Polarization and Dual-Polarization Transmission
We compare the performance difference between dual-polarization transmission studied in this

paper and single-polarization transmission in [15], assuming the same link configuration, such as of
the same transmission fiber, dispersion map, and amplifier noise figure. As shown in Table 1, the
FWM noise power density of dual-polarization is 4.26 dB less than that of single-polarization for the
same launch power density; the maximum Q of dual-polarization is 0.59 dB less than that of single-
polarization; the optimal launch power density is 2.42 dB higher than that of single-polarization;
the nonlinear threshold of launch power density is 2.13 dB higher than that of single-polarization.
The comparison results of INL, Qmax , IOpt , and I th are independent of the fiber link configuration.
However, the comparison of the spectral efficiency between single- and dual-polarization is
link dependent. For the 10 � 100 SSMF fiber link, the spectral efficiency difference between
dual-polarization and single-polarization is about 4.76 b/s/Hz, or the spectral efficiency of dual-
polarization is about 7% away from doubling that of single-polarization.

3.6. Applicability to the Densely Spaced Coherent Single-Carrier Systems
Although our derivation is based on densely spaced CO-OFDM systems, we argue that our

closed-form results are applicable to some of the densely spaced coherent single-carrier systems.

Fig. 5. Multi-span noise enhancement factor as a function of the dispersion compensation ratio with fiber
span losses of 10 and 20 dB. The number of spans is maintained at 10. The link losses of 10 and 20 dB
are obtained by setting the span length to 50 and 100 km, respectively.

Fig. 4. Information spectral efficiency as a function of the number of spans for various dispersion maps.
The total bandwidth B is assumed to be 40 nm. The other OFDM and link parameters are the same as
those described in Section 3.1.
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As explained in [25], in the single-carrier systems, when the symbol rate is much higher than the
dispersion walk-off bandwidth fW , due to rapid walk-off among different frequency components, the
performance of the single-carrier systems with large symbol rate approaches that of the multicarrier
systems with very small symbol rate. Consequently, we conclude that the closed-form expressions
can be extended to the coherent single-carrier systems with high symbol rate. The closed-form
expressions cannot be applied to those densely spaced multicarrier systems where the symbol rate
is in the neighborhood of the dispersion walk-off bandwidth. As elucidated in [25], these systems
have the optimal performance with their Q factor about 1 dB better than the ones with either very
low symbol rate or very high symbol rate.

4. Conclusion
In this paper, we have derived closed-form expressions for nonlinear transmission performance of
dual-polarization closely spaced CO-OFDM systems. We find that the FWM nonlinear noise exhibits
a signature of the flicker noise or 1=f noise beyond the corner frequency that is inversely propor-
tional to the total participating bandwidth. We derive a noise enhancement factor that captures the
interference effect of nonlinear noises among different spans. The closed-form expressions are also
applicable to the closely spaced coherent single-carrier systems where the symbol rate is much
larger than the dispersion walk-off bandwidth, and the optical dispersion is uncompensated.

Appendix A
Derivation of the Average FWM Power
Let us denote U ¼ ðUx ;Uy ÞT ¼ ðcþk ciÞcj þ ðcþk cjÞci . Expanding both sides of the denotation into the
two polarization components, we have Ux given by

Ux ¼ 2ck

x c i
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j
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y c i
yc

j
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y c j
yc

i
x : (50)

The ensemble average of power of Ux is expressed as
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We assume that the OFDM information symbols on different polarizations or different subcarriers
are uncorrelated, namely

c j

x1c

k
x2

D E
¼ P j

2
�x1x2�jk (52)

where x1;2 stands for x or y polarization component, and P j is the power of the j th subcarrier.
Expanding the right side of (51) and substituting (52), we have
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TABLE 1

Dual-Polarization Transmission Performance Normalized to That of Single-Polarization Transmission.
The Information Spectral Efficiency S Is Evaluated for 10 � 100 km Uncompensated SSMF Link With
40 nm OFDM Signal Continuous Bandwidth
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Similarly, we arrive at average power of Uy given by

jUy j2
D E

¼ 3
4
PiPjPk : (54)

Subsequently, we obtain the average power of U given by

jU j2
D E

¼ jUx j2 þ jUy j2
D E

¼ 3
2
PiPjPk : (55)

Appendix B
Nonlinearity Performance Including the Loss and
Nonlinearity of the DCF
As shown in Fig. 1, each span of the fiber link is consisted of a transmission fiber and a DCF which
is sandwiched between two DEFAs. To include the nonlinear contribution from DCF, the FWM
product from each span equivalent to (9) is modified as

c 0g;t ¼ c0g;0G
1
2
1e
�1

2�1L1�i�g;1L1 þ c 0g;1

c0g;m ¼ �m cþk ;mc i ;m

� �
c j ;m þ cþk ;mc j ;m

� �
c i ;m

h i
e�

1
2�mLm�i�g;mLm 1� e��mLme�j��ijk ;mLm

j��ijk ;m þ �m
(56)

where c 0g;t is the total FWM product measured at the output of the DCF of the first span, which
consists of the contribution from both transmission fiber and DCF. The subscript Bm[ of B0[ and B1[
stands for the parameters associated with the transmission fiber and DCF, respectively. When m is
equal to zero, the subscript can be dropped for brevity. For instance, L0 and L are synonymous. c i ;m

is the field at the input of the transmission fiber ðm ¼ 0Þ or DCF ðm ¼ 1Þ, and G1 is the gain of the
EDFA I. From Fig. 1, the field at the input of the DCF is related to that at the input of the
transmission fiber by

c i ; j ;k ;1 ¼ e�
1
2�L�i�i ; j ;k LG

1
2
1c i ; j ;k : (57)

Substituting (57) into (56), we obtain
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We have assumed that e��L � 1 and e��1L1 � 1. The former is generally true which indicates
the loss of the transmission fiber is much larger than 1. The later also requires the large loss of the
DCF, which may not be true. However, this can be justified because when the DCF is short and its
loss is low, the nonlinearity contribution becomes insignificant, and subsequently, the inaccuracy
due to this approximation is also insignificant.

IEEE Photonics Journal Information Spectral Efficiency Limits

Vol. 3, No. 2, April 2011 Page 170



Similar to (10), the FWM product after the Ns-span transmission can be considered as the
superposition of the contribution from Ns individual spans given by

c 0g;N ¼ c0g;t
XNs�1

M¼0
expð jM �� ~�ijk Þ ¼ c 0g;t

1� expð jNs �� ~�ijk Þ
1� expð j� ~�ijk Þ

: (59)

The power of the FWM after Ns spans of transmission is therefore
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We have dropped a term proportional to cosð��ijk LÞ, which is rapidly varying as a function of the
subcarrier frequency for practical systems. At end of each span as shown in Fig. 1, the FWM
product P 0g along with the signal will be amplified further by a gain of G2 equal to e�Lþ�1L1G�11 , and
the FWM product becomes

hPgi ¼ G2 P 0g
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Following the same procedures from (17)–(35), the closed-form expression for the nonlinear
noise power density INL becomes

INL ¼ �ð�; �; �2Þ þ �ð�1; �1; �2;1ÞðG1e��LÞ2
� �

NsheI3

�ð�; �; �2Þ ¼
3�2 lnðB=B0Þ

8��j�2j
; B0 ¼

�

�j�2jB
: (62)

It can be seen that the difference between nonlinear noise power density INL in (35) and (62) is
the additional term of �ð�1; �1; �2;1ÞðG1e��LÞ2, which accounts for FWM contribution from the DCF.
The nonlinear noise power density INL can be expressed in terms of characteristic power density I0,
namely

INL ¼
I
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� �2
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vuut : (63)

In addition to nonlinearity, the second effect of the DCF is the additional optical ASE noise due to
using two EDFAs to compensate its loss. The two EDFAs with a DCF in between can be considered
as a composite amplifier with a gain of G1G2e��1L1 and noise figure NFc of

NFc ¼ NF þ NF
G1e��1L1

(64)

where NF is the noise figure of the EDFAs I and II, which are assumed to be equal. Similar to (40),
the ASE noise after Ns spans of transmission is given by

n0 ¼ 0:5Nse�Lh
 � NFc : (65)
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Using the new expressions for I0 of (63) and n0 of (65), the information spectral efficiency S of
(43), system Q factor, and its optimal value of (45) and (47), optimal launch power density in (46)
remains valid. For instance, the optimal Q factor can be expressed as

Qmax ¼
1
3
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¼ 1
3
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