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Abstract: It is shown that the phase distribution of the field and the detection scheme
strongly affect the strength of the nonlinear impairments in phase-modulated transmission
systems. It is found that precompensation is always a useful tool for minimizing the nonlinear
impairments in differential phase-shift keying, where the mechanism for minimization is the
reduction of the in-phase component of the nonlinear displacement. For differential quad-
rature phase-shift keying (DQPSK), the nonlinear impairments are instead minimized by a
dispersion profile that maximizes the correlation of phase fluctuations of two consecutive
pulses. When the number of interacting pulses is large, the performance of a DQPSK system
is only weakly dependent on the dispersion profile.

Index Terms: Coherent transmission, intrachannel four-wave mixing, pseudolinear
transmission.

1. Introduction
A few years ago, in a series of three papers [1]–[3], it was shown using first-order perturbation
theory that a careful design of the dispersion profile may significantly improve the performance of
high bit-rate transmission in systems in which the nonlinearity is minimized by a quick spreading of
the pulses (pseudolinear transmission). The theory was originally developed for the only practical
scheme at the time, namely, on–off keying (OOK) intensity-modulation direct-detection (IMDD)
transmission. In this paper, this theory is extended to systems based on differential phase-shift
keying (DPSK) and differential quadrature phase-shift keying (DQPSK), which are nowadays
becoming increasingly popular [4].

The phase distribution of the signal and the detection scheme is found to strongly affect the system
nonlinear dynamics. In particular, it will be shown that nonlinear impairments are minimized in DPSK
transmission when the in-phase component of the nonlinear displacement is minimum, whereas they
are minimized in DQPSK when the correlation of the phase fluctuations of two consecutive pulses is
maximum. The optimal dispersion profile is virtually the same in both systems. While dispersion
profile always strongly affects DPSK transmission, it does not have a significant effect on DQPSK
performance when the interval between dispersion compensating stations is large.

2. First-Order Perturbation Theory
Let us start with the nonlinear Schrödinger equation for the scalar electric field amplitude u,
averaged to account for the small-scale polarization evolution (no polarization-dependent effects
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will be considered throughout this paper) and rescaled to account for the linear fiber attenuation

@u
@z
¼ �i �

00

2
@2u
@t2
þ i�f ðzÞjuj2u (1)

where �00 (negative in the anomalous dispersion region) is the group velocity dispersion,
� ¼ 2�n2=ð�AeffÞ is the fiber nonlinear coefficient, n2 is the nonlinear refractive index, and Aeff is
the effective area of the fiber. Here, f ðzÞ rescales the fiber nonlinearity to include the effect of a
nonuniform power profile caused by fiber loss. If equally spaced lumped Erbium amplifiers are used,
f ðzÞ ¼ exp½��modðz; zsÞ� for 0 � z G L, where mod is the modulus function, � is the power
attenuation coefficient, zs is the span length, and L is the fiber length. The nonlinear term is treated
using a perturbation approach inserting ~uðz; !Þ ¼ ~u0ðz; !Þ þ�uðz; !Þ into the Fourier transform of
(1) and preserving terms up to first order in �uðz; !Þ. The regime of operation where first-order
perturbation theory is valid is known as quasi-linear transmission. Let us assume that the dispersion
is always constant, with the exclusion of lumped locations where dispersion is added linearly to the
field (dispersion compensating stations). We assume that at the line input, the field is linearly
predispersed by some fixed amount of dispersion (usually opposite from that of the line so that
predispersion is also a precompensation of the line dispersion) and then transmitted through the
dispersive nonlinear fiber; then, the total accumulated dispersion of the field (predispersion þ line
dispersion) is fully compensated by a linear dispersion compensating device. In other words, we
assume that the initial and final point of the first span between dispersion compensating stations are
always points where the field experiences zero accumulated dispersion. Then, in the second span
between dispersion compensating stations, the field is predispersed and transmitted again through
the fiber, and the total accumulated dispersion is linearly compensated. The spans after the second
are treated on equal footing. Using this procedure, the concatenation of more than one span
between dispersion compensating stations is modeled as the concatenation of spans where the
initial and final points have zero accumulated dispersion. Then, within linear perturbation theory, the
perturbation at the end of the line will be the sum of the perturbations of sections between
compensating stations.

Let us assume that the input field is made of a sequence of three un-chirped Gaussian pulses
with the same pulse width u0ð0; tÞ ¼

P3
j¼1 vjðt � TjÞ with vj ðtÞ ¼ Ajexp½�t2=ð2�2Þ�. The interaction

of n pulses can, to lowest order, always be decomposed as the sum of the interactions of all
possible triplets of pulses. After some algebra, it is possible to give to the perturbation the
expression [1]

�uj ;k ;lðt þ Tj ;k ;l Þ ¼ i�AjA�kAlU j ;k ;lðL; t þ Tj ;k ;lÞ (2)

where Tj ;k ;l ¼ Tj � Tk þ Tl , and

U j ;k ;lðt þ Tj ;k ;lÞ ¼ exp � t2

6�2

� � ZL�z�
�z�

f ðz 0 þ z�Þdz 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3q�ðq þ 2i=3Þ

p
�exp i

2t=3þ ðTj � Tk Þ
� �

2t=3þ ðTl � Tk Þ½ �
�2ðq þ 2i=3Þ

�
� ðTj � TlÞ2

3�2q�ðq þ 2i=3Þ

)
(3)

and the complex parameter q is defined as q ¼ ðz=zd Þ � i , where zd ¼ �00=�2 the dispersion length
that is either positive or negative, depending upon the sign of �00. Here, z� is the zero accumulated
dispersion point within the span. The amount of predispersion is �pre ¼ ��00z� in picoseconds
squared if �00 is in picoseconds squared per kilometer, and z� is in kilometers. This expression can
be easily generalized to the N span case, wherein there are N position where partial or total
dispersion compensation is performed. The result will be the sum of N integrals of the kind given by
(3) if we use for each span a local reference frame where the origin is set to the input of the span.
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3. Analysis of DPSK and DQPSK Transmission
Let us now consider a sequence of equally spaced pulses. We will restrict ourselves to the case of a
sequence of Gaussian pulses with the same pulse-width and complex amplitudes Aj with the same
modulus A, spaced by the symbol time Ts (the inverse of the baud rate). The pulse phases are
chosen within a set of N values ’j , which are used to define the message. In DPSK, N ¼ 2, and the
phase can be either ’0 or ’0 þ �. In DQPSK, N ¼ 4, and the phases are spaced by �=2. Let us
define N normalized complex amplitudes aj such that Aj ¼ ajA ¼ expði’jÞA and assume that each
phase occurs with equal probability p ¼ 1=N . We will focus the analysis on differential detection,
where each pulse interferes with the next pulse of the stream, with no phase shift in DPSK and
phase shifted by ’d ¼ ��=4 in DQPSK, and the real part of the beat term is detected by a balanced
receiver. The amplitude of the detected photocurrent is proportional to I ¼ ReðIÞ, where

I ¼expð�i’d Þ
Z

dt a1A exp � t2

2�2

� �
þ
X
j 0;k 0;l 0

�uj 0;k 0;l 0

" #�
a0A exp � t2

2�2

� �
þ
X
j ;k ;l

�uj ;k ;l

" #
(4)

is the complex amplitude, Re stands for the real part, and �uj ;k ;l ¼ �uj ;k ;lðL; tÞ for short. The first
sum is extended to all combinations Tj 0;k 0;l 0 ¼ Tj 0 � Tk 0 þ Tl 0 ¼ Ts and the second to all combinations
Tj ;k ;l ¼ Tj � Tk þ Tl ¼ 0. Using these conditions, the triple sums collapse into double ones, because
the first implies that j 0 � k 0 þ l 0 ¼ 1, hence, that k ¼ j þ l � 1 and the second that j � k þ l ¼ 0,
hence, that k ¼ j þ l . The zeroth-order term is

I ¼ expð�i’d Þa�1a0
Z

dt A2 exp � t2

�2

� �
’ expð�i’d Þa�1a0

ffiffiffi
�
p

A2� (5)

where, although the integral is extended to the symbol time Ts, the approximation of replacing the
integration interval with the whole time axis has been used. With DPSK, a�1a0 ¼ �1, and only a
single interferometer is used. With DPSK, a�1a0 ¼ 1; i ;�1;�i , and two interferometers are used with
’d ¼ ��=4 so that their outputs IDQPSK ¼

ffiffiffi
�
p

A2�Re½ð1� iÞa�1a0=
ffiffiffi
2
p
� allow univocal selection of one

of the four transmitted symbols. The capacity increase is obtained at the expenses of a
ffiffiffi
2
p

reduction
of the detected signal when compared with DPSK. Both pulses are perturbed by the nonlinear
interaction. The perturbation of the complex amplitude of the photocurrent is

�I ¼ expð�i’d Þ �I1 þ�I�0
� 	

(6)

where

�I1 ¼
X
j ;l

a�1aja
�
jþl alJ j ;jþl ;l ; �I0 ¼

X
j 0;l 0

a�0aj 0a
�
j 0þl 0�1al 0J j 0;j 0þl 0�1;l 0 (7)

J j ;jþl ;l ¼ i�A4
Z

dt exp � t2

2�2

� �
U j ;jþl ;l ðt þ Tj ;jþl ;lÞ: (8)

After using (3) in (8) and integrating over time t , the parameters J j ;k ;l acquire the remarkably simple
expression

J j ;k ;l ¼ J j�k ;l�k ¼ i�
ffiffiffiffiffiffiffiffi
2�3
p

A4�3
ZL�z�
�z�

f ðz þ z�ÞGðTj � Tk ;Tl � Tk ; zÞdz (9)

where the notation J l ;j ¼ J l ;0;j is introduced for short, defined the function of the center time of the
pulses Tj and the distance z

GðT1;T2; zÞ ¼
1

2��2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz=zd Þ2 þ 1

q exp �T 2
1 þ T 2

2 � 2iðz=zd ÞT1T2

2�2 ðz=zd Þ2 þ 1
h i

2
4

3
5 (10)
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and used that for equally spaced pulses Tj � Tk ¼ Tj�k . It is interesting to notice that, formally, G is a
bivariate Gaussian distribution of variance �2 and complex correlation iðz=zd Þ, which somehow
accounts for the dispersive evolution of the pulses. The above results can be easily extended to
coherent communication employing Gaussian pulses and a continuous-wave local oscillator, if the
signal is filtered before detection with a matched optical filter and sampled after detection at the
center of the time slot.

The variance of the fluctuations of the detected photocurrent I ¼ ReðIÞ is h�I2i ¼
hð�I þ�I�Þ2i=4� h�I þ�I�i2=4. When all symbols are transmitted with equal probability, a
significant simplification toward its analytical estimate arises because haj i ¼ 0; hence, h�Ii ¼ 0.
Using this condition, the variance of �I becomes

h�I2i ¼ j�I1j2
D E

þ Re
h
cosð2’d Þ �I21



þ expð�2i’d Þ �I1�I�0


 �
þ h�I1�I0i

i
(11)

where ’d ¼ 0 for DPSK, and ’d ¼ ��=4 for DQPSK. The terms �I1 and �I0 are statistically
equivalent so that h�I21 i ¼ h�I20 i, and hj�I1j2i ¼ hj�I0j2i, and we have allowed for nonzero
correlations between the terms �I1 and �I0 [5]. The expressions of the various terms are

j�I1j2
D E

¼
X
j ;l ;j 0;l 0

a�1aja
�
jþl ala1a

�
j 0aj 0þl 0a

�
l 0

D E
J l ;jJ �l 0;j 0 (12)

�I21

 �

¼
X
j ;l ;j 0;l 0

a�1aja
�
jþl ala

�
1aj 0a

�
j 0þl 0al 0

D E
J l ;jJ l 0;j 0 (13)

�I1�I�0

 �

¼
X
j ;l ;j 0;l 0

a�1aja
�
jþl ala0a

�
j 0aj 0þl 0�1a

�
l 0

D E
J l ;jJ �l 0�1;j 0�1 (14)

h�I1�I0i ¼
X
j ;l ;j 0;l 0

a�1aja
�
jþl ala

�
0aj 0a

�
j 0þl 0�1al 0

D E
J l ;jJ l 0�1;j 0�1 (15)

where J j ;k ;l ¼ J j�k ;0;l�k ¼ J j�k ;l�k . First of all, note that all expressions have the exchange
symmetry j $ l and j 0 $ l 0. Condition haji ¼ 0 implies that nonzero average is obtained when
the terms in the averages are equal in couples. Let us consider first (12) and (13). The average
is nonzero if a) j ¼ j 0 and l ¼ l 0, or if j ¼ l 0 and l ¼ j 0. This second condition is fully equivalent to the
first by exchange symmetry. It is convenient to group these two cases into a single, two-fold
degenerate one. The only exception is the case j ¼ j 0 where the two conditions coincide; hence,
there is no degeneracy. The average is also nonzero if b) j ¼ 0 or l ¼ 0, and j 0 ¼ 0 or l 0 ¼ 0 and the
other two nonzero indices arbitrary. This case corresponds to the average of four-wave mixing
(FWM) terms where the pulses acting on pulse 0 collapse into a single one, hence, to the
average of cross-phase modulation (XPM) terms. Because any combination of a zero primed
index with a zero unprimed index is allowed, this case is a four-fold degenerate one. Also, in this
case, there are exceptions to the four-fold degeneracy. If two primed indices are simultaneously
zero or two of the unprimed indices are simultaneously zero, there is only two-fold degeneracy,
and there is no degeneracy when all indices are simultaneously zero. If conditions a) or b) are not
met, the average is zero. Let us now consider (15) and (14). The average is nonzero if c) j 0 ¼ 1 or
l 0 ¼ 1 and j ¼ 0 or l ¼ 0, and the other two indices are arbitrary, d) if l ¼ 1, l 0 ¼ 0, and j 0 ¼ j þ 1,
with again all four combinations, and, finally, if e) j ¼ j 0, l ¼ l 0 and j ¼ 1� l . Cases c) and d) are
four-fold degenerate, and case e) is two-fold degenerate. Again, there are exceptions. In case d),
there is two-fold degeneracy if j ¼ 1;�1. In case c), there is two-fold degeneracy if the two primed
indices are simultaneously one or if the two unprimed indices are simultaneously zero, and there
is no degeneracy for the single case j 0 ¼ 1, l 0 ¼ 1, j ¼ 0, and l ¼ 0. Physically, c) is caused by
nondegenerate FWM terms where one of the pulse is the interfering pulse at the detector and
the contribution of the other two, complex conjugate, collapse into the intensity of a single one.
This case accounts for the correlation of the XPM interaction caused on the two interfering pulses
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by the same pulse. Cases d) and e) are instead caused by correlated FWM terms. Gathering
together all these cases, we get

j�I1j2
D E

¼
X
j ;l

fj ;l ja1j2jaj j2jajþl j2jal j2
D E

jJ l ;j j2 þ
X
j 6¼j 0

gj ;j 0 ja1j2ja0j2jaj j2jaj 0 j2
D E

J 0;jJ �0;j 0 (16)
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X
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fj ;l a�21 a2j a
�2
jþl a

2
l

D E
J 2
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X
j 6¼j 0

gj ;j 0 a�21 a20jaj j
2jaj 0 j2

D E
J 0;jJ 0;j 0 (17)
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X
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hj ;j 0 a�21 jaj j
2a20jaj 0 j

2
D E

J 0;jJ �0;j 0�1 þ
X
j 6¼0

qj ja1j2a�2jþ1ja0j
2a2j

D E
J 1;jJ ��1;j

þ
X
j 6¼0;1

2 a�21 jaj j
2a20ja1�j j

2
D E

jJ j ;1�j j2 (18)

h�I1�I0i ¼
X
j ;j 0

hj ;j 0 ja1j2jaj j2ja0j2jaj 0 j2
D E

J 0;jJ 0;j 0�1 þ
X
j 6¼0

qj ja1j2jajþ1j2ja0j2jaj j2
D E

J 1;jJ �1;j

þ
X
j 6¼0;1

2 a�21 a2j a
�2
0 a21�j

D E
J 2

j ;1�j (19)

where the symmetry properties of J l ;j have been used, and we have defined the degeneracy
functions: fj ;l ¼ 2 always, except fj ;j ¼ 1; gj ;j 0 ¼ 4, except gj ;0 ¼ g0;j 0 ¼ 2; hj ;j 0 ¼ 4, except
h0;j 0 ¼ hj ;1 ¼ 2, and h0;1 ¼ 1; and finally qj ¼ 4 except q1 ¼ q�1 ¼ 2. Some indices are excluded to
include all nonzero terms of the sums in (12)–(14) only once. For instance, the case j ¼ j 0 has been
omitted in the last sum of (16) and (17), because this case coincides with its degeneracy factor 4, with
the two double degenerate cases l ¼ 0 and j ¼ 0 of the first term of the same equations.

Let us now consider separately the cases of DPSK and DQPSK. For DPSK, jaj j2 ¼ 1, and a2j ¼ 1
for every j . After using these properties, we get

j�I1j2
D E

¼Afwm þAxpm; �I21

 �

¼Bfwm þ Bxpm; �I1�I�0

 �

¼Acorr; h�I1�I0i¼Bcorr (20)

where Acorr ¼ Ac;xpm þAc;fwm;1 þAc;fwm;2

Afwm ¼
X
j ;l

fj ;lJ l ;jJ �l ;j ; Axpm ¼
X
j 6¼j 0

gj ;j 0J 0;jJ �0;j 0 ; Ac;xpm ¼
X
j ;j 0

hj ;j 0J 0;jJ �0;j 0�1 (21)

Ac;fwm;1 ¼
X
j 6¼0

qjJ 1;jJ ��1;j ; Ac;fwm;2 ¼
X
j 6¼0;1

2J j ;1�jJ �j ;1�j (22)

and the B are obtained from the corresponding A by removing the complex conjugation on the right-
hand side. Inserting (20)–(22) into (11), one may obtain

�I2DPSK

 �

¼ Afwm þ ReðBfwm þAc;fwm;1 þ Bc;fwm;1 þAc;fwm;2 þ Bc;fwm;2Þ: (23)

Bxpm is real such that Bxpm ¼ �Axpm and such that Bc;xpm ¼ �Ac;xpm. The terms related to XPM
interactions and their correlations disappear. This fact should not be surprising. Phase fluctuations
do not contribute to first order to the noise of DPSK because the receiver is sensitive only to the in-
phase component of the fluctuations; hence, their correlations do not affect the performance of a
DPSK system to first order either.

For DQPSK, but also for more dense formats like 8-ary differential phase-shift keying (D8PSK),
we have jaj j2 ¼ 1, and ha2j i ¼ 0. This means that, in all averages, terms like a2j average to zero
unless they have a partner like a�2j , or like a2j being a4j ¼ 1, with which to saturate. Again, using (11),
one may obtain

�I2DQPSK


 �
¼ Afwm þAxpm þ Bc;xpm þ Bc;fwm;1: (24)

In DQPSK, XPM interactions (through the term Ac;xpm) and their correlations (through the term
Bc;xpm) do affect the photocurrent fluctuations. Again, this is no surprise. In DQPSK, the signal is
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contained in both quadratures of the field; hence, to extract the signal, a projection onto two axis at
45� to the symbol constellation is required. In this case, phase fluctuations are not orthogonal to the
axis where the signal is projected; hence, they do contribute to the fluctuations of the detected
photocurrent. The term Bc;xpm accounts for the correlations of the phase fluctuations induced, by
any given pulse, through XPM on the two pulses overlapping at the receiver. Correlations are
beneficial in DQPSK, because a differential receiver cancels perfectly correlated fluctuations.

When f ðzÞ is a symmetric function about z ¼ L=2, which is a condition that can be approximated
by Raman amplification with a counter-propagating pump, and z� ¼ L=2, the photocurrent
fluctuations for DPSK are zero. This result, which is exact within first-order perturbation theory,
may be simply shown by observing that when this symmetric condition is met and their phases are
multiple of 180 �, the time-integrated fluctuations J j ;l are in quadrature with the pulse, as it may be
easily verified by the change of variable z 0 ¼ z � L=2 in the integral in (10). The amplitude
fluctuations of the pulses, hence the fluctuations of the detected eye, therefore vanish to first order.
With loss and lumped amplifiers, in-phase fluctuations cannot be nulled. It will be shown below by a
numerical example that, similarly to OOK-IMDD [2], in this case, that they are minimized by a
precompensation z�opt G L=2.

With DQPSK, instead, the reduction of the in-phase fluctuations does not in general improve
system performance because phase fluctuations do affect the photocurrent fluctuations at the
receiver, as discussed previously.

4. Numerical Examples
Let us now evaluate the contribution of the nonlinear fluctuations to the Q factor at the receiver,

which is defined in our case as QMod ¼ 2hIModi=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�I2Modi

q
, where Mod stands for DPSK or

DQPSK. The inverse of the Q factor is the standard deviation of the detected fluctuations

normalized to the detected signal. With the average transmitted power Pav ¼
ffiffiffi
�
p

A2�=Ts, the

average signal square at detection in DPSK is hIDPSKi2 ¼ �A4�2 ¼ P2
avT

2
s , whereas in DQPSK,

because of the aforementioned
ffiffiffi
2
p

reduction of the signal power, it is hIDQPSKi2 ¼ �A4�2=2 ¼
P2
avT

2
s =2. We have, therefore, QDPSK ¼ P2

avT
2
s =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�I2DPSKi

q
and QDQPSK ¼ P2

avT
2
s =2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�I2DQPSKi

q
,

where the variance of the nonlinear fluctuations is given by (23) and (24). Being, for a given pulse-

width, hIModi / Pav and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h�I2Modi

q
/ jJ j ;l j / A4 / P2

s , the nonlinear contribution to the Q is inversely

proportional to the transmitted average power Pav.
To illustrate these results, the Q factors for a system with the parameters listed in Table 1 [6] have

been plotted. Notice that the bit rate of the DQPSK system (two bit/symbol) is 80 Gbit/s, whereas
that of the DPSK (one bit/symbol) is 40 Gbit/s. A Matlab routine is used, and in particular, the Matlab
command Bquadv[ that performs integrals that depend on matrices, in our case, that containing Tj

and Tl , simultaneously and efficiently, and the property J j ;l ¼ �J �j ;�l ¼ J�j ;�l ¼ �J ��j ;l .
In the first example, assume dispersion compensation complete at each span. Being the

analysis based on linearization, and being the unperturbed evolution identical after each span, the
amplitude of the perturbation isN times the perturbation of a single span. Consequently, the variance
of the nonlinear noise is N2 times the variance of the noise of the single span and the Q factor
1=N times the Q factor of the single span. Fig. 1(a) shows the Q factor versus the zero
dispersion length of each span z�, in kilometers. The blue solid line refers to DPSK and the red
dashed line to DQPSK. The peaks in the Q factor correspond in DPSK to the value of z� where
the in-phase component of the perturbation is minimum and in DQPSK to the value of z� where
the correlation of the phase fluctuations induced by XPM is maximum. The two values of z�

coincide, although the maxima are generated by different mechanisms.
On the opposite side, there is the case in which dispersion compensation is applied only at the

input and output of the line. The results are reported in Fig. 1(b). Here, the solid blue line shows
the Q factor for DPSK versus the zero dispersion length z�, in kilometers, whereas the red
dashed line shows the Q factor for DQPSK. For DPSK, the peaks in the Q factor are again caused
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by local minima of the in-phase component of the perturbation. These are identical to the peaks of
the inverse of the normalized amplitude noise of OOK-IMDD under similar conditions [2]. The Q
factor of DQPSK shows, instead, a weaker dependence on precompensation Q ¼ 3:79 for z ¼ 0
and Q ¼ 4:14 for z�opt ¼ 295 km. This is because, when no in-line compensation is used, a large
number of pulses overlap along the fiber. Therefore, XPM is dominated by the contribution of distant
pulses producing, no matter the precompensation, almost equal phase fluctuations on the two,
consecutive, pulses interfering at the receiver. Being that the receiver is a differential one, it removes
the correlated component of the phase fluctuations, and the uncorrelated component left only weakly
depends on precompensation.

5. Conclusion
Based on first-order perturbation theory, it is shown that the phase distribution of the field and the
detection scheme strongly affect the strength of the nonlinear impairments. In DPSK, the impairments
are minimized by a dispersion profile that minimizes the in-phase component of the nonlinear
displacement, whereas in DQPSK, the impairments are minimized by a dispersion profile that
maximizes the correlation of the phase fluctuations on two consecutive pulses.
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