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Abstract: In this paper, photonic cavities made of point defects in 2-D photonic crystals are
modeled by finite-size transmission lines terminated at both ends by appropriate scalar
impedances. The proposed model forms a simple transmission line resonator and is
demonstrated to be quite beneficial in fast extraction of resonant frequency, quality factor,
and mode profile of such photonic cavities. In this manner, an approximate yet quite
accurate approach is introduced to characterize the electromagnetic properties of photonic
crystal cavities. This method is successfully applied to different structures for both major
polarizations and is shown to be as accurate as rigorous numerical methods, viz. the finite-
element method.

Index Terms: Photonic crystals.

1. Introduction
It is a well-known fact that introducing a point defect in a photonic crystal forms a microcavity with
resonance frequencies lying within the band gap of the photonic crystal [1], [2]. Miscellaneous
methods that have been thus far reported to analyze such defect modes can all be classified into
either of the following categories: 1) rigorous numerical methods or 2) semi-analytical approaches.
The former category includes well-known fully numerical methods, viz. the finite-difference time
domain (FDTD) [2] or the finite-element method (FEM) [3]. These numerical methods are quite
accurate but incur a heavy computational burden. The latter category includes those methods that
are usually based on the expansion of electromagnetic fields in terms of different basis functions,
e.g., plane waves in a supercell [4], [5], oscillating dipole moments [6], or Wannier functions [7].
Semi-analytical methods in the second category are, however, not always rigorous and sometimes
comprise approximate yet accurate enough methods like the one proposed in [8], where geometrical
optics is invoked to extract the resonance frequency of hollow cavities by using the fact that the
round-trip phase of optical rays within the cavity should be an integer multiple of 2�. This approach is
shown to be quite accurate but works only in those photonic crystal cavities that trap the
electromagnetic energy in a homogeneous region surrounded by periodic variation of the refractive
index, e.g., in point defects formed by removal of rods in conventional photonic crystals. Even in such
cavities, it is incapable of rendering either the quality factor or the mode profile.
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It is the intention of this work to present an approximate semi-analytical method to describe the
most important electromagnetic properties of photonic crystal cavities, i.e., the resonance
frequency together with the quality factor and mode profile, in an accurate and insightful manner.
To this end, the concept of impedance matching in a transmission line is employed to extend the
idea of in-phase adding up of optical rays in a round trip, and thus, the most general form of
photonic cavities made of arbitrary point defects in 2-D photonic crystals is successfully analyzed.
The concept of impedance matching has been already employed in design of photonic crystal
circuits [9]–[11] and in calculation of reflection coefficients from the photonic crystal interfaces [12],
[13] but has been never brought into play for modeling of point defects as photonic crystal
resonators. Here, the defect region is first replaced by a transmission line whose electromagnetic
characteristics correspond to those of the photonic crystal waveguide which is formed by making a
line defect out of the original point defect, i.e., by periodic repetition of the defect region along either
of the two axes of periodicity in the 2-D photonic crystal. This transmission line is then terminated at
both ends with an impedance whose normalized value is obtained by calculating the
electromagnetic reflection from the photonic crystal adjacent to the defect zone. In this fashion, a
very simple transmission-line resonator is formed, and the resonance frequency of the structure is
calculated by finding the frequency at which the ends of the line are matched. The quality factor of
the structure is estimated by using the half-power bandwidth of the impedance seen from the input
of the line. Finally, the mode profile is extracted by using the propagation constant of the
transmission line and the field profile of its corresponding photonic crystal waveguide. It is,
however, worth noticing that all our calculations are made by using scalar values and, thus, do not
consider higher orders of diffraction within the photonic crystal. This, however, is not a serious
detriment because the expected working frequencies are within the gap, and we have no pro-
pagating Floquet orders in the periodic region.

The organization of the paper is as follows: The details of the proposed method are presented in
Section 2, where the calculation of resonance frequency, quality factor, and mode profile are all
explained. Different numerical examples are provided in Section 3, and conclusions are made in
Section 4.

2. Proposed Transmission-Line Resonator Model
A typical photonic crystal cavity created by an arbitrary point defect in a finite-size photonic crystal is
shown in Fig. 1(a). The defect region is modeled by a transmission line whose characteristic
impedance, propagation constant, and length are denoted by ZC , �, and l , respectively.

The propagation constant of the transmission line is made equal to that of the photonic crystal
waveguide, which is shown in Fig. 1(b). This line-defect waveguide is created by the periodic
repetition of the defect region along either of the two axes of periodicity in the original structure [see
the abscissa in Fig. 1(b)]. It is worth noticing that there are only NLine rows of rods at the upper and
lower neighborhoods of the defect region, and thus, the photonic crystal waveguide is lossy and has
a complex propagation constant:

�ð!Þ ¼ �r ð!Þ � j�ið!Þ (1)

The imaginary part of the propagation constant �i has a contribution in decreasing the overall Q
factor of the cavity and is negligible only if NLine is large enough to insure total reflection. The
calculation of the propagation constant of the waveguide is a straightforward problem and could
be accomplished by a variety of rigorous methods [14]–[16]. It is worth noticing that extraction of
the sought-after propagation constant is also possible by using approximate methods based on
physical optics [17] or scalar impedance theory [18].

The characteristic impedance ZC is determined together with the load impedance ZL. It should be
noticed that the value of the characteristic impedance itself is not needed as long as the normalized
value of the load impedance ZL ¼ ZL=ZC is known. Fortunately, the sought-after normalized
impedance can be easily determined by calculating the reflection coefficient from the photonic
crystal shown in Fig. 1(c). This photonic crystal is composed of NLoad columns of rods and is
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assumed fully periodic along the other axis perpendicular to the line defect [see the ordinate in
Fig. 1(c)]. The normalized impedance is then written as

ZLð!Þ
ZC

¼ 1þ Rð!Þ
1� Rð!Þ (2)

where Rð!Þ stands for the reflection coefficient of an incident plane wave coming from free space
and having its normal component of wave-vector tuned at the propagation constant of the line-
defect mode �. The noninfinite nature of the photonic crystal thickness in Fig. 1(c) is one other factor
in decreasing the overall Q factor of the resonator. However, if NLoad is large enough to insure total
reflection, then the normalized impedance becomes pure imaginary, and there will be no resistive
term to decrease the Q factor. Here, a Fourier-based method is followed to extract the sought-after
reflection coefficient [19].

It should be noticed that even though estimation of the normalized impedance by using the
reflection coefficient of uniform plane waves being incident from free space sounds dubious, tuning
the normal component of its wave-vector is proved to be corrective, and the obtained results are
almost always satisfactory. This could be explained by the fact that the zeroth-order space
harmonic of the nonuniform incident wave coming from the line-defect region is the decisive factor
in the determination of the overall reflection coefficient, particularly when the frequency of the wave
lies within the band gap of the photonic crystal [20].

Having the propagation constant of the transmission line in the proposed model and the
normalized impedance of the load, it is now straightforward to extract the resonance frequency and
quality factor of the cavity.

Fig. 1. Arbitrary point defect in a 2-D photonic crystal cavity and its corresponding transmission line
resonator. (a) General structure and its overall model. (b) Line-defect waveguide for extraction of the
transmission-line propagation constant. (c) Surrounding photonic crystal for extraction of the load
impedance to terminate the line.
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2.1. Extraction of Resonance Frequency and Quality Factor
The proposed transmission-line resonator model is schematically shown in Fig. 2. The nor-

malized input impedance seen from the left terminal of the transmission line can be easily written
as [21]

Zinð!Þ ¼
ZLð!Þ þ tan �ð!Þlð Þ
1þ ZLð!Þtan �ð!Þlð Þ

(3)

where � and ZL are already determined, and l is the length of the transmission line. It is by making
the imaginary part of the normalized input impedance, i.e., ImfZinð!0Þg, equal to the imaginary part
of the complex conjugate of the normalized load impedance, i.e., ImfZin

�ð!0Þg, that the resonance
frequency !0 can be extracted.

The dispersion equation governing the eligible resonance frequencies can then be written as

Im Zinð!0Þ
� �

¼ �Im ZLð!0Þ
� �

: (4)

It is worth noticing that the aforementioned equation can have more than one root each corre-
sponding to a specific cavity mode.

The quality factor corresponding to a specific resonance frequency !0 can then be easily found
by calculation of the half-power bandwidth BW of the total impedance, i.e., Zinð!Þ þ ZLð!Þ, in the
transmission line resonator shown in Fig. 2. Once the absolute value of the total impedance is
plotted and the half-power bandwidth is extracted, the quality factor can be written as

Q ¼ f0
BW

: (5)

As already mentioned, there are two different factors at work in lowering the quality factor: First, we
have the imaginary part of propagation constant �i . This factor accounts for the leakage due to the
presence of only a limited number of rows NLine. Second, we have the resistive nature of the load
impedance, which is due to the presence of only a limited number of columns NLoad .

2.2. Calculation of Mode Profile
Regarding the fact that the defect region in the photonic crystal is modeled by a finite-size

transmission line, the field profile within the cavity can be written as the superposition of forward and
backward modes supported by the line-defect waveguide in Fig. 1(b). Therefore, the wave function
within the defect region reads as

 ¼  0 �ðx ; yÞe�j�x þ R�ð�x ; yÞej�x� �
(6)

where  0 is an arbitrary constant, R is the reflection coefficient in (2), �ðx ; yÞ is the periodic function
corresponding to the mode profile of the defect-line waveguide, � is the propagation constant, and
finally,  is either Ez or Hz for E and H polarized waves, respectively. Whenever there is an even

Fig. 2. Transmission-line resonator model for calculation of the resonance frequency and quality factor.
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symmetry in the permittivity of the structure, however, the field profile will be symmetric too [22], and
the mode profile can be written as

 ¼  0�ðx ; yÞe�j�xf1� Re j2�xg: (7)

This expression yields the mode profile in terms of the field profile in the line-defect waveguide of
Fig. 1(b), its propagation constant, and the reflection coefficient in (2). For the number of nodes in
the abscissa and ordinate directions, it is quite instructional to have the cavity mode number, and it
is found by inspection of the mode profile in (6). It is worth noticing that even though the total
number of vertical nodes are determined only by looking at �ðx ; yÞ, the total number of horizontal
nodes depend on both �ðx ; yÞ and R.

3. Examples and Discussion
Various numerical examples are discussed in this section. First, a square lattice of dielectric rods in
air is considered. Dielectric rods have the relative permittivity of 8.9 and radius of 0.2 times the
lattice constant. In accordance with Fig. 3, the point-defect cavity is formed by removing an array of
nx � ny rods in a photonic crystal with NLine ¼ 3 and NLoad ¼ 4.

The E-polarized resonance frequency of the ij th mode supported by this structure is denoted by fij
and is tabulated in Table 1, where the resonance frequencies are normalized to the ratio of light
velocity to lattice constant and are given for different values of nx and ny . They are obtained by
following the rigorous FEM and the proposed method. An excellent agreement is observed between
the two, and the encountered error is always smaller than 0.2% of the band gap width.

It should be noticed that the fij for the cavity carved by removing an array of nx � ny rods and the fji
for the cavity carved by removing an array of ny � nx rods are expected to be equal. Nevertheless,
the obtained result for the latter case is not necessarily equal to the obtained result for the former
case because the line defect used for the transmission line is, in one case, constructed along the

Fig. 3. Structure of the first example.

TABLE 1

Resonant frequencies of different point-defect cavities in the first example.
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ordinate and the other along the abscissa. This table, however, proves that in the presented
example, it does not matter which axis is to be employed for construction of the transmission line.

It should be also noticed that sometimes, the existence of higher order modes are not solely due
to the existence of more than one root for (4); rather, the line-defect waveguide could have several
modes, each yielding a transmission line supporting one or several resonance frequencies.

As the second example, the quality factor for the 1 � 1 cavity carved in the same photonic crystal
is calculated for different values of NLine and NLoad . The results obtained by using the proposed
method and the FDTD are plotted in Fig. 4 versus NLine � NLoad .

This figure demonstrates that our calculated value for the quality factor is always an overesti-
mation. This fact can be attributed to our assuming perfect periodicity for the photonic crystal in
Fig. 1(c), when the normalized load impedance was to be calculated. This assumption neglects the
vertical leakage of energy in the photonic crystal region outside of the cavity and, consequently,
underestimates the loss.

As the third example, the original square lattice photonic crystal with NLine ¼ 3 and NLoad ¼ 4 is
considered, but the cavity is formed by replacing the array of nx � ny original dielectric rods with
new ones having normalized radius of 0.34. Interestingly, the corresponding waveguide supports
two modes: one with even symmetry and a negative group velocity and the other with odd symmetry
with a positive group velocity.

Once again, the E-polarized resonance frequency of the ij th mode is calculated for different
values of nx � ny . The results are summarized in Table 2, where one of the columns is devoted to
the results obtained by using the even-symmetric mode of the line defect and the other devoted to
the results obtained by using the odd-symmetric mode of the line defect.

Perusal of the data in this table indicates that the proposed method in this example has become
more erroneous when the accuracy of its results is compared against that of the previous example.
Nevertheless, the accuracy in determination of resonance frequencies never exceeds the 3% of
photonic band gap width. The reduction of accuracy in this example can be explained by pointing
out that the introduction of larger rods as point defects has enhanced the spatial harmonic contents
of the field profile and, thus, has deteriorated the accuracy of relying only on the fundamental Bloch
order for extraction of electromagnetic properties.

Furthermore, the degeneracy of the resonance frequencies f01 ¼ f10 ¼ 0:3705 in the 1� 1 cavity is
destroyed. These two degenerate modes are estimated with f01 ¼ 0:3749 and f10 ¼ 0:3680.

All three cavities in this example are modeled with the same transmission line and the same
termination load. It is the length of the transmission line that is different in every one of those
cavities. The rigorous steps, viz. determination of transmission line characteristics and the scalar
impedances, are not necessarily to be repeated in different configurations.

Fig. 4. Quality factor of point-defect cavities versus NLine � NLoad .
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To demonstrate the feasibility of (7) in obtaining the mode profile within the defect region, six
different modes supported by the 3 � 1 cavity in this example, i.e., TE01, TE11, TE21, TE10, TE30 and
TE50, are considered, and their mode profiles are plotted in Fig. 5. The defect region is specified by
dashed lines in this figure. The even and odd symmetry of these mode profiles are quite obvious.
These mode profiles are, by the way, validated by using the FEM in Fig. 6. The similarity between
the proposed approach and the FEM is quite obvious.

As the final example, a triangular lattice composed of dielectric rods in air is considered. The
relative permittivity of rods is 11.4, and their radius is 0.35 times the lattice constant. By following

Fig. 5. Mode profile of six different modes from the proposed method. (a) TE10, TE30, and TE50 from top
to bottom. (b) TE01, TE11, and TE21 from top to bottom.

TABLE 2

Resonant frequencies of different point-defect cavities in the third example.
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the same line, the resonance frequencies, this time for H polarized modes, are tabulated in Table 3.
Once again, a very good agreement is observed.

4. Conclusion
A simple transmission-line resonator model for extraction of resonant frequency, quality factor, and
mode profile of 2-D photonic crystal cavities has been introduced. It was shown to be applicable for
both major polarizations. The presented results were justified by using either the FDTD or the FEM.
It was shown that the quality factor obtained by following the proposed method is always an
overestimation of the actual value. The presented method was also shown to be very accurate in
those cases where the defect region is formed by removal of rods in photonic crystals.

It should be noticed that even though the horizontal axis was chosen to build the line-defect
waveguide for forming the transmission line of the proposed model in Section 2, one can exchange

TABLE 3

Resonant frequencies of different point-defect cavities in the final example.

Fig. 6. Mode profile of six different modes from the FEM. (a) TE10, TE30, and TE50 from top to bottom.
(b) TE01, TE11, and TE21 from top to bottom.
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the horizontal and vertical coordinates in Fig. 1 and obtain a similar model with different parameters.
Interestingly, it was shown that both these models give virtually corresponding results. Further
investigation of these points shows that the discrepancy between the results of those models is not
conspicuous but is for those cases where NLoad and NLine are quite small.
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