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Abstract: We present a comprehensive framework to study the nonlinear evolution of
ultrabroadband optical pulses in quadratic nonlinear media. We employ a nonlinear
envelope equation that goes beyond the traditional slowly varying approximation and allows
treatment of all the harmonics by means of a single equation. We exploit this model to
simulate recently observed supercontinuum phenomena such as ultrabroadband parametric
downconversion and the generation of octave-spanning spectra from femtosecond pulses.

Index Terms: Supercontinuum generation, nonlinear crystals, second-harmonic generation.

1. Introduction
Spectral broadening and the generation of new frequency components are the characterizing
features of nonlinear optics and have been studied intensively since the early 1960s. There is a
family of processes known as supercontinuum generation [1] that occurs when narrow-band
incident pulses undergo extreme nonlinear spectral broadening to yield a broadband spectrally
continuous output. Supercontinuum generation was first reported in the 1970s and, since then, has
been the subject of numerous investigations in a wide variety of nonlinear media.

The overwhelming majority of studies on supercontinuum generation deal with third-order nonlinear
media, characterizedbyKerr andRamanprocesses. This fact ismainly due to the advent of a newclass
of optical waveguides: The photonic crystal fiber (PCF), in the late 1990s, attractedwidespread interest
throughout the scientific community and has led to a revolution in the generation of ultrabroadband
high brightness spectra through supercontinuum generation. This fact has also attracted theoretical
research efforts on the modeling of broadband phenomena that take place in cubic media. Different
models that allow the description of supercontinuum generation in cubic media were proposed in the
literature, the most well-known being the generalized nonlinear Schroedinger equation (GNLS) [2].

There are a few experimental works that report the observation of extremely broad spectrum
generation by exploiting second-order nonlinear materials such as Lithium Niobate (LN), Lithium
Tantalate (LT), and Potassium Dihydrogen Phosphate (KDP) or Potassium Titanium Oxide
Phosphate (KTP) [3]–[7]. In the framework of quadratically nonlinear media, a quasi-phase matching
technique can be used to engineer nonlinear structures [8]. This technique opens a whole range of
new possibilities and shows great promise for use in entangled photon (biphoton) generation [9], [10],
quantum optical coherence tomography [11], and Coherent Anti-Stoke Raman Spectroscopy
(CARS) [12]. Theoretical research efforts on the modeling of this kind of broadband phenomenon are
more limited.

From the theoretical side, the analysis of optical pulse propagation typically involves the definition
of a complex envelope whose variation is supposed to be Bslow[ with respect to the oscillation of a
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carrier frequency (slowly varying envelope approximation (SVEA) [2]). In the frequency domain, this
assumption is equivalent to requiring that the bandwidth of the envelope is narrow with respect to
the carrier frequency. Different works showed that it is possible to extend the validity of a proper
generalization of the envelope equation to pulse duration down to the single optical oscillation cycle
and to the generation of very broad spectra [13]–[23].

When second-order nonlinearities are considered, the usual approach is to write coupled equa-
tions for the separated frequency bands relevant for the process [20]. However, when ultrabroad-
band �ð2Þ phenomena take place, the fundamental frequency and harmonics bands merge,
generating a single broad spectrum, as observed in recent experiments [3]. Obviously, in these
cases, the coupled envelope description of the propagation fails due the frequency overlapping of
the distinct bands.

The scope of this article is to exploit a recently derived [24] single-wave envelope equation for the
description of ultrabroadband �ð2Þ interactions. This model, besides providing a powerful tool for
analytical treatment due to its simplicity, can be easily solved with a modest computational effort
and can be easily generalized by including other kinds of nonlinearities.

We recall the derivation of the master equation in Section 2, discussing the approximations and
the limit of validity of the model. In Section 3, we analyze some experimental results of broadband
generation in quadratic media, finding an excellent agreement between the measured data and the
numerics. Finally, we present our conclusions in Section 4.

2. Derivation of the Master Equation

2.1. Unidirectional Field Equation
Our derivation of the envelope equation, for that which concerns the linear dispersive terms, builds
upon the work of Brabec and Krausz [13], who carried a simple model that was shown (theoretically
and experimentally) to be accurate in most situations. Starting from Maxwell equations (written in
MKS units), neglecting transverse dimensions (i.e., considering the propagation of plane waves),
we can obtain the 1þ 1D wave equation for the electric field Eðz; tÞ

@2Eðz; tÞ
@z2 � 1

c2

@2

@t2

Zþ1
�1

Eðz; t 0Þ"ðt � t 0Þ dt 0 ¼ 1
"0c2

@2

@t2
PNLðz; tÞ: (1)

The choice of neglecting transverse spatial dimensions is not a loss of generality in our model,
because, in the physical set-ups we want to describe, they can be factored out and treated as a
different problem.

By defining the Fourier transform F½E �ð!Þ ¼ Êð!Þ ¼
Rþ1
�1 EðtÞe�i!t dt , we can write (1) in

frequency domain:

@2Êðz; !Þ
@z2 þ !

2

c2
"̂ð!ÞÊðz; !Þ ¼ � !2

"0c2 P̂NLðz; !Þ (2)

where c is the vacuum velocity of light, "0 is the vacuum dielectric permittivity, "̂ð!Þ ¼ 1þ �̂ð!Þ, �̂ð!Þ
is the linear electric susceptibility, and kð!Þ ¼ ð!=cÞ

ffiffiffiffiffiffiffiffiffi
"̂ð!Þ

p
is the propagation constant.

We now factor out the fast dependence of the propagation coordinate from the electric field for all
the frequencies: Êðz; !Þ ¼ Ûðz; !Þexp½�ikð!Þz�. This definition amounts to writing the electric field
as the product of a spatial carrier wave and a slowly varying envelope. Since we remove the exact
propagation constant at every frequency, we can avoid making a requirement on the bandwidth of
the pulses. Wave equation for the field Û reads

@2Ûðz; !Þ
@z2 � 2ikð!Þ @Ûðz; !Þ

@z
¼ � !2

"0c2 P̂NLðz; !Þeikð!Þz : (3)
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We make the slowly evolving wave approximation (SEWA), that is j@zÛ j � 2kð!ÞjÛ j, and thus,
we can write

@Ûðz; !Þ
@z

¼ �i !2

2"0c2kð!Þ P̂NLðz; !Þeikð!Þz (4)

and from the definition of Û , we obtain the equation for the electric field:

@Êðz; !Þ
@z

þ ikð!ÞÊðz; !Þ ¼ �i !

2"0cnð!Þ
P̂NLðz; !Þ: (5)

This equation has been found by a heuristic method and has been termed the Forward Maxwell
Equation (FME) [16]. Once the form of nonlinearity is specified, for example, a second-order
instantaneous nonlinear polarization P̂NLðz; !Þ ¼ "0�ð2ÞF ½Eðz; tÞ2�ð!Þ, we can directly solve (5) in
the frequency domain with a standard split-step Fourier method. When backward waves can be
neglected, this equation is equivalent to Maxwell equations [16], [22], but the numerical solution is
much more efficient. However, we can further simplify (5) by opportunely defining an envelope.

2.2. Definition of the Envelope
We consider the electric field E and the nonlinear polarization PNL as the product of a complex

envelope and a carrier wave

Eðz; tÞ ¼ 1
2
Aðz; tÞei!0t�i�0z þ c:c: (6)

PNLðz; tÞ ¼
1
2
Apðz; tÞei!0t�i�0z þ c:c: (7)

that, in the frequency domain, reads

Êðz; !Þ ¼ 1
2
Âðz; !� !0Þe�i�0z þ

1
2
Â�ðz;�!� !0Þei�0z

P̂NLðz; !Þ ¼
1
2
Âpðz; !� !0Þe�i�0z þ

1
2
Â�pðz;�!� !0Þei�0z

where !0 is a reference frequency, �0 ¼ Re½kð!0Þ�, and kð!Þ ¼ ð!=cÞ
ffiffiffiffiffiffiffiffiffi
"̂ð!Þ

p
is the propagation

constant.
Particular care must be devoted to the definition of the complex envelope, since we do not want to

put any limitations on the frequency extent of the signals. This aspect is commonly overlooked in the
literature, and it is taken for granted that the band of the envelope is Bnarrow[ in some sense.We shall
see later that for quadratically nonlinear media, a proper definition of the envelope is crucial. As usual,
in the theory of modulation [25], we define the analytic representation of the electric field

~Eðz; tÞ ¼ Eðz; tÞ þ iH½E �ðz; tÞ (8)

where

H½E �ðz; tÞ ¼ 1
�
p:v :

Zþ1
�1

Eðz; t 0Þ
t � t 0

dt 0 (9)

is the Hilbert transform of the electric field (p.v. indicates the Cauchy principal value of the integral).
The Fourier transform of the analytic signal reads

~̂Eðz; !Þ ¼
2Êðz; !Þ; if ! > 0
Êðz; 0Þ; if ! ¼ 0
0; if ! G 0

8<
: (10)
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that is a signal that contains only the positive frequency content of the electric field. Due to the reality of
Eðz; tÞ, its Fourier transform has Hermitian symmetry so that only the positive (or the negative)
frequencies carry information, and we can write

Êðz; !Þ ¼ 1
2

~̂Eðz; !Þ þ 1
2

~̂E
�
ðz;�!Þ (11)

and eventually, we can define the complex electric field envelope as

Aðz; tÞ ¼ ~Eðz; tÞe�i!0tþi�0z (12)

i.e., the inverse Fourier transform of the positive frequency content of E shifted toward the low
frequency part of the spectrum by an amount !0. It is worth noting that no approximations on the
frequency extent of the envelope has been done; therefore, suppfÂðz; !Þg ¼ ð�!0;þ1Þ.

2.3. Nonlinear Envelope Equation
The substitution of expressions of Êðz; !Þ and P̂NLðz; !Þ in (5) and the Taylor-expansion of kð!Þ

about !0 yields

@Âðz;�Þ
@z

þ i
X1
m¼1

km
m!

�m

" #
Âðz;�Þ ¼ �i !

2nð!Þc"0
Âpðz;�Þ (13)

where � ¼ !� !0, and km ¼ ð@mk=@!mÞð!0Þ.
In order to obtain a time domain equation, we have to perform another approximation, i.e., on

the right-hand side of (13), we have to impose nð!Þ nearly constant in the band of interest. Since
we want to take into account ultrabroad spectra, we require the validity on band whose order of
magnitude is the same of the carrier frequency, that is ð@nð!Þ=@!Þj!0

!0 � nð!0Þ (this is equivalent
to the requirement jð�0 � !0k1Þ=�0j � 1 used in [13]). Far from resonances, this requirement is
fulfilled in the majority of parametric processes in which all waves propagate in the same
direction.

By inverse Fourier transform, we obtain from (13)

@Aðz; tÞ
@z

þ iD0Aðz; tÞ ¼ �i !0

2n0c"0
1� i

!0

@

@t

� �
Apðz; tÞ (14)

where we have defined the dispersive operator D0 ¼
P1

m¼1ð1=m!Þkmð�ið@=@tÞÞm. As a last step, we
rewrite (14) in a reference frame moving at the group velocity at reference frequency by the change
of variables z 0 ¼ z and � ¼ t � k1z, thus obtaining

@Aðz 0; �Þ
@z 0

þ iDAðz 0; �Þ ¼ �i !0

2n0c"0
1� i

!0

@

@�

� �
Apðz 0; �Þ (15)

where D ¼
P1

m¼2ð1=m!Þkmð�ið@=@�ÞÞm.
We note that the derivation outlined here makes less-stringent assumptions than the original

derivation proposed by Brabec and Krausz. In fact, we performed the slowly evolving
approximation directly on the wave equation for the field E and not for the envelope A. In this
way, the choice of the reference frequency !0 and the change of reference frame is done only for
convenience and is not essential to obtain the equation. In contrast, they are key points in the
classical derivation of the NEE [13], as reviewed also in [2]. The differences between the two
procedures can be ascribed to the fact that the derivation of Brabec and Krausz is essentially
performed in time domain, and it is equivalent in our case to making the definition of the Bpre-
envelope[ Êðz; !Þ ¼ Ûðz; !Þexp½�ikð!Þz� � Ûðz; !Þexp½�iðk0 þ k1ð!� !0ÞÞz�.
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2.4. Nonlinear �ð2Þ Polarization
We now consider an instantaneous second-order �ð2Þ nonlinearity, giving rise to the following

nonlinear polarization:

PNLðz; tÞ ¼ "0�ð2ÞEðz; tÞ2

¼ "0�ð2ÞRe Aðz; tÞei!0t�i�0z
� �2

¼ "0�
ð2Þ

4
A2e2i!0t�2i�0z þ A�2e�2i!0tþ2i�0z þ 2jAj2
h i

: (16)

It is worth noting that, due to the definition of A, the first (second) term in the square brackets
contains only positive (negative) frequencies, whereas the third has both. It is now apparent that it is
impossible to separate the nonlinear polarization in two distinct and Bnarrow[ bands for the positive
and negative frequencies, which is common in cubic media. Moreover, neglecting of the third term
leads to totally wrong results (this term is responsible for difference frequency generation). By going
through steps (8)–(12), we can instead correctly define the nonlinear polarization envelope

Apðz; tÞ ¼ ~PNLðz; tÞe�i!0tþi�0z ¼ "0�
ð2Þ

2
A2ei!0t�i�0z þ jAj2 þ iH jAj2

h i� �
e�i!0tþi�0z

h i
: (17)

Before inserting (17) into (15), the term jAj2 in (16) and (17) deserves further comment since it is
centered around zero in frequency domain. In particular, to obtain the nonlinear polarization
envelope in (17), we had to filter out the negative frequency components of P̂NLð!Þ, as was done for
Êð!Þ. We note, however, that (i) Âðz; !� !0Þ does not contain negative frequency by definition,
(ii) PNL is a small perturbation to linear polarization, and (iii) negative frequencies cannot be
phase-matched. It follows that the task of filtering the negative frequency components of jAj2 can be
left to the propagation equation instead of having it explicitly in the definition of Apðz; tÞ. In other
words, when inserting (17) into (15), we can write jAj2 þ iH½jAj2� � 2jAj2. We have checked
numerically the good accuracy of this approximation. Even if this approximation in not necessary in
the numerical solution (it is straightforward to calculate the exact nonlinear polarization envelope in
frequency domain), it is suitable to obtain a simple and manageable model for further analytical
investigations.

The NEE for A ¼ Aðz 0; �Þ becomes

@A
@z 0
þ iDA ¼ �i �

ð2Þ!2
0

4�0c2 1� i
!0

@

@�

� �
A2ei!0��ið�0�k1!0Þz 0 þ 2jAj2e�i!0�þið�0�k1!0Þz 0
h i

(18)

or, performing derivatives

@A
@z 0
þ iDA ¼ �i �

ð2Þ!2
0

4�0c2 2A2 � 2i
!0

A
@A
@�

� �
ei!0��ið�0�k1!0Þz 0 � 4i

!0
Re A�

@A
@�

	 

e�i!0�þið�0�k1!0Þz 0

	 

: (19)

These first-order nonlinear envelope equations in the propagation coordinate provide a powerful
means of describing light pulse propagation in dispersive quadratically nonlinear media.

Starting from (18), it is straightforward to show that our equation conserves the total energy of
the field, i.e., ðd=dz 0Þ

Rþ1
�1 jAðz 0; �Þj

2 d� ¼ 0. It can also be shown that the total energy is
conserved even if the nonapproximated nonlinear polarization envelope Ap [see (17)] is used (see
the Appendix).

3. Numerical Results
The forward Maxwell equation (5) and nonlinear envelope equation (18) can be solved easily by the
split-step Fourier method exploiting the fourth-order Runge–Kutta scheme for the nonlinear step. In
this Section, we show a few examples of full numerical modeling of the experimentally measured
broadband output spectra.
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3.1. Broadband Parametric Generation
As a first example, we consider the collinear broadband optical parametric generation (OPG)

using periodically poled crystals [4], [5]. In this process, an intense narrow-band laser beam
called the pump is down-converted to two lower frequency beams, called the signal and the
idler, satisfying !p ¼ !s þ !i and having wave vector mismatch �k ¼ kp � ks � ki . Thanks to the
periodic poling, the residual mismatch �k ¼ �k � 2�=� can be eliminated at some frequencies.
Broadband OPG is accomplished by choosing a specific combination of poling period and pump
wavelength that allows the group velocity of the signal and the idler to closely match at the
degeneracy point.

We considered an LN sample, and to model the refractive index dispersion, we employed a
Sellmeier model fitted from experimental data [26]. In this case, the optimal poling period and pump
wavelength combination was found to be � ¼ 27 �m and �p ¼ 933 nm [4]. Fig. 1(a) shows the
pump wavelength and the mismatch curve �k ¼ 0 as functions of �i ;s for a fixed poling period
� ¼ 27 �m and a temperature T ¼ 24 �C. It can be seen that the mismatch curve and the
�p ¼ 933 nm curve are practically superimposed in a wavelength range 1500 nm–3000 nm. This
superposition suggests that in this range, the parametric gain will be high, as confirmed by Fig. 1(b).

We simulated the propagation of a T ¼ 1 ps FWHM long Gaussian pulse, centered around
933 nm, with I ¼ 2 GW/cm2 peak intensity. In the simulation, we set the reference wavelength
�0 ¼ 700 nm in order to minimize the width of the numerical temporal window. We assumed a
nonlinear coefficient d33 ¼ �ð2ÞLN=2 ¼ 27 pm/V and modeled the square-wave QPM grating as a
sum of spatial harmonics up to the fifth order. In the numerical code, we inserted the exact
dispersion relation kð!Þ as obtained from the Sellmeier relation.

Fig. 1(c) shows the evolution of the power spectrum obtained from numerical solution of (18). The
input narrow-band pump, due to the presence of noise, is down-converted to the phase-matched
signal and idler that are located in the 1500 nm–3500 nm region. This region is slightly larger than
the one predicted by small gain approximation, since the high intensity leads to a parametric gain
broadening [27]. After the down-converted continuum is generated, say after z ¼ 4 mm, it interacts
with the pump through cascading processes that leads to a spectral broadening of the depleted
pump. Moreover, an intense peak in the visible range at �3 ¼ 575 nm appears, due to the sum
frequency generation of the pump and the generated component at � ¼ 1500 nm, matched through
the third spatial harmonic of the grating. These numerical results compare well with experiments
reported in [4].

It is worth noting that such a broad spectrum can by no means be studied with standard coupled-
wave models. In fact, the spectral extent of the signal and idler signals is more than an octave, and
they overlap in the spectral domain.

3.2. Parametric Generation in Chirped Structure
In the previous example, we showed that the frequency range of the generated broadband

continuum is fixed by the dispersive properties of the material. A way to engineer the parametric

Fig. 1. (a) Level curves of pump wavelength and of mismatch �k ¼ 0 in the �i � �s plane. (b) OPG gain
bandwidth in the limit of small gain [2] for a 10-mm-long PPLN. QPM period � ¼ 27 �m and temperature
T ¼ 24 �C. (c) Evolution of the power spectrum (in decibels) from the numerical solution of (18) and
power spectrum profile at the crystal output. The initial pulse has Gaussian shape, and the parameters
are T ¼ 1 ps, I ¼ 2 GW/cm2, �p ¼ 933 nm, �0 ¼ 2�c=!0 ¼ 700 nm, and d33¼�ð2ÞLN=2 ¼ 27 pm/V.

IEEE Photonics Journal Ultrabroadband Optical Phenomena

Vol. 2, No. 4, August 2010 Page 605



generation is achieved by chirping the QPM grating. In this way, different processes can be
matched in different points of the crystal. Chirped crystals have been exploited to implement
broadband incoherent light sources for optical coherence tomography [28] or to generate
entangled photons (biphotons) needed for nonclassical applications [9], [10]. We take the spatial
frequency of the QPM crystal to be K ðzÞ ¼ K0 � 	z, where K0 is chosen to phase-match a
selected frequency at the beginning of the crystal, and 	 is chosen to phase match a selected
frequency at its output end. Being that K ðzÞ is the instantaneous spatial frequency of the grating,
the grating can be expanded as GðzÞ ¼

P
amexp½im

R z
0 K ðsÞds� with being am ¼ ð2=�Þsinðmð�=2ÞÞ

the Fourier coefficient of a square wave. The power spectral density of the downconverted light
(signal or idler) is governed by the phase-matching condition in the nonlinear structure that, in the
low conversion limit, is given by

Sð!sÞ /
ZL
0

GðzÞexp �i�kð!sÞz½ �dz

������
������
2

: (20)

We considered a periodically poled stochiometric Lithium Tantalate sample (PPSLT) that is L ¼ 2 cm
long, with initial local period T0 ¼ 2�=K0 ¼ 7:5 �m and chirp parameter 	 ¼ 6:24 � 106 m�1, that
corresponds to a final local period TL ¼ 8:128 �m. This crystal has been exploited to implement a
broadband light source for optical coherence tomography [28]. From (20), by modeling the refractive
index dispersion with a Sellmeier equation [29] and assuming a temperature T ¼ 80 �C, we find
that the band of parametric ranges from 800 to 1600 nanometers [see Fig. 2(a)]. By looking at the
local first-order quasi phase matching curves in Fig. 2(b), we see that in the first part of the crystal,
the parametric process is not phase matched. At around z ¼ 7 mm; the grating matches the
process !p ! !p=2þ !p=2 and by increasing the propagation distance, the down converted photon
pairs (signal and idler) are generated almost symmetrically around half the pump frequency, their
separation increasing with propagation distance.

We simulated the propagation of a T ¼ 5 ps FWHM long Gaussian pulse, centered around
532 nm, with I ¼ 5 GW/cm2 peak intensity. In the simulation, we set the reference wavelength
�0 ¼ 700 nm. We assumed a nonlinear coefficient d33 ¼ �ð2ÞLT =2 ¼ 14 pm/V and modeled the
square-wave QPM grating as a sum of spatial harmonics up to the fifth order. In the numerical
code, we inserted the exact dispersion relation kð!Þ as obtained from Sellmeier relation; results
of the simulation are shown in Fig. 2(c).

As expected from the analysis performed above, in the first 5 mm of propagation, nothing
happens, since the spontaneous parametric down conversion process is not phase matched.
Around z ¼ 7 mm, some energy is transferred from the pump to the idler/signal at half the pump
frequency. During the propagation, a uniform broadening of the down converted light takes place
to the output face of the crystal, where a uniform plateau of spectral intensity ranges from 800 to

Fig. 2. (a) OPG gain bandwidth in the limit of small gain for a 20-mm-long PPSLT for the chirped QPM
grating; temperature T ¼ 80 �C. (b) Local phase-matching curves as a function of propagation distance.
(c) Evolution of the power spectrum (in decibels) from numerical solution of (18) and power spectrum
profile at the crystal output. The initial pulse has Gaussian shape, and the parameters are T ¼ 5 ps,
I ¼ 5 GW/cm2, �in ¼ 532 nm, �0 ¼ 2�c=!0 ¼ 700 nm, and d33¼�ð2ÞLT =2 ¼ 14 pm/V.
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1600 nm. In this case, the conversion efficiency is lower than in the previous case, because the
different frequency bands are phase matched only in portions of the crystal, rather than for the
entire length, as before. The fact that the first part of the grating matches no any process
suggests that a smarter design of the chirped grating would allow an increment of the conversion
efficiency.

3.3. Spectral Broadening and Harmonic Generation of Femtosecond Pulses
As a last example, we consider the propagation of a femtosecond pulse into a highly

mismatched periodically poled LN (PPLN) sample that was demonstrated experimentally to
generate an octave spanning supercontinuum spectral broadening [3]. We assumed a QPM
grating with a period � ¼ 30 �m (phase matched for second harmonic generation at around 2 �m
fundamental wavelength). As before, we included higher order QPM terms, since the huge
bandwidth can phase match different spatial harmonics. We injected a T ¼ 50 fs FWHM long
Gaussian pulse, centered around 1580 nm, with I ¼ 11 GW/cm2 peak intensity. In the simulation,
we set the reference wavelength �0 ¼ 700 nm. Fig. 3(a) shows the evolution of the spectrum
during the propagation into a L ¼ 7 mm crystal. We can see a consistent broadening and redshift
of the FF part of the spectrum that, at the end of the crystal, reaches an octave-spanning
bandwidth from 1200 nm to 3000 nm. We can also see the generation of spectral component at the
second and third harmonics. At the second harmonic, the spectrum initially broadens and has an
evolution ruled by highly mismatched SHG. When the FF broadening reaches the first-order quasi
phase matching wavelength at around 2 �m, the more-efficient conversion process generates a
spike at around 1 �m.

At the crystal output, we can see a broadband second and third harmonic of the broadened laser
spectrum, as well as the presence of some spikes given by the quasi phase matching of high order
spatial harmonics of the grating. We verified [see Fig. 3(b)] that the two spikes at the third harmonic
correspond to the third-order QPM SHG (614 nm) and to the direct third-harmonic generation
(526 nm) [30]. We can also see a spectral overlap between the harmonics of the broadened laser
spectrum that can be exploited to achieve carrier-envelope-offset phase slip stabilization [3] that is
of paramount importance for frequency metrology applications.

The infrared part of the spectrum exhibits more than an octave spanning between 1300 nm and
3000 nm at the �40-dB spectral power lower with respect to the peak power level. The spectral
components near the zero GVM wavelength around 3000 nm are generated more efficiently. This is
due to a first-order phase-matched parametric process between a pump at � ¼ 1070 nm that is
down converted to � ¼ 1650 nm and � ¼ 3017 nm. All the features described above compare
surprisingly well with the experimental results of Langrock et al. [3].

Fig. 3. (a) Evolution of the power spectrum (in decibels) from numerical solution of (18) and power
spectrum profile at the crystal output. The initial pulse has Gaussian shape, and the parameters are
T ¼ 50 fs, I ¼ 11 GW/cm2, �in ¼ 1580 nm, �0 ¼ 2�c=!0 ¼ 700 nm, and d33¼�ð2ÞLN=2 ¼ 27 pm/V.
(b) Phase-matching curves for the second harmonic generation (I and III order) and direct third harmonic
generation (III order).
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4. Conclusion
In conclusion, we presented a comprehensive framework to study the nonlinear evolution of ultra-
broadband optical pulses in quadratic nonlinear media. We employed a nonlinear envelope equation
that allows to treat all the harmonics by means of a single equation. We exploited this model to
simulate recently observed supercontinuum phenomena such as ultrabroadband parametric down-
conversion and the generation of octave-spanning spectra from femtosecond pulses.

Appendix
Conserved Quantities

Field Intensity
First, we show that (5) has the following conserved quantity, proportional to the total intensity of
the field:

IE ¼
Z

Êð!; zÞ
�� ��2nð!Þ d! (21)

where the integration is intended from �1 to þ1, and nð!Þ is assumed to be real (lossless
medium). We prove this property for a quadratic instantaneous nonlinear polarization
P̂NLðz; !Þ ¼ "0�ð2ÞF ½Eðz; tÞ2�ð!Þ ¼ "0�ð2Þ½Ê ? Ê �ð!Þ (symbol ? denotes convolution), but the proof
can be easily extended to any order of instantaneous nonlinearity. We have

dIE
dz
¼
Z

nð!Þ @Ê
@z

Ê
� þ @Ê

�

@z
Ê

" #
d!

¼ � i
�ð2Þ

2c

ZZ
!Êð!0ÞÊð!� !0ÞÊ �ð!Þ d!d!0 �

ZZ
!Ê
�ð!0ÞÊ�ð!� !0ÞÊð!Þ d!d!0

	 


¼ � i
�ð2Þ

2c
½J1 � J2�:

By exploiting the Hermiticity of Ê and by the change of variables ð!! �!;!0 ! �!0Þ in the integral
J1, we obtain J1 ¼ �J2 so that

dIE
dz
¼ � 2i

�ð2Þ

2c

ZZ
!Êð!0ÞÊð!� !0ÞÊ�ð!Þ d!d!0

¼ �ð2Þ

c

Z
i!Êð!Þ
h i� Z

Êð!0ÞÊð!� !0Þ d!0
	 


d!

¼ �ð2Þ

c

Z
i!Êð!Þ
h i�

½Ê ? Ê �ð!Þ d!:

By exploiting Parseval’s theorem (i.e., conservation of scalar product), we can write the integral in
the time domain, and considering that the field must vanish at infinity, we have

dIE
dz
¼ �

ð2Þ

c

Z
@EðtÞ
@t

EðtÞ2 dt ¼ �
ð2Þ

3c
EðtÞ3

����
þ1

�1
¼ 0:

Envelope Intensity
Now, we consider NEE (14) with the exact nonlinear second-order polarization (17) (the change of

reference frame travelling at the group velocity obviously does not affect the energy conservation)

@A
@z
þ iD0A ¼ �i
 1� i

!0

@

@t

� �
A2ei� þ jAj2 þ i

�t
? jAj2

� �
e�i�

	 

(22)

IEEE Photonics Journal Ultrabroadband Optical Phenomena

Vol. 2, No. 4, August 2010 Page 608



where 
 ¼ ð!0�
ð2ÞÞ=ð4n0cÞ, � ¼ !0t � �0z. In this case, since, in its derivation, we assumed

nð!Þ � nð!0Þ in front of the nonlinear term, the conserved quantity reduces to

IA ¼
Z

Âð!; zÞ
�� ��2d! ¼ Z Aðt ; zÞj j2 dt : (23)

We have

dIA
dz
¼ 


Z
�i jAj2Aei� � i jAj2A�e�i� þ A�

1
�t
? jAj2e�i�

�

� 1
!0

A�
@

@t
A2ei� þ jAj2e�i� þ i

�t
? jAj2e�i�

	 

dt þ c:c:

After two integration by parts and some algebra, we obtain

dIA
dz
¼ 


!0

Z
A
@jAj2

@t
þ iA

@

@t
1
�t
? jAj2

	 
( )
ei� dt þ c:c: ¼ 


!0

Z
Aei� @jAj2

@t
� i
�t
?
@jAj2

@t

" #�
dt þ c:c:

Again, we exploit the Parseval theorem and rewrite the scalar product in the frequency domain:

dIA
dz
¼ 


!0

Z
Âð!� !0Þe�i�0z F

@jAj2

@t

" #
ð!Þ2Hð�!Þ

 !�
d!þ c:c:

where Hð!Þ is Heaviside step function. This last integral vanishes because it is the product of two
functions with non-overlapping supports. In fact, suppfÂð!� !0Þg ¼ ð0;þ1Þ by definition of the
envelope, and suppfHð�!Þg ¼ ð�1; 0Þ.

It is possible to demonstrate that (18) also conserves the quantity IA. In this case, the proof can be
performed straightforwardly in the time domain by successive integration by parts.
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