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Abstract: Traveling-wave semiconductor cascade lasers (TWSCLs) are a form of series
cascade laser (SCL) in which series-connected laser diodes are interconnected with
commensurate transmission lines to create a periodically loaded structure. The inclusion of
transmission line segments allows broadband impedance matching in addition to preserving
the link gain improvements of conventional SCLs. This paper describes the small-signal
analysis of TWSCLs using both transmission line theory and Bloch waves. The latter
technique is then applied to a study of how transmission line and laser diode parameters
affect both the return loss and gain–bandwidth product of TWSCLs.

Index Terms: Semiconductor laser arrays, traveling wave devices, optical modulation.

1. Introduction
Analog fiber-optic links for the transmission of microwave signals in the optical domain offer
potentially huge bandwidths and low loss compared with traditional microwave transmission media
such as coaxial cable [1]–[5]. However, in order to make a meaningful comparison between optical
fiber and microwave transmission media, one must also account for the electro-optic (E/O) and
optoelectronic conversion (O/E) processes at either end of an analog fiber-optic link. The overall
microwave fiber-optic link loss can be several decibels, due primarily to poor E/O and O/E conversion
efficiency. Inclusion of active optoelectronic devices also leads to noise and nonlinearity. Thus, a link
will be specified not only in terms of small-signal parameters such as return loss and link gain but
noise figure and spur-free dynamic range as well. Techniques to improve one or more of these
parameters revolve around choices of modulation technique, link architecture, or device type [6].

In terms of modulation format, coherent techniques offer improved receiver sensitivity (and hence
link length) but require complex photoreceivers [7]. Although monolithic integration may offer a
future path to low-cost coherent microwave fiber-optic links [8], intensity modulation/direct detection
(IM/DD) schemes predominate for now. External modulators offer superior bandwidths and chirp-
free operation for IM/DD links. However, directly modulated laser diodes (LDs) are a cheaper
alternative to external modulation, and this consideration can be important in applications such as
distributed antenna systems. Moreover, the use of optical injection locking has resulted in
modulation bandwidth enhancement up to 80 GHz for vertical cavity surface emitting lasers [9].
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Unlike external modulation, for which an increase in continuous wave optical power will improve
link gain, in a directly modulated link the LD slope efficiency constrains the E/O contribution to link
gain. Specifically, the differential quantum efficiency (DQE) cannot exceed 100%. However, if
several LDs are cascaded in series and their outputs combined coherently into a single optical
waveguide or fiber, then a DQE in excess of unity is possible [10]–[25]. The term Bsemiconductor
cascade laser[ (SCL) has been coined for such structures [17], and cascades using discrete
devices [16] and monolithic implementations have been reported [14]. The SCL makes it possible to
have microwave fiber-optic links with intrinsic gain without any consideration to impedance
matching or use of amplification. In principle, for a series cascade of N LD segments feeding into a
single waveguide, the SCL’s contribution to microwave link gain scales by N2 [26]. In practice,
this scaling will be limited by a number of factors. The impedance of an SCL will increase as N
increases; in the case of the segmented lasers in [21], it scales quadratically, thus placing an
upper limit on the DQE should a 50-� match be desired (which at microwave frequencies, it is, in
order to eliminate mismatch reflections). Impedance scaling can also adversely affect the SCL
bandwidth, especially in cascades using discrete LDs, for which increased parasitic roll-off is
observed [16].

Much of the work in SCLs is based on lumped models [26]. Given that the length of some
monolithic SCLs tends to be larger than that of single laser chips, it might be anticipated that
distributed microwave effects will arise. Even in single LDs, it has been shown that distributed
effects occur, leading to loss and phase shifts along the length of the device [27] (although it was
argued in [28] that this only degrades the bandwidth if a device is voltage driven). However, there is
little work on the analysis of distributed effects in SCLs.

Recent work has shown how traveling-wave effects may be used to improve the return loss of
SCLs without sacrificing the current recycling phenomenon [29], [30]. The resulting structure is
termed a traveling-wave SCL (TWSCL). The TWSCL is a series connection of LDs in which lengths
of transmission line ðZ0; �Þ separate the LDs to constitute a traveling-wave circuit that can improve
the input match while maintaining the gain inherent in SCLs. The impedance scaling that occurs in
SCLs is mitigated by the distributed structure, analogous to the capacitance distribution effect in a
traveling-wave amplifier. This, in principle, allows longer cascades and, therefore, higher gain.

Both the small-signal [29] and large-signal [30] performance of TWSCLs (fabricated in hybrid
form) have been reported and indicate that improvements in link gain and reduction of
intermodulation distortion are possible compared to a single resistively matched laser, for example.
However, the detailed theory of such structures has not been discussed. The aim of this paper is to
describe small-signal models of TWSCLs and their use in optimizing performance parameters such
as gain–bandwidth product (GBP). This design approach has been used to realize the structures
reported in [29] and [30].

2. Traveling-Wave Semiconductor Cascade Lasers
The topology of a TWSCL is shown in Fig. 1(a). It consists of N identical LDs in series with
interconnecting transmission lines of electrical length � and characteristic impedance Z0. For
simplicity, the biasing network is not shown. Although the TWSCL in Fig. 1(a) uses optical fiber
pigtailed LDs, this can be abstracted as optical channels which may also be implemented using
free-space optics or planar optical waveguides. Light from the LDs is collected in an N � 1 optical
combiner leading to an optical output power po, which is modulated at microwave frequencies.
(In [29] and [30], a WDM fiber coupler was used in order to minimize optical losses.) It is necessary to
compensate for the differing signal paths from individual LDs in order to improve the bandwidth.

In our analysis of the TWSCL, a small-signal equivalent circuit model of the intrinsic LD is used
[31], and it is assumed that i) the LDs are biased well above threshold; ii) stimulated emission is
dominant, and spontaneous emission contributions can be ignored [which simplifies the circuit
model to a parallel RLC circuit as in Fig. 1(b)]; iii) only intensity modulation takes place (intensity
modulation-to-frequency modulation effects are ignored); iv) the LDs are lumped, transmission lines
are lossless, and chip parasitics are neglected; and v) line lengths are assumed to be short enough
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so that the distributed structure can be represented by a differential equivalent circuit. For
convenience the anode of the LD is arbitrarily designated as port one and the cathode port two. The
anode may also be referred to as the Bp-side[ and the cathode as the Bn-side[ of the LD.

Referring to Fig. 1(a), let the terminal current entering port one of LD 1 be i1. Apart from the first
LD, the amplitude of the current wave incident on (reflected from) port one of the nth LD is
identically equal to the amplitude of the current wave reflected from (incident on) port two of the
ðn � 1Þth LD, since the transmission lines are lossless. Thus, the amplitude of the terminal current
entering port one of the nth LD is equal to the amplitude of the current leaving port two of the
ðn � 1Þth LD and, hence, equal to ji1j. Since the electrical length of the transmission line between
adjacent LDs is �, the terminal current entering port one of the nth LD is given by

inðj!Þ ¼ i1ðj!Þe�jðn�1Þ� (1)

where 1 � n � N , and n is a positive integer. Using this result, the current through the equivalent
circuit inductor iL;n of the nth LD can be expressed as

iL;nðj!Þ ¼
1

1� !2LLDCLD þ j!LLD=RLD
inðj!Þ: (2)

This current in turn is proportional to the emitted photon density [32] and, hence, the small-signal
variations in the optical power produced by the LD. Thus, the modulated optical output power from
the nth LD is

po;nðj!Þ ¼ �iL;nðj!Þ (3)

where � is a constant of proportionality with units of W/A, which is a measure of the electron–photon
conversion efficiency. Hence, it is related to the DQE of the LD. While realizing that modulated optical
power is a scalar quantity, the use of phasor notation is a useful mathematical construct for looking at
the impact of phase shifts (such as those due to electrical delays and incoherent optical delays) in the

Fig. 1. (a) Traveling-wave series cascade of N laser diodes. (b) Distributed circuit of a TWSCL.
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sinusoidal regime. This approach is common practice in the analysis of directly modulated LDs [32].
Substituting (2) into (3) and re-arranging yields the LD intensity modulation transfer function

HLDðj!Þ ¼
po;nðj!Þ
inðj!Þ

¼ � !2
LD

!2
LD � !2 þ j!�LD

(4)

where !LD ¼ 1=
pðLLDCLDÞ is the LD resonant frequency, and �LD ¼ 1=ðRLDCLDÞ is the damping factor

of the modulation response. Using (1), the modulated output power for the nth LD is

po;nðj!Þ ¼ HLDðj!Þi1ðj!Þe�jðn�1Þ�: (5)

Hence, the total modulated optical power at the output of the combiner is

poðj!Þ ¼ HLDðj!Þi1ðj!Þej�
XN
n¼1

e�jn�e�j!�n (6)

where �n is the optical delay from the nth LD output to the input of the combiner. The second factor in the
summation is due to propagation along the optical path from the LD to the combiner input. Since it is
assumed that we are operating in the incoherent optical regime and that each LD is in essence a
separate emitter, the summation applies to optical powers rather than the associated electric fields. In
this respect the optical side of the TWSCL shares similarities with incoherent optical delay line
structures used for filtering of modulated optical signals [33], in which it is assumed that the optical
delays aremuch larger than the coherence length of the optical source. Equation (6) does not explicitly
include losses due to the optical combiner; in our experimental work [29], [30], we have used WDM
multiplexing in order to minimize optical losses.

From (6), a general expression for the transfer function of the TWSCL can be obtained as follows.
Assuming negligible reflected waves in the first section of the TWSCL implies that i1ðj!Þ ¼
iINðj!Þe�j�=2. Expressing the input current iIN in terms of the impedance seen by the source yields
the desired transfer function

HLðj!Þ ¼
poðj!Þ
isðj!Þ

¼ Zs

Zs þ ZINðj!Þ
� HLDðj!Þej�=2

XN
n¼1

e�jn�e�j!�n : (7)

A study of the individual terms in (7) allows one to identify factors which affect the response of the
TWSCL, namely input matching, modulation bandwidth and DQE of the LDs and the signal
combining method, where the latter is described by the summation term. Now consider two cases
for the combining scheme: (a) The optical path lengths are tailored so that the overall signal delays
from the TWSCL input to the combiner input are identical, and (b) the optical path lengths are
identical (but incoherent optical summation is still assumed). In the first case the magnitude of the
summation reduces to N , the number of LDs in the TWSCL. Hence, it can be seen from the
magnitude of the transfer function that the modulation response of a LD is enhanced by a factor of
N . In the second case let the optical path delay be �o so that the factor e�j!�0 can be taken out of the
summation. The latter is then the sum of a complex geometric sequence, the magnitude of which
can be expressed as

XN
n¼1

e�jn�
�����

����� ¼ e�j�
1� e�j�N

1� e�j�

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos�N
1� cos�

r
: (8)

The above expression plays an important role in the transfer function of the TWSCL when the
optical paths are identical and is plotted in Fig. 2 against the electrical length of the TWSCL unit cell
for various values of N. Note that when N ¼ 1, (8) is unity and the transfer function of the TWSCL
simplifies to the modulation response of a LD as expected. From the figure, it can be seen that the
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frequency response improves by 6 dB each time N is doubled. However, the 3-dB bandwidth
decreases rapidly due to increasing phase differences between LDs as the length of the structure is
increased.

3. Distributed Circuit Analysis
The preceding analysis of the TWSCL as a linear time-invariant system has allowed the transfer
function to be obtained, albeit with assumptions. It is also useful to examine the TWSCL structure from
the perspective of an equivalent distributed circuit, a method that has been used for distributed
amplifiers [35], [36]. In Fig. 1(b), it is assumed that electrical length � is sufficiently small to allow the LD
equivalent circuit elements to be distributed across the unit cell. This is useful for analysis at relatively
low frequencies but will not be valid at frequencies close to or greater than the LD resonant frequency.
For simple models of distributed amplifiers, a typical distributed circuit model involves having the
shunt lumped capacitance element at the gate (or drain) of the transistor distributed across the unit
cell. Intuitively, this is not difficult to accept since the differential equivalent circuit of a transmission line
contains shunt conductance and shunt capacitance. For the TWSCL differential circuit model,
however, the LD appears as a parallel resonant circuit in series with the incremental inductance of the
transmission line. Even so, the concept of distributing lumped parameters across the unit cell is still
valid, but the restrictions and ramifications will be examined later. Also, the following distributed circuit
analysis will be carried out with respect to the electrical characteristics only. Where the modulation
response of the TWSCL is needed, the transfer function will be invoked.

Fig. 3. Differential equivalent circuit of a TWSCL unit cell.

Fig. 2. Transfer function contribution from the signal summation when the optical paths are identical.
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The distributed parameters of the equivalent TWSCL transmission line can be obtained by
considering the differential circuit of the unit cell as depicted in Fig. 3. To obtain this circuit, the
series impedance of the lumped parallel resonant LD model is divided by the unit cell length lL.
From Fig. 3, the distributed impedance ZL and admittance YL are given by

ZL ¼ j!L0 þ
1

j!LLD=lL
þ 1
RLD=lL

þ j!CLDlL

� ��1
; YL ¼ j!C0: (9)

As a first-order approximation the characteristic impedance is taken to be purely real, which implies
a lossless differential model (i.e., the term in RLD in the expression for ZL is neglected). This is
reasonable provided that the modulation frequencies are strictly less than the LD resonant
frequency as will be shown later. With this caveat in mind

Z0L ¼

ffiffiffiffiffiffi
ZL

YL

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 þ

LLD
lL

1
1� !2=!2

LD

� �,
C0

vuut : (10)

One observes from the second term in the numerator of (10) an effective reduction of the
inductance LLD. The intrinsic LD inductance is typically several picohenries. Further division of this

Fig. 4. (a) Approximate characteristic impedanceZ0L of the TWSCL and effect onmagnitude of the transfer
function. (b) Attenuation function and deviation from a linear phase coefficient of the TWSCL ðN ¼ 4Þ.
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parameter by lL means that it will be negligible relative to L0 and hence Z0L is very close to the
transmission line impedance Z0, as shown in Fig. 4(a). The figure also shows that the impedance
Z0L ! �1 as !! !0, that is the lossless approximation breaks down rapidly as !0 is approached.
Another example shown in Fig. 4(a) is the magnitude of the transfer function where the input
impedance is not taken to be ideal but calculated using (10) as a parameter.

The complex propagation coefficient, �L can also be obtained from �L ¼
pðZLYLÞ ¼ �L þ j�L

where the attenuation and phase coefficients can, respectively, be approximated by

�L�
RLD

2Z0lL

,
1þ RLD

!LLD

� �2

1� !2

!2
LD

� �2
 !

(11)

�L�!
ffiffiffiffiffiffiffiffiffiffi
L0C0

p
� 1þ LLD

2L0lL

1�!2=!2
LD

1�!2=!2
LD

� �2þð!LLD=RLDÞ2

 !
: (12)

These expressions were obtained by taking a Taylor series expansion of the square root about dc
and keeping the first two terms. Unlike the derivation of Z0, the intrinsic model resistance RLD is
retained. From (11), the attenuation coefficient is maximum at the resonant frequency. An example
of the attenuation function is shown in Fig. 4(b) for the values RLD ¼ 1:07 �, LLD ¼ 8:9 pH,
CLD ¼ 286 pF, "eff ¼ 10, Z0 ¼ 50 �, and lL ¼ 10 mm.

It is useful to note that the maximum value for the attenuation is governed by the ratio RLD=Z0 and
the unit cell length. However, the latter may not be increased arbitrarily as the approximations used
here are only valid when the unit cell’s electrical length is short. Moreover, the result given here
underestimates the attenuation since chip parasitics provide additional resistance of a few ohms.
Inspection of the phase coefficient equation (12) reveals that the TWSCL distributed circuit is
electrically smooth because the SRI inductance of the LD is typically 100 times smaller than L0. The
deviation, ��L, from the linear phase coefficient, which is about a thousand times larger, is shown in
Fig. 4(b). Therefore, there will be negligible dispersion for waves on the electrical circuit in this
particular example. The input impedance of the TWSCL can now be calculated from basic
transmission line theory [37]

ZIN ¼ Z0L
ZT þ Z0Ltanh�LNlL
Z0L þ ZT tanh�LNlL

(13)

where Z0L is obtained from (10). The termination ZT is set to 50 �. The input return loss is then
calculated with a source impedance of 50 � and plotted in Fig. 5. For comparison, the return loss for

Fig. 5. Comparison of the input return loss of an SCL matched using a 50-� resistor with a TWSCL.
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two SCLs consisting of four and eight LDs is shown. The example presented here is close to
virtually ideal in terms of matching since the intrinsic LD impedance is very small. However, the SCL
return loss is poorer when the cascade is longer. More importantly, the TWSCL provides relatively
better matching due to the distributed effect and is less affected, in terms of the impedance
magnitude, by increasing the number of LDs. In practice, the magnitude of the LD impedance will be
larger due to chip and interconnection parasitics. Thus the matching performance of the SCL will not
be as good as shown here, especially when the cascade is long [22].

4. Bloch Wave Analysis
The distributed circuit analysis of Section 3 breaks down close to resonance, as seen in Figs. 3
and 5. In particular, as the frequency increases, it is no longer appropriate to assume that the LD
parameters are fully distributed across the length of the structure. Instead, one must analyze the
TWSCL as a periodic structure [37]. There are commonmathematical ideas in the analysis of periodic
structures regardless of whether it is optical waves propagating through a layered dielectric,
electromagnetic waves traveling on a periodically loaded transmission line or electron waves
propagating through the lattice of a solid. Thewave solutions in the latter are termedBlochwaves, and
by analogy (following [37]), the terminology is used in the microwave domain. In [37], Collin gives the
analysis of periodic structures using transmission line theory for lossless loads. To apply Collin’s
treatment to transmission lines periodically loaded with LDs, it needs to be generalized to include
lossy loads. In the small-signal regime and neglecting the optical output, it is assumed that the LDs of
a TWSCL can be considered as linear passive reciprocal two-ports.

Consider the unit cell shown in Fig. 6 consisting of the series cascade of two transmission line
sections each having a normalized characteristic impedance of unity, phase coefficient of k0 and
length of d ¼ 2, with a passive reciprocal two-port. From transmission line theory, the following
relations can be obtained at the nth unit cell:

Vn

In

� �
¼ t11 t12

t21 t22

� �
Vnþ1
Inþ1

� �
¼ e�d

Vnþ1
Inþ1

� �
(14)

where the matrix of elements txy is the transmission matrix from the cascade of the transmission
lines and the two-port network, and � ¼ �þ j� is the propagation coefficient of the periodic circuit.
The nontrivial solution of the matrix eigenvalue equation obtained from (14) leads to

cosh�d ¼ t11 þ t22
2

¼ cos�þ j
Z
2
sin� (15)

where �=2 is the electrical length of the unit cell transmission lines. Expanding the right-hand side
and equating real and imaginary parts gives

’ð�Þ ¼ coshð�dÞcosð�dÞ ¼ cosð�Þ � ImfZg
2

sinð�Þ (16)

	ð�Þ ¼ sinhð�dÞsinð�dÞ ¼ RefZg
2

sinð�Þ: (17)

Fig. 6. Unit cell of a transmission line of length d and normalized characteristic impedance Z0 ¼ 1
loaded by a passive reciprocal two-port.
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Squaring and combining yields

’2ð�Þ
cosh2ð�dÞ

þ 	2ð�Þ
sinh2ð�dÞ

¼ cos2ð�dÞ þ sin2ð�dÞ ¼ 1 (18)

which is solved for the intermediate variable u ¼ coshð�dÞ in terms of ’ and 	

u�¼
1
2

1þ’2þ	2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð’�1Þ2þ	2
� 	

ð’þ1Þ2þ	2
� 	r� �

: (19)

For passive two-ports, the positive solution cannot occur; hence, the attenuation coefficient is

� ¼ 1
d
cosh�1ð

ffiffiffiffiffiffi
u�
p
Þ: (20)

Using this result and (16) and (17), the phase coefficient can be expressed as

� ¼ 1
d
tan�1

	

’tanhð�dÞ

� �
: (21)

The normalized characteristic Bloch impedance at the terminal plane of the unit cell is defined as

Z
�
B ¼

Vnþ1
Inþ1

¼ 2t12

t22 � t11 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt11 þ t22Þ2 � 4

q (22)

where the plus and minus signs refer to waves propagating in the þz and �z directions (see Fig. 6),
respectively. If the unit cell is symmetric, a simpler result can be obtained for Z�B , i.e.,

Z
�
B ¼ �

ffiffiffiffiffiffi
t12
t21

r
: (23)

If the load is a series impedance Z , the characteristic Bloch impedance can then be written as

ZB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z ðcosk0d þ 1Þ þ j2sink0d

Z ðcosk0d � 1Þ þ j2sink0d

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j

Z
k0d

s
(24)

where the approximation on the right hand side of (24) assumes that the unit cell electrical length is
small compared with the wavelength. Thus, subject to this assumption, it can be shown that a
parallel RLC load gives rise to a characteristic impedance of

ZB¼
ffiffiffiffiffiffiffiffiffiffi
1

j!C0

s
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!L0þ

1

j! LLD
d

� ��1þ j!ðCLDdÞþ 1
RLD=d

vuut (25)

which is the impedance of the differential equivalent circuit from Section 3. Furthermore, if the
attenuation is small, using (16) gives an expression for the phase coefficient when the load is a
parallel RLC network, that is

�L ¼ !
ffiffiffiffiffiffiffiffiffiffiffi
L0C0

p
�0 (26)

where

�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ LLD

L0lL

1� !2=!2
LD

1� !2=!2
LD

� �2þð!LLD=RLDÞ2

vuut : (27)
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The attenuation function can then be obtained using (17) as

�L ¼
RLD

2Z0lL

,
1þ RLD

!LLD

� �2

1� !2

!2
LD

� �2
 !

�0: (28)

Comparing these results with the corresponding expressions from Section 3 reveals that the latter
are approximations of the respective expressions derived here.

Modeling the LD as a parallel RLC network is arguably a theoretical curiosity. A more practical
model is to use a small-signal circuit model derived from the single-mode rate equations (see
Fig. 7), including chip parasitics and a bond-wire inductance, as a periodic series load. The
normalized load impedance is given by

Z ¼ 1
Z0

j!LP þ
RS þ ZLD

1þ j!CSðRS þ ZLDÞ

� �
(29)

where ZLD is the un-normalized intrinsic LD impedance

ZLD ¼
RLD

1þ j!RLDCLD 1þ 1
j!RxCLD�!2LLDCLD

� 	 : (30)

Fig. 8 shows the impact of the parasitics on the characteristic impedance, calculated using (24).
This demonstrates that for typical values of the intrinsic LD parameters, the circuit parasitics have a
more significant role in the impedance [39].

4.1. Impedance Matching
In a terminated periodic structure, the Bloch voltage and current wave equations can be written

down in a very similar manner to the general solutions for the waves on a terminated transmission
line. Given boundary conditions dictated at one end by a termination Zt and at the other end by a
source with internal impedance Zs, the input impedance of the periodic structure can be calculated
by solving the wave equations. The theoretical computation (see [37]) closely resembles the same
computation for a transmission line terminated by a load. The main differences are that the line
impedance is replaced by Z�B , the choice of sign determined by �z Bloch waves, and the
propagation coefficient is calculated using (20) and (21). It is assumed that the LDs are lumped
elements. The computation of the TWSCL input return loss was implemented in Mathematica.
Since the parasitics dominate the Bloch impedance, a simplification of the small-signal LD model
was employed by assuming that the intrinsic LD impedance is approximately zero. Calculations
were carried out with the line impedance and length as the main parameters. The parasitic circuit
parameters were Lp ¼ 0:3 pH, Cs ¼ 3 pF and Rs ¼ 4:5 �. Contour plots were constructed with the
criterion of meeting a specified return loss under various conditions, as shown in Fig. 9. Fig. 9(a)
and (b) show that broadband matching can be achieved. The regions between contour x and
contour y indicate a matching bandwidth between x and y GHz. Increasing the return loss desired
reduces the area of the ðd ;Z0Þ regions that can satisfy the requirement. These plots suggest a

Fig. 7. Small-signal equivalent circuit model of laser diode. After [32].
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maximum achievable return loss given a set of LD parameters. As this maximum is approached the
contour regions continue to decrease in area. Thus, near the maximum possible return loss, the
matching will be sensitive to the tolerance of the line parameters. Comparing the cascade of four
against eight LDs in Fig. 9(c) and (d), shows small differences in the contours, with the area of the
regions satisfying the requirement remaining roughly the same. Reducing the termination from 50 �
to 30 � [see Fig. 9(e)] slightly decreases the area of the solution, while increasing it from 50 � to 80 �
[see Fig. 9(f)] increases the solution area. For typical values of the chip capacitance and resistance,
the impact on the input matching was found to be small. It should be noted that as d ! 0, i.e., as the
length of the unit cell approaches zero, the LD lumped assumption breaks down. In this region, it is
perhaps more appropriate to model the LD using traveling-wave rate equations [40].

4.2. GBP
The �3-dB bandwidth and GBP were calculated using the same base code used in the

impedance matching program, with additional code to determine the LD terminal current. The
impedance of the intrinsic LD was assumed to be negligible and ideal combining of each LD output

Fig. 8. Parasitics dominate the characteristic impedance of a TWSCL structure: Lp ¼ 0:2 nH,
Rs ¼ 4:5 �, LLD ¼ 8:9 pH, CLD ¼ 0:29 nF, RLD ¼ 1:1 �, Rx ¼ 20 m�, Z0 ¼ 50 �, and d ¼ 10 mm.
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Fig. 9. Contours of return loss for a TWSCL cascade. Unless stated otherwise, the return loss
specification is at least 10 dB for a TWSCL having four laser diodes and terminated by 50 �. The
contour annotation is the maximum frequency bandwidth (from dc) that meets the specification, in
gigahertz. (a) 10 dB return loss. (b) 15 dB return loss. (c) Four LDs. (d) Eight LDs. (e) Zt ¼ 30 �.
(f) Zt ¼ 80 �.
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Fig. 10. (a) and (b) Small-signal bandwidth and (c) and (d) GBP for TWSCLs with four and eight laser
diodes. Contours are in gigahertz. The dashed box in (a) is recomputed at higher resolution in (e),
where solid circles were obtained from circuit simulation in ADS.
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was also assumed. The available gain, i.e., the ratio of the power delivered to the load to the
available power at the TWSCL input was calculated. An ideal photodetector model converts all
optical power to current with 100% efficiency. The optical power was calculated from the photon
density which was in turn obtained from the product of the transimpedance of the small-signal
model with the current through the inductive branch of the intrinsic LD circuit. The transimpedance
constant was set to give reasonable values for the optical power. The GBP was calculated by
numerically integrating the gain magnitude from dc to the �3-dB bandwidth. Contours of the
TWSCL bandwidth and GBP (in gigahertz) were plotted for cascades of four and eight LDs,
variations in the terminating impedance, and changes in the LD parasitics. The nominal parameters
of the intrinsic LD were: LLD ¼ 1 pH, CLD ¼ 0:2 nF, RLD ¼ 0:7 �, and Rx ¼ 10 m�. Fig. 10 shows
the simulation results for TWSCLs having four and eight LDs. A bandwidth of 18 GHz can be
obtained at relatively low line impedance in both cases. The maximum GBP for the longer cascade
is roughly 2.5 times the four-LD version. Comparing the GBP plot with the input matching (see
Fig. 9) suggests that it is not possible to simultaneously obtain good matching and maximize the
GBP and that one must be traded off against the other.

A close examination of the bandwidth plots show gaps in the contour lines. This is likely a numerical
rounding off issue in the Mathematica function BListContourPlot.[ The bandwidth plots were
calculated on a uniform Bgrid[ of ðd ;Z0Þ pairs, 100 points along each axis for a total of 10 000 pairs
overall. The boxed area in Fig. 10(a) was recalculated and the grid Bresolution[ increased to
200 points along each axis, quadrupling the total computation. All calculations were load
distributed over a local area network, using a rudimentary master–slave parallelization, consisting
of a quad-core Intel machine with a clock rate of 3.2 GHz, a two-CPU dual-core Opteron system
with a clock rate of 2 GHz, and a dual-core Intel PC at 2.4 GHz. It took approximately 9 min to
calculate 10 000 points and 30 min to calculate 40 000 points, excluding postprocessing. The
result of the calculations is shown in Fig. 10(e). The values marked by solid circles were obtained
from circuit simulation in Agilent’s ADS program. There is good agreement in the placement of the
points from the circuit simulation and the calculation. The contours are more well defined and the

Fig. 11. Effect of varying the LD chip capacitance on the bandwidth [(a), (b), and (c)] and the
gain-bandwidth product [(d), (e), and (f)].
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simulation results suggest that the closely spaced contours are not being properly separated by
the plotting function. However, the excessive computational overhead dissuaded the use of this
higher resolution. All subsequent calculations used a 2-D array of 10 000 points.

Changing the termination of the TWSCL was found to have little impact on the GBP. A more
marked effect on the TWSCL performance can be seen when the parasitic LD parameters are
varied. Increasing the parasitic chip capacitance reduces the bandwidth potential and the GBP of
the TWSCL (see Fig. 11) as the higher admittance shunts more current away from the intrinsic LD.
Doubling the bond-wire inductance from 0.3 nH to 0.6 nH (see Fig. 12) reduces potential bandwidth
and GBP as the LD terminal current is decreased.

5. Conclusion
We have explained the small-signal operation of the TWSCL via three techniques: i) derivation of the
intensity modulation transfer function; ii) a distributed circuit model; and iii) Bloch wave analysis of a
periodically loaded transmission line for lossy loads. The first technique is useful in terms of illustrating
possible link gain improvements through increasing the number ðNÞ of LD elements and to determine
the impact of different delay schemes on the overall intensity modulation response, while the second
approach provides some insight into the effect of LD parameters on the electrical characteristics of the
TWSCL, specifically its return loss. However, themost rigorous approach is that based onBlochwave
analysis, especially as the modulation frequency approaches the LD intrinsic resonant frequency.
Through this method, we have investigated the impact of various parameters, including the number of
LDs, the terminating impedance, the parasitic elements, and the transmission line unit cell length and
characteristic impedance on the return loss, bandwidth, and GBP.
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