

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Looking at Data

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Abstract

Collecting and analyzing data lies at the basis of the sci-
entific method: findings about nature usher new ideas, and
experimental results support or refute theories. All this is
not very prevalent in computer science, possibly due to the
fact that computer systems are man made, and not perceived
as a natural phenomenon. But computer systems and their
interactions with their users are actually complex enough
to require objective observations and measurements. We’ll
survey several examples related to parallel and other sys-
tems, in which we attempt to further our understanding of
architectural choices, system evaluation, and user behavior.
In all the cases, the emphasis is not on heroic data collec-
tion efforts, but rather on a fresh look at existing data, and
uncovering surprising, interesting, and useful information.
Using such empirical information is necessary in order to
ensure that systems and evaluations are relevant to the real
world.

1. Introduction

Is computer science a science? One may regard this as
a philosophical question, whose answer hinges on how one
defines science as opposed to say mathematics or engineer-
ing. But this question also has a practical side. It is con-
cerned with how we conduct research.

Mathematics is concerned with abstract thought. Engi-
neering is concerned with building things that have a desired
function. But science is concerned with learning about the
world. Therefore science is built upon observation, mea-
surement, and experimentation.

The above obviously relates to the natural sciences, and
to learning about the natural world. But the same can apply
equally well to the man-made world of computer systems.
Computer systems from microprocessors to the Internet are
complex enough so that even their designers cannot claim
to have full understanding of how they work. To understand

 0

 10

 20

 30

 40

 50

 60

 70

 2007 2005 2003 2001 1999 1997 1995 1993

ve
ct

or
 s

ha
re

 [%
]

% machines
% processors

% Rmax

Figure 1. Shares of vector machines in Top500 lists.

them, we need to observe them in action, and apply scien-
tific methods. Looking at data is part of this.

The results surveyed here were mostly obtained by my
students and myself. Naturally, there are many other exam-
ples too (e.g. [20, 3, 18, 16, 17, 19, 14, 1]). And I hope that
in the future there will be much much more.

2. Vector and Scalar Processors in the
Top500 list

The title of this section may be surprising to some: aren’t
vector processors long dead? The answer is that they prob-
ably are now, but this is actually recent news. And in any
case, it is interesting to look at how things changed over the
last 15 years. This is done using the well-known Top500 list
[5] (www.top500.org). This analysis extends previous ones
from 1999 and 2004 [7, 9].

Fig. 1 shows the relative share of vector machines in the
Top500 list. The graph shows that the fraction of vector ma-
chines in the Top500 list has steadily declined, from 2/3 of
the first list in 1993 to less than 1% in the last list available
at the time of writing (2007). However, the share of pro-

 1

 10

 100

 1000

 10000

 100000

 2007 2005 2003 2001 1999 1997 1995 1993

pr
oc

es
so

rs

max

top rank

min micro

min

Figure 2. Machine sizes in Top500 lists.

cessors and computing power behave somewhat differently.
Until recently, the share of processors (that is, what fraction
of the total number of processors belonging to all machines
on the list were vector processors) fluctuated in the range of
3–5%. And the share of Rmax (the fraction of computing
power, as measured by Linpack, that is attributed to vector
processors) showed remarkable stability from 1998 to 2003,
even peaking at 2002 with the introduction of the Japanese
Earth Simulator. This persistence, coupled with the intro-
duction of the Cray X1 line, could be taken as an indication
that vector processors would continue to have their niche.
But continued data from 2004 and on indicates that this is
not the case. So what happened?

Part of the answer may be seen in Fig. 2. Let’s focus
on the “min” and “min micro” lines. “min micro” indicates
the machine with the minimal number of microprocessor-
based processors in each year’s list. “min” indicates the
machine with the minimal number of processors, regardless
of technology. Until 2003, this was always a vector proces-
sor. Since 2004 the minimal number is achieved by the Hi-
tachi SR11000 machines, where each processor is actually
a tightly-coupled, SMP-like aggregate of IBM Power4 pro-
cessors; these are shown as the bottom branch of the line.
The top branch shows the minimal vector-based machine
and clearly continues the previous trend. As a result, the gap
in favor of vector machines (that is, their ability to achieve
equivalent performance with fewer processors) has all but
closed. So indeed there is little reason to continue using
vector processors (assuming you believe in using Linpack
as the benchmark).

There are two other interesting things that can be seen in
this graph too. The first is the change in slope of the “min
micro” line in 2003. Until 2003, the slope was extremely
steady, with the number of processors doubling about every
3 years. Since 2003, the slope has increased. This corre-
sponds to the slower increase in computing power of micro-

processors since that time. In particular, it seems that the
supercomputer industry continues to deliver the same high
rapid increase in performance as it did before, and makes up
for the reduced improvements in microprocessors by using
ever more of them.

The second interesting feature is the absolutely flat seg-
ment of the “max” line from 1997 to 2003. In an industry
where practically everything grows exponentially, such an
upper limit that persists for 7 years is very rare. The most
probable interpretation is the difficulty in managing and uti-
lizing more than 10,000 processors. While this limit was
broken in 2004 and the current top machine employs more
than 200,000 processors, this is achieved by bundling them
into large groups that act as the unit of allocation and man-
agement. This may lead to significant unmonitored loss of
resources if applications fail to use their full allocation.

3. Parallel Workload Patterns and Their Effect

How many processors do parallel applications actually
use? Most application writers will tell you that there are few
if any constraints, and that they will be able to use many
processors provided the input problem size is big enough
[2]. But in practice we find that actual usage is rather re-
stricted.

The data shown in Fig. 3 is based on accounting
logs from several large scale parallel machines (we use
“cleaned” versions from the Parallel Workloads Archive
at www.cs.huji.ac.il/labs/parallel/workload/). Two features
immediately stand out. First, the distribution of job sizes is
discrete, with a strong preference for powers of two. Sec-
ond, there are very many serial jobs running on these mas-
sively parallel machines. This implies that buying a large-
scale machine with a power-of-two number of nodes may
be unwise, as this increases the danger for either of two
unlucky situations: either that a small job lock out a large
job that requires the whole machine, possibly leading to ex-
tensive fragmentation, or that a large job occupy the whole
machine, preventing any other job from running and thus
leading to extensive delays. Rather, it would be more ben-
eficial to buy a machine that is a bit bigger than a power of
two, and use the small extra partition for the small jobs.

Two of the machines shown in Fig. 3 do not seem to have
serial jobs, possibly implying better utilization. However,
this is most probably an erroneous conclusion. The differ-
ence between these machines and the others is that they are
composed of 8-processor SMP nodes. Thus even a serial job
will be allocated 8 processors, inflating the reported utiliza-
tion, but actually creating significant hidden fragmentation.
Again, this implies that special treatment should be given to
small jobs.

Another issue that is of importance for parallel job
schedulers is the question of correlation between job sizes

SDSC Paragon

1 4 16 64 256

pe
rc

en
ta

ge
 o

f j
ob

s

0

10

20

30

40
CTC SP2

1 4 16 64 256
0

10

20

30

40
KTH SP2

1 4 16 64 256
0

10

20

30

40
SDSC SP2

1 4 16 64 256
0

10

20

30

40

LANL O2K

job size
1 4 16 64 256

pe
rc

en
ta

ge
 o

f j
ob

s

0

10

20

30

40
SDSC Blue

job size
1 4 16 64 256

0

10

20

30

40
HPC2N cluster

job size
1 4 16 64 256

0

10

20

30

40
SDSC DataStar

job size
1 4 16 64 256

0

10

20

30

40

Figure 3. Distribution of job sizes on various parallel machines.

system CC rank CC dist CC
NASA iPSC 0.157 0.242 0.884
LANL CM-5 0.178 0.293 0.986
SDSC Paragon 0.280 0.486 0.990
CTC SP2 0.057 0.244 0.892
KTH SP2 0.038 0.250 0.876
SDSC SP2 0.146 0.360 0.962
LANL O2K -0.096 -0.214 -0.872
OSC cluster 0.021 0.212 0.869
SDSC Blue 0.121 0.411 0.993
HPC2N cluster -0.046 -0.061 -0.173
SDSC DataStar -0.012 0.013 -0.208

Table 1. Correlation coefficients of runtime and size
for parallel jobs.

and runtime. The reason that this is important is that a job’s
size is typically known when it is submitted, but its runtime
is not. Depending on the correlation, scheduling accord-
ing to job size may unintentionally lead to scheduling by
runtime too. For example, if there is a positive correlation,
scheduling small jobs first will automatically also tend to
schedule short jobs first, leading to improved average re-
sponse times. But what if the correlation is negative?

Using parallel workload data as above, we can try to an-
swer this question by calculating the correlation coefficient
between size and runtime. The results of doing so are shown
in Table 1; the correlations are all quite low, with both signs,
so it is hard to argue for any real correlation. But some more
insight can be gained by using the distributional correlation
coefficient [8]. The idea is to partition each data set into
two, based on one parameter. For example, we can partition

the jobs into small jobs (with a size of up to the median size)
and large jobs (larger than the median). Then we compare
the distributions of runtimes for these two groups of jobs. If
one distribution dominates the other, a distributional corre-
lation exists.

Like the calculation of the correlation coefficient, the re-
sults of using this procedure are mixed. On one hand, the
distributional correlation coefficient tends to be much more
decisive than other coefficients — it is often close to one,
meaning that one distribution dominates the other for most
of the domain. But still, this is not always the case, and
worse, while positive coefficients are much more common,
negative ones do appear. However, by looking at the dis-
tributions themselves as shown in Fig. 4, one can see that
the LANL O2K and HPC2N systems have somewhat ab-
normal modal distributions, making them less convincing
as a source for generalization.

The main implication of such findings is that a single
rule does not apply, and workloads may be different from
each other. This underscores the need for online adjust-
ments to the characteristics of each individual installation,
rather than hoping for a single configuration that is appro-
priate for all.

4. Cleaning the Data Before Use

A possible source of discrepancies like those shown
above is “dirty” data — data that is tainted by abnormal
activity that should not be used as generally representative.

Indeed, the HPC2N data provides a striking example of
such abnormal activity. More than half of the activity in
this log is actually generated by a single user. As shown
in Fig. 5, this activity comes in two very long sequences of

SDSC Paragon

1 10 100 1000 10K100K

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
small
large

CTC SP2

1 10 100 1000 10K100K
0

0.2

0.4

0.6

0.8

1
KTH SP2

1 10 100 1000 10K100K
0

0.2

0.4

0.6

0.8

1
SDSC SP2

1 10 100 1000 10K100K
0

0.2

0.4

0.6

0.8

1

LANL O2K

runtime [s]
1 10 100 1000 10K100K

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
SDSC Blue

runtime [s]
1 10 100 1000 10K100K

0

0.2

0.4

0.6

0.8

1
HPC2N cluster

runtime [s]
1 10 100 1000 10K100K

0

0.2

0.4

0.6

0.8

1
SDSC Datastar

runtime [s]
1 10 100 1000 10K100K

0

0.2

0.4

0.6

0.8

1

Figure 4. Distributional correlation of job sizes and runtimes from different parallel machines, excluding serial jobs.

HPC2N cluster

J
2002

O J
2003

A J O J
2004

A J O J
2005

A J O J
2006

jo
bs

 p
er

 w
ee

k

0

5000

10000

15000

20000
user 2
others

Figure 5. Weekly activity on the HPC2N cluster,
showing abnormal activity by user 2.

bursts, that are separated by a year and a half of relatively
low activity. The highest peaks of activity by this user reach
some 18,000 jobs in a single week — more than one every
minute on average for the whole week. The activity of all
the other users of the system is much lower in comparison,
seldom passing 2000 jobs per week in aggregate.

The problem with such abnormal activity is that it may
have a large effect on workload characteristics. In our case,
the activity of user 2 has a strong effect on the distributional
correlation coefficient. Fig. 6 shows the runtime distribu-
tions for small and large jobs, both for the full log and for
a cleaned log after removing the activity of user 2. Obvi-
ously much of the difference between the distributions may
be attributed to the activity of this single user; with him, the
distributional correlation coefficient is -0.915, and without

HPC2N all

runtime [s]
1 10 100 1000 10K100K

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1
small
large

HPC2N cleaned

runtime [s]
1 10 100 1000 10K100K

0

0.2

0.4

0.6

0.8

1

Figure 6. Distributional correlation of HPC2N data,
with and without user 2.

him it drops to -0.173.

Other logs also exhibit such flurries of activity by sin-
gle users, albeit usually they cover much shorter intervals
of time. Apart from their effect on workload characteris-
tics, such flurries have also been shown to have an effect
on performance evaluations. This happens because a flurry
is typically composed of many repeated executions of the
same job. Therefore all these repetitions tend to react in the
same way to modifications in the system configuration. As
a result, these reactions are amplified to the degree that they
may determine the evaluation results.

An example of such an effect is shown in Fig. 7. This
evaluation concerns the scheduling of parallel jobs, essen-
tially packing them together. To reduce fragmentation back-
filling is used; this consists of using small jobs from the
back of the queue to fill in holes in the schedule. This
scheduling algorithm is evaluated by simulating its perfor-
mance for the jobs in the CTC SP2 workload trace. The

 0

 20

 40

 60

 80

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

av
er

ag
e

bo
un

de
d

sl
ow

do
w

n

offered load

raw log
cleaned

Figure 7. Performance evaluation results for the
CTC SP2 log with and without a flurry.

interesting thing is that when we condense the log in or-
der to increase the load, erratic behavior is observed [13].
This behavior results from a rather small flurry of only 2080
jobs. When this flurry is removed, scaling the load has the
expected smooth effect.

An even more extreme example was found when simu-
lating the same scheduling algorithm using the SDSC SP2
workload trace [25]. On this machine jobs were limited to
running for 18 hours, and if they exceeded this limit, they
were killed. But killing a jobs takes some time. In the simu-
lation, a single job was truncated from 18 hours and 30 sec-
onds to exactly 18 hours; amazingly, this caused the average
bounded slowdown of all the simulated jobs to change by
8%. The effect was traced to a small flurry of 375 jobs that
was submitted a full month after the job that was changed.
Due to small changes that propagated in the schedule, this
whole flurry was delayed by about 30 hours. As the jobs
were actually very short, this caused a large change in the
slowdown.

The question of when and whether data should be
cleaned should not be taken lightly. Inevitably, this deci-
sion is not completely technical and includes a subjective
element. Intuitively, we don’t want the activity of a sin-
gle user out of a group of hundreds of users to sway our
results. But each user has some effect, so the question be-
comes what metric we use to measure the effect and where
we put the threshold beyond which the effect is considered
too big.

In any case, cleaning the data is just half the job. In ad-
dition, one should conduct a sensitivity analysis to charac-
terize the magnitude of the effect that can be expected due
to abnormal activities. This is an important element of the
evaluation because we know for a fact that such abnormali-
ties do occur.

5. The Behavior of Human Users

One of the examples in the previous section concerned
evaluations in which the offered load is modified by sys-
tematically changing the job interarrival times. If we reduce
these times, thereby condensing the log, the load increases
beyond what it was on the live traced system.

This approach for creating different load conditions is
convenient because of two properties: it is simple to apply,
and it provides pretty good control over the resulting load.
But it is based on a hidden assumption: that the system is
open, in the sense that job arrivals are independent of each
other and of the system performance. This assumptions may
or may not be valid.

A major threat to the validity of the open system as-
sumption is user feedback. If the workload is generated
by a closed group of users, there is a high probability that
these users will induce a feedback loop: if the system per-
formance is poor, the users will abstain from producing ad-
ditional work. This throttling effect is a form of negative
feedback, and therefore improves system stability (Fig. 8)
[21, 12].

In order to perform reliable system evaluations, we there-
fore need to model user behavior explicitly. But what do
users care about? What governs their actions? In particular,
what exactly do users perceive as “poor performance”, and
how does it translate into subsequent behavior?

One way to answer such questions is to conduct large
scale user studies. A simpler alternative is to look at avail-
able data, and specifically, the same accounting traces we
used before. The trick is to extract detailed user actions that
can be attributed to specific conditions, rather than looking
at overall statistics.

In particular, a basic question we may ask is whether
users are more sensitive to a job’s response time (the sum
of waiting time and runtime) or to its slowdown (the re-
sponse time normalized by the actual runtime). To answer
this we can dissect the accounting logs, and compare each
job’s performance with the user’s reaction. The user reac-
tion is quantified by the think time separating the termina-
tion of this job and the submittal of the next job by the same
user [22].

The result of doing so is shown in Fig. 9. The top graph
shows the reaction to response times, and the bottom one to
slowdowns. response times and slowdowns are binned on
a logarithmic scale, and only think times of up to 8 hours
are included. The results are that there is an obvious rela-
tionship between a job’s response time and the subsequent
think time: as the response time grows from 10 seconds to 3
hours, the average think time grows from about 20 minutes
to about 3 hours, and this is very consistent across all the
logs. But there is only a very weak relationship between a
job’s slowdown and the subsequent think time: as the slow-

SDSC Paragon

0 400K 800K

su
bm

itt
ed

 jo
bs

0

500

1000

1500

2000

2500
CTC SP2

0 150K 300K
0

500

1000

1500

2000

2500
KTH SP2

0 100K 200K
0

200

400

600

800

1000
SDSC SP2

0 150K 300K
0

300

600

900

1200

1500

LANL O2K

avg. node−sec
0 200K 400K

su
bm

itt
ed

 jo
bs

0

2000

4000

6000

8000

10000
SDSC Blue

avg. node−sec
0 400K 800K

0

500

1000

1500

2000

2500
HPC2N cluster

avg. node−sec
0 150K 300K

0

500

1000

1500

2000

2500
SDSC DataStar

avg. node−sec
0 400K 800K

0

500

1000

1500

2000

2500

Figure 8. Evidence of user throttling: there is an inverse relationship between the number of jobs submitted in a week
and the average resource requirements of those jobs.

response time [s]
1 10 100 1000 10K 100Kav

er
ag

e
su

bs
eq

ue
nt

 th
in

k
tim

e

1000

10K

slowdown
1 10 100 1000 10Kav

er
ag

e
su

bs
eq

ue
nt

 th
in

k
tim

e

1000

10K

SDSC Paragon
CTC SP2
KTH SP2
SDSC SP2
LANL O2K
SDSC Blue
HPC2N cluster
SDSC DataStar

Figure 9. Think time as a function of performance.

down grows from 3 to 1000, the average think time grows
from about 1–2 1

2 hours to about 2–3 hours; only for very
low slowdowns around 1 we see lower think times in some
logs, but even then they are spread over the range of 20 min-
utes to about two hours. These results seem to indicate that
response time is a much better predictor of user reaction
than slowdown.

Being able to predict user behavior is important in many
contexts. In fact, this is one of the main differences be-
tween online and offline algorithms — offline algorithms
often achieve better performance by using more informa-
tion, and specifically, information about the future. And
while precise information is typically not available, the abil-
ity to make predictions may be good enough.

Luckily, it is often indeed the case that good predictions
can be made. This results from the fact that most users tend
to be unoriginal, and repeat the same sort of work over and
over again. Moreover, they tend to use only a small part of
the full space of different configurations and attributes that
is available to them [23]. By looking at the historical record,
the system may learn about this behavior and predict that it
will continue [24]. Moreover, this happens at many levels,
including both user behavior and application behavior —
the well-known phenomenon of locality [4, 11].

But what does “locality” mean exactly in the context of
user behavior? Using statistical workload models as a start-
ing point, user behavior may be characterized by various
distributions and the correlations between them. For ex-
ample, in Section 3 we talked about parallel jobs that have

SDSC Paragon

job size
1 4 16 64 256

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

Feb 1−7, 1995
May 24−30, 1995
Nov 24−30, 1995
complete log

SDSC Paragon

runtime
1s 10s 1m 10m 1hr 10hr

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

0

0.2

0.4

0.6

0.8

1

Feb 1−7, 1995
Apr 15−21, 1995
Sep 13−19, 1995
complete log

Figure 10. Locality of sampling: in different weeks,
the distribution of job sizes or runtimes is quite dis-
tinct from the global distribution of all the activity
throughout the year.

two main attributes: their size and their runtime. The work-
load in general may be characterized by the distribution of
sizes and the distribution of runtimes (and the correlation
between size and runtime, which was one of the topics of
Section 3). Locality in this context is manifest as a devia-
tion from the general distribution, as demonstrated in Fig.
10.

Note that many analyses make the opposite assumption:
that everything is random, independent, and stationary. For
example, this is often the underlying assumption in queue-
ing theory models. This of course makes the analysis con-
siderably easier. However, in many cases it does not reflect
reality. One extreme example that we saw above, in Section
4, is that of workload flurries. Flurries create large devia-
tions in workload statistics, that are usually limited in du-
ration. If we use a workload log that includes a flurry to
characterize the marginal distributions of a statistical work-
load model, we get distributions that reflect the mixture of
the normal workload and the flurry, and thus do not repre-
sent either of them. Such a model is useless, as it cannot be
used to evaluate the system under normal conditions, and

10/90 rule

file size [Bytes]
01 8 64 512 8K 128K 2M 32M 1G

cu
m

m
ul

at
iv

e
pe

rc
en

t

0
10
20
30
40
50
60
70
80
90

100

number
of files

disk space

0/50 rule

file size [Bytes]
01 8 64 512 8K 128K 2M 32M 1G

cu
m

m
ul

at
iv

e
pe

rc
en

t
0

10
20
30
40
50
60
70
80
90

100

number
of files

disk space

Figure 11. Mass-count disparity demonstrated on
Unix file sizes.

also cannot be used to evaluate the potential effects of the
flurries.

An even worse result of ignoring locality is the inabil-
ity to evaluate adaptive systems. The whole idea of adap-
tiveness is that the system adjust itself to match changing
conditions. Changing conditions imply locality. If we use
random models without locality, there is nothing to adapt
to.

6. Sampling and Heavy Tails

Locality is related to the variability in the workload. An-
other potential characteristic that contributes to variability
is heavy tailed distributions. When a workload attribute has
such a distribution, some items have a much bigger effect
than others. In fact, some items may actually dominate the
system. This phenomenon is called mass-count disparity.

Mass-count disparity is a generalization of the prover-
bial 10/90 rule. Let us explain it through a demonstration
based on Unix file sizes [15]. The bulk of the distribution,
as shown in Fig. 11, lies between file sizes of about 100
bytes to 10 KB (“number of files” line). But the bulk of the

disk space is occupied by files with sizes ranging from about
10 KB to some 100 MB! In particular, 90% of the files (the
small ones) occupy only 10% of the disk space, while the
other 10% of (large) files are responsible for the remaining
90% of the disk space (of course in other data sets the so-
called joint ratio [10] can be different from 10/90, and even
in this one it is actually closer to 11/89).

Even more remarkable is the 0/50 rule. The distribution
is so skewed, that the bottom half of the files together use
a negligible part of the disk space. At the other extreme,
half the disk space is occupied by a negligible fraction of
the files, which are each very big. This has important im-
plications for file system design. For example, it means that
optimizing the storage of very small files is a waste of time,
because this will only have a small effect on total disk us-
age.

An especially interesting situation occurs when the dis-
tribution of popularity is heavy-tailed. For example, con-
sider locality of reference in a program’s memory accesses.
Such locality is often divided into two types: spatial local-
ity and temporal locality. Temporal locality, where the same
address is accessed repeatedly, is actually also the product
of two distinct phenomena. One is that accesses to a certain
address are bunched together, rather than being distributed
randomly throughout the execution of the program. The
other (and more important) is that some addresses are sim-
ply much more popular than others. These addresses are
accessed so many times that accesses are never far apart,
leading to a semblance of locality,

In analogy with the file sizes example above, when the
distribution of popularity is heavy tailed it also exhibits sig-
nificant mass-count disparity. But here the mass is refer-
ences to the different addresses. Thus we may find that say
90% of the addresses only receive 10% of the references,
while the other 10% of addresses receive 90% of the refer-
ences. And a relatively small number of addresses, the most
popular ones, may be the targets of half of all the references.

The importance of mass-count disparity in the popular-
ity distribution lies in its effect on sampling. Again, let’s
start with the files example. Selecting a file at random from
the list of all files will most probably give us a small file,
because most files are small — more than half are smaller
than 2 KB, and 97% are smaller than 100 KB. but if we se-
lect a byte at random from all the data in the file system, we
will most probably find that this byte is part of a very large
file. Specifically, nearly half of the disk space belongs to
files that are bigger than 1 MB in size, and these are only
0.2% of all the files.

Applying this observation to the popularity of memory
addresses, we find that random sampling can effectively
identify addresses with different characteristics. This has
important implications for caching. Specifically, if we sam-
ple memory addresses at random, we are likely to select an

address that is seldom accessed. This is why random re-
placement is a reasonably good cache eviction policy. But
if we sample the reference stream, and pick a reference at
random, it is much more likely that this is one of many ref-
erences being made to a very popular address. So sampling
references is a good cache insertion policy [6].

7. Conclusions

There’s a story about an engineer, a physicist, and a
mathematician that were stranded on a desert island with
3 cans of tomato soup but no opener. The engineer was the
first to try to solve the problem of getting to the soup, by
crushing his can with a big rock; the result was tomato soup
all over the island. The physicist tried next, and put his can
in a fire until it exploded; boiling tomato soup all over the
island this time. “No, you’re doing it all wrong”, said the
mathematician. “Here’s how you do it. Assume you have a
can opener...”

Undoubtedly the mathematician’s solution is the most ef-
fective, the most technologically advanced, and the clean-
est. It has only one drawback: it is divorced from the actual
situation. Collecting and analyzing data is a good way to
keep in touch with reality, and to maintain your relevance.
Assumptions should be used sparingly, while data is used
as the default.

As computer scientists our first step when confronted
with a new problem is often to create an abstract version
of the problem, that will allow us to focus on the essentials.
But this involves a hidden assumption that we can recognize
the essentials, and that the parts that we abstract away are
indeed not important. Such assumptions should be verified
empirically.

To understand your system you must first understand
your data. To understand your data you must first have data.
So collect data about your system. If you do it right, some
of the data will most probably surprise you. Life is full of
surprises. That’s how progress is made. So keep an open
mind.

Acknowledgments

Parts of this work were supported by the Israel Science
Foundation (grant no. 167/03).

Most of the results reported here were achieved by my
students, as can be seen from the citations made in the text.
In particular, Dan Tsafrir, Edi Shmueli, and Yoav Etsion
have all enriched me with insightful analyses and observa-
tions, for which I am grateful.

References

[1] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and
E. Shir, “A model of Internet topology using k-shell
decomposition”. Proc. Natl. Acad. Sci. USA 104(27),
pp. 11150–11154, Jul 2007.

[2] W. Cirne and F. Berman, “A model for moldable su-
percomputer jobs”. In 15th Intl. Parallel & Dis-
tributed Processing Symp., Apr 2001.

[3] E. G. Coffman, Jr. and R. C. Wood, “Interarrival statis-
tics for time sharing systems”. Comm. ACM 9(7),
pp. 500–503, Jul 1966.

[4] P. J. Denning, “The locality principle”. Comm. ACM
48(7), pp. 19–24, Jul 2005.

[5] J. J. Dongarra, H. W. Meuer, H. D. Simon, and
E. Strohmaier, “Top500 supercomputer sites”. URL
http://www.top500.org/. (updated every 6 months).

[6] Y. Etsion and D. G. Feitelson, “L1 cache filtering
through random selection of memory references”. In
16th Intl. Conf. Parallel Arch. & Compilation Tech.,
pp. 235–244, Sep 2007.

[7] D. G. Feitelson, “On the interpretation of Top500
data”. Intl. J. High Performance Comput. Appl. 13(2),
pp. 146–153, Summer 1999.

[8] D. G. Feitelson, “A distributional measure of
correlation”. InterStat, Dec 2004. URL
http://interstat.statjournals.net/.

[9] D. G. Feitelson, “The supercomputer industry in light
of the Top500 data”. Comput. in Sci. & Eng. 7(1),
pp. 42–47, Jan/Feb 2005.

[10] D. G. Feitelson, “Metrics for mass-count disparity”.
In 14th Modeling, Anal. & Simulation of Comput. &
Telecomm. Syst., pp. 61–68, Sep 2006.

[11] D. G. Feitelson, “Locality of sampling and diversity in
parallel system workloads”. In 21st Intl. Conf. Super-
computing, pp. 53–63, Jun 2007.

[12] D. G. Feitelson and A. W. Mu’alem, “On the definition
of “on-line” in job scheduling problems”. SIGACT
News 36(1), pp. 122–131, Mar 2005.

[13] D. G. Feitelson and D. Tsafrir, “Workload sanitation
for performance evaluation”. In IEEE Intl. Symp.
Performance Analysis Syst. & Software, pp. 221–230,
Mar 2006.

[14] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble,
H. M. Levy, and J. Zahorjan, “Measurement, model-
ing, and analysis of a peer-to-peer file-sharing work-
load”. In 19th Symp. Operating Systems Principles,
pp. 314–329, Oct 2003.

[15] G. Irlam, “Unix file size survey - 1993”. URL
http://www.gordoni.com/ufs93.html.

[16] W. E. Leland and T. J. Ott, “Load-balancing heuris-
tics and process behavior”. In SIGMETRICS Conf.
Measurement & Modeling of Comput. Syst., pp. 54–
69, 1986.

[17] W. E. Leland, M. S. Taqqu, W. Willinger, and
D. V. Wilson, “On the self-similar nature of Ethernet
traffic”. IEEE/ACM Trans. Networking 2(1), pp. 1–15,
Feb 1994.

[18] J. K. Ousterhout, H. Da Costa, D. Harrison,
J. A. Kunze, M. Kupfer, and J. G. Thompson, “A
trace-driven analysis of the UNIX 4.2 BSD file sys-
tem”. In 10th Symp. Operating Systems Principles,
pp. 15–24, Dec 1985.

[19] V. Paxson and S. Floyd, “Wide-area traffic: the failure
of Poisson modeling”. IEEE/ACM Trans. Networking
3(3), pp. 226–244, Jun 1995.

[20] R. F. Rosin, “Determining a computing center envi-
ronment”. Comm. ACM 8(7), pp. 465–468, Jul 1965.

[21] E. Shmueli and D. G. Feitelson, “Using site-level
modeling to evaluate the performance of parallel sys-
tem schedulers”. In 14th Modeling, Anal. & Simula-
tion of Comput. & Telecomm. Syst., pp. 167–176, Sep
2006.

[22] E. Shmueli and D. G. Feitelson, “Uncovering the ef-
fect of system performance on user behavior from
traces of parallel systems”. In 15th Modeling, Anal.
& Simulation of Comput. & Telecomm. Syst., pp. 274–
280, Oct 2007.

[23] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Model-
ing user runtime estimates”. In Job Scheduling Strate-
gies for Parallel Processing, pp. 1–35, Springer Ver-
lag, 2005. Lect. Notes Comput. Sci. vol. 3834.

[24] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Back-
filling using system-generated predictions rather than
user runtime estimates”. IEEE Trans. Parallel & Dis-
tributed Syst. 18(6), pp. 789–803, Jun 2007.

[25] D. Tsafrir and D. G. Feitelson, “Instability in parallel
job scheduling simulation: the role of workload flur-
ries”. In 20th Intl. Parallel & Distributed Processing
Symp., Apr 2006.

