14

Guest Editor’s Introduction

Murthy Devarakonda
iBM T.J. Watson Research Center

Current Developments in

. Object-Oriented Systems

= nthe July-September 1998 issue of IEEE Concurrency, i introduced
. the Object-Oriented Systems track, stating that object-oriented
“ programming was commonplace. | seem to have understated just
~ how commonplace OO0 pregramming really is. According to
Bertrand Meyer, OO programming is so cbvious that many practition-
ers do not realize that the ideas were once hew and controversial. He
finds an analogy between structured programming and OO program-
ming in this respect, and his article is actually a rebuttal of sorts to pro-
nouncements that we are witnessing the end of the object era.

In some quarters, there is a feeling that
OO0 programming is no longer a selling
point, or that it can’t achieve al] the bene-
fits proponents claim. Meyer, quite cor-
recily, points out that although rmost peo-

ple are familiar with the basic goals of
cbject technology, only a few understand
its deeper concepts or how to apply them.
T will et you follow the debate yourself,
and you can forin your own opinion.

Optimizing ORBs for
predictable performance

The first theme article appearing in this
issue, “Using Principle Patterns to Opti-
mize Real-Time ORBs,” is aimed at
maturing object technology. This article
describes a systematic application of sev-
eral optimization techniques te TAO to
achieve predictable and scalable perfor-

N

IEE Conurrency




manee. First, the authors identity chal-
lenges in meeting soft and hard real-time
requireraents for CORBA middleware,
and then they implement solutions for
these challenges using a set of well-
known optimization principles.

They actack typical performance
issues in ORBs such as server-side
thread-pool management, data copying,
memory allocation, and request demui-
tplexing to server objects. Almost every
large distributed-system design must
address performance issues similar to
these. However, the important exercise
here is to understand each of these issues
as they relate to CORBA middleware
and choose those optimizations that
result not only in performance improve-
ments but also in performance pre-
dictability. Indeed, the experimental
approach can be a good framework for
optimizing any complex distributed sys-
tem. T hope that, in time, most commer-
cial vendors will incorporate the opti-
mization techniques explored hete into
their own ORBs and that application
developers requiring quality-of-service
requirements won’t have to choose
between an ORB and building every-
thing from scratch.

Component management

In the second article in this issue,
Fabio Kon and Ray Campbell proposc a
framework for representing dependen-
cies among components in a distributed
system. Object-oriented programming
naturally leads w component-based soft-
ware construction; if it is possible to
reason about dependencies among com-
ponents, then programmers can build
reliable and dynamically configurable
systems using reusable components. The
system can check dependencies statically
(for example, at install time) or manage
them dynamically (at runtme).

Dependency management is not a
radically new idea. Any rontime envi-
ronment that supports leadable compo-
nents provides some degree of depen-
dency checking, however rudimentary.
COM and JavaBeans implicitly keep

lanuary-March 2000 B

track of this information, and when com-
ponent dependencies are not properly
honored, the program or system crashes.
Operating systems supporting dynami-
cally loadable modules keep track of such
information.

Kon and Campbell have taken com-
ponent-dependency management ta a
new level by providing a framework that
explicitly represents and manages such
dependencies. This lets programmers
offer fault rolerance, Qo8, and on-
the-fly upgrading of complex software
through dynamic reconfiguration, A
compaonent configurator framework cap-
tures the dependency representations,
and the configurator has been imple-
mented in TAO—the freely available
ORB described in the first article.
CORBA provides a well-known distrib-
uted-object model to experiment with
these ideas, and the TAO implementa-
tion offers flexibility. We don’t know if
all component-based systems need the
full flexibility this dependency manage-
ment offers, but the work provides a data
point, and hopefully several rescarchers
will experiment with it to evaluate its
usefulness.

New features for CORBA 3

One final thought is how OMG is
evolving CORBA. Jon Siege! categorizes
coming attractions in CORBA 3 as
Internet integration, QoS control, and
the CORBAcomponent archirecture {see
CORBA 3 release info at www.omg.
org/news/pré8/compnent.btml and the
news story in this issue on page 10). In
the Internet integration, OMG has fire-
wall specification including support for
bidirectional GIOP (Gengeral Inter-ORB
Protocol) connections. This feature gets
around a nasty problem in going over the
firewalls. Previously, GIOP connections
carried invocations in one direction, so
implementations supporting callbacks
had to vse two different connections
between a client and an object, and the
second connection operated in the
reverse direction, For a typical firewall,
connections coming in from the outside

are not allowed; therefore, supporting
callbacks over a firewall posed a serious
problem, The bidirectional GIOP con-
nections solve this problem.

Among the QoS control specifica-
tions, the notable ones are messaging spee-
ification, which allows a variety of invo-
cation modes with the ability o control
QoS, and the specification of real-tinee
CORBA, which standardizes resource
controls using priority models to achieve
predictable behavior, The CORBAcom-
ponentarchitecture provides a conainer
environment, support for Enterprise
JavaBeans, and a software distribution
format. For an application programmer,
the advantage is that the container pro-
vides persistence, transactionality, and
security at a level higher than the
CORBAservices.

Once again, what I sec in CORBA
evolution is object technology reaching
a higher level of practical sophistication,
letting us build large and complex sys-
tems with this technology. %

ACKNOWLEDGMENTS

The articles appearing in this issue were
selected from the Sth Usenix Conference on
Object Oriented Technologics and Systems
(May 1999, San Dicgo), published after a re-
review with the kind permission of USENTX.

Refercnces
1. B. Meyer, “A Really Good Idea,” Com-
puter, Val. 32, No. 12, Dec. 1999, pp.
144-147.

Murthy Devarakonda is a rescarch manager
and technical strategist in personal systems
software at the IBM T.J. Watson Research
Center, Lis rescarch interests include object-
ariented systems, distribured systens, file sys-
tems, and end-user systems software. 1Te
received his PhID in computer science from
the University of Hlinois atc Urbana-Cham-
paign, He is 2 member of the ACM, IEEER
Computer Society, and USENIX, Contact
him at the IBM 'T"J. Watson Research Cen-
ter, PO Box 218, Yorktown FHeights, NY
10598; melev@us.ibm.com.




