
Murthy Devarakonda
IBM T.J. Watson Research Center

Current Developments in
Object-Orientea S ys terns I

, I n the July-September 1998 issue of /€€€Concurrency, I introduced
: the Object-Oriented Systems track, stating that object-oriented

" programming was commonplace. I seem to have understated just
how commonplace 00 programming really is. According t o

Bertrand Meyer, 00 programming is so obvious that many practition-
ers do not realize that the ideas were once new and controversial.' He
finds an analogy between structured programming and 00 program-
ming in this respect, and his article is actually a rebuttal of sorts to pro-
nouncements that we are witnessing the end of the object era.
I n some quarters, there is a feeling that ple are familiar with the basic goals of
00 programming is no longer a selling object technology, only a few understand
point, o r that it can't achieve all the bene- its deeper concepts or how to apply them.
fits proponents claim. Meyer, quite cor- I will let you follow the debate yourself,
rectly, points out that although most peo- and you can form your own opinion.

, ,

Optimizing ORBS for
predictable performance

T h e tirst theme article appearing in this
issue, "Using Principle Patterns to Opti-
mize Real-Time ORBS," is aimed a t
maturing object technology. This article
describes a svstematic application of sev- ..
era1 optimization techniques to T A 0 to
achieve predictable and scalable perfor-

14

niance. First, tlic ant l io rs identiiy cbal-
Icnges in meeting soft and hard real-tiiiie
requiremcnts for COKBA middlewarc,
and tlien they implement solutions f o r
these challenges using a set ol well-
known qitiniization priiiciplcs.

They attack typical performance
issues in ORBs such as scrver-side
thread-pool inanagement, data copying,
memory allocation, and request dcmul-
tiplexing to servcr obj~cts . Almost every
large (listributeil-systcin design must
address perforinancc issues similar to
these. However, tlie iinportant exercise
here is to understand each oltliese issiies
as they relate to CORBA ndd leware
and clioosc thosc optimizations that
result not only in performance itnprovc-
nients but also i n performancc pre-
dictability. Indeed, the experimental
approach can be a good frainework for
optimizing any complex distributed sys-
teni. I hope that, i n time, most coininer-
cia1 vendors will incorporate the opti-
mization techniques explored here into
their own ORBs and that application
developers requiring quality-of-service
requirements won’t l iave to choose
between an OKB and Iiuilding every-
thing from scratch

Component management
In the second article in this issue,

F a h Kon and Koy Campbell propose a
framework for reprcsenting depcnden-
cies among coiiip”nts in a distributed
system. Object-oriented programming
naturally leads to coiiip[”ient-l~ased soft-
ware coiistruction; i f it is possible to
teason almiit depeiidencies among coin-
ponents, then programmers can build
reliable and dynamically configorable
systems using reusalile component,. The
system can check dependencies statically
(for example, a t install time) or inanage
them dynamically (at runtiine).

Dependency manageinent is not a
radically new idea. Any rontimc envi-
roniiient that supports loadable compo-
nents provides sonie degree of rlepen-
dency checking, however rudimentai-y.
COM and JavaBeans implicitly keep

~~- ~

January-March 2000

track of this information, and wlien coni-
poncnt dcpendcncies are not prupcrly
honorcd, tlie program or system crashcs.
Operating systems supporting dymnii-
cally loadable nindiiles kccp track ofsiich
iiiformation.

Kon and Campbcll liavc taken con-
i’niient-dep~iidency iiianagcment to a
ncw level by providing a framcwork that
explicitly represents and nianages wch
dependencies. This lets prograiiimers
offer fault tolerance, QoS, and OLI-

the-fly upgrading of complcx software
throiigli dynamic reconfiguration A
component confipator framework cap-
tures tlie dependency represent a (ions,
a n d the configurator lias hcen imple-
mented i n TAO-the frecly available
ORB described in die first article.
CORBA provides a well-known distrih-
uted-object modcl to experiment with
thcse ideas, and the T A 0 implementa-
tion offers flexibility. We don’t know if
all component-based systems need the
full flexibility this dependency nianage-
nient offers, but the work provides a data
point, and hopefully several researchers
will experiment with it to evaluate its
usefulncss.

New features for CORBA 3
One final thought is how OMG is

evolving CORM. Jon Siege1 catcgorizes
coining attractions in CORBA 3 as
Internet integration, QoS control, and
tlic COKBAcomponent architecture (see
CORBA 3 release info at www.omg.
o~g/i~cws/~~r98/compnenr.html and the
news story in this issue on page IO). In
the Internet integration, O M G has f r e -
wall spccification including support for
bidirectional GIOP (General Inter-ORB
I’rotocol) cnnnections. This feature gets
around a nasty prolilem in going over the
firewalls. Previously, GIOP connections
carried invocations in one direction, so
implemcntations suppoi-ting callbacks
had to use two different connections
between a client and an oliject, and the
second coniiectim operatcd in thc
reverse direction. For a typical firewall,
connections coming i n from the outside

arc not allowed; therefore, sopporting
callbacks over a f i rewall posed a serious
prohlam. T h e liidirectioiial GIO1’ can-
nections solvc this problem.

Among tlie QoS control specifica-
tions, the notable mics arc mss,igingrpcc-
lfrCnt;077, wliicli allows a variety of invo-
cation inodes with the ahility to control
QoS, and tlie specification of menl-rinw
COIUA, which standardizes resource
controls using priority models to achieve
prcdictalile behavior. T h e CORBAcom-
ponent architecture provides a container
environment, support for Enterprise
JavaBeans, and a software distribution
format. For an application programmer,
the advantage is that tlie coiitainer pro-
vides persistencc, transactionality, and
security a t a level higher than tlie
CORBAseivices.

Once again, what I see in CORBA
evolution is object technology reaching
a higher level of practical sophistication,
letting us huild large and coinplex sys-
tenis with this technology.

ACKNOW.BDGMBNIS
The iliticlcs aplxaring i n t h i s issuc W E ~ C

sclwtcd from Ihe 5th Usenix Conicrcncc on
Objecl Oricntcd Technologies and Systems
(May 1999, San Vicgo), published after il re-
rcvicw with the kind r)crinission dUSEN1X.

Refercnces
1. B. M e w , “A Really Good Idea,’’ Com-

puter, Vol. 32, No. 12. Dec. 1999. pp.
144-147.

Murthy Dcvarakonda is a rrscarcli manapr
and teclinicd strategist i n personal systems
software a t tlic IDM T.J. Watson Research
Centcr. llis r e s ~ ~ r c l i intcerests include object-
oricntcd syrtmns, distributed systems, file sys-

received his 1’111) i n coinpiiter science from
the Univcrsity of Illinois a t Urbana-Cham-
yaign Ire is a I I I C I D ~ C I of tllc ACM, IEEE
(.omputor Socieq, a n d USRNIX. Conecr
l i i i i i a t L I I C IDM TJ. Wamn Rcrearch Cen-
tcr, 1’0 Uou 218, Yorktown Ircights, N Y
10508; ~n~1evQus.i l~ai.c~~~~~.

tCll lS, R l l ‘ l cnd-urcr systems sofiwlrc. Ile

~ ..
15

