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ABSTRACT 

There exist many problem agnostic frameworks and algo-
rithms for parallel simulation. However, creating parallel 
simulation models that take advantage of characteristics 
specific to either the problem domain or a specific model 
can create significant performance benefits. This article 
provides an overview of general frameworks and algo-
rithms for paralleling simulation execution, and also dem-
onstrates two ways in which assumptions underlying the 
implementations of epidemiological models can be used to 
enable such parallelization in an efficient manner. These 
examples are based on planning and developing agent-
based models activities carried out as part of the NIH’s 
MIDAS (Models of Infectious Disease Agent Study) fam-
ily of grants.

1 INTRODUCTION 

In many cases, the computational resources required to ob-
tain meaningful results from a simulation model are such 
that it is necessary to run the simulation in parallel across 
multiple computers. An example of such an application is a 
global agent based epidemiological model, which is a 
model intended to provide insights regarding the spreading 
of diseases, based on the behaviors of the individual people, 
and perhaps other disease vectors, that may contract and 
spread the disease. More details about such models appear 
in Section 2. 

In order to enable such parallelization, there exist ge-
neric methodologies that can be used to distribute any dis-
crete event simulation. These methodologies include gen-
eral algorithms for coordinating the distributed simulation 
time – which is a need unique to discrete event simulation 
distribution. The generic distribution methodologies pro-
vide many advantages, such as correctness of the distribu-
tion mechanism, and explicitly specified distribution as-
sumptions. These advantages are due, in a large part, to the 
fact that these methodologies are widely published and re-
viewed. Section 3 provides additional details regarding dis-

tributing discrete event simulations, as well as the existing 
relevant methodologies. 

As with any distributed algorithms, distributed simula-
tion models may incur a significant overhead in terms of 
the coordination and communication required between the 
computers, which may significantly impact the overall 
speedup obtained.  In extreme cases, the implementation of 
the distributed model may be such that the communication 
overhead outweighs any performance benefits obtained by 
parallelizing the simulation execution. In order to achieve 
speedup benefits from the distribution, the implementation 
of the distributed simulation must take into account the 
characteristics of the model, including any assumptions 
which may be relevant to the distributed mechanism cho-
sen. If one of the existing generic methodologies is used to 
implement the distribution, the characteristics of the model 
can be used to both choose the appropriate methodology, 
and to drive the specification of the implementation pa-
rameters. 

In some specific models, there may be characteristics 
which would enable the significant reduction of the com-
munication overhead required to distribute these models. 
Moreover, due to their generic nature, the general method-
ologies may not be able to take advantage of such charac-
teristics. In some cases, implementing a customized distri-
bution approach may yield significant speedup benefits 
over an implementation based on a generic methodology. 

In this paper, we show examples of characteristics of 
agent based epidemiological models, which are used to ef-
ficiently distribute the simulation execution. These exam-
ples are based on planning and developing agent-based 
models activities carried out as part of the NIH’s MIDAS 
(Models of Infectious Disease Agent Study) family of 
grants. 

The rest of this paper is organized as follows: Section 
2 provides background regarding agent based epidemiol-
ogical models, as well as the computational resources re-
quired to execute such models. Section 3 describes the 
general methodologies available for discrete event simula-
tion in general, and agent based simulation models in par-
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ticular. Section 4 demonstrates how characteristics specific 
to agent based epidemiological models can be used to effi-
ciently distribute the simulation. We close with a discus-
sion and possible future work in Section 5. 

2 AGENT BASED EPIDEMIOLOGICAL MODELS 

There is a need for global epidemiological modeling, i.e., 
the modeling and understanding of characteristics relevant 
to the spreading of an epidemic or pandemic throughout 
the globe. Modeling the spreading of diseases is required to 
both enable policy makers to understand the hazards of a 
specific disease, and to determine policies which may be 
used to mitigate these hazards. The need for modeling the 
spreading of a disease at a global scale is required due to 
the ease by which a potential carrier of the disease may 
travel in today’s highly interconnected world. 

Epidemiological models have existed for at least sev-
eral decades, e.g. Rvachev and Longini (1985). Such mod-
els have attempted to capture the following main character-
istics:

1. The stages an individual may go through with re-
gards to the disease. For example, a widely used 
model is the SEIR model, in which an individual 
may go through the following four sequential 
stages:
(a) Susceptible: An individual may contract the 

disease.
(b) Exposed: An individual has contracted the 

disease, but does not display any symptoms. 
(c) Infected: An individual displays symptoms 

of the disease. 
(d) Recovered: The individual has recovered 

from the disease. 
This model may be depicted by a sequential state 
chart, as shown in Figure 1. Obviously, other 
models based on the same states are also possible 
For example, an individual may go directly from 
the exposed to the recovered state, which enables 
modeling a disease for which there is the possibil-
ity that an individual has contracted the disease, 
but never displays symptoms. 

2. The way in which a disease may be transmitted 
between individuals. This may take into account 
characteristics such as the following: 
(a) The rate by which a disease is transmitted. 

This can be modeled using a discrete prob-
ability. 

(b) The states of a disease in which an individual 
can transmit the disease to other individuals. 
For example, for some diseases, a disease 
may be contagious in the exposed state, 
while, for others the disease can only be 
contracted by coming into contact with 

someone who is in the infected state, and is 
already displaying symptoms. 

3. The way in which individuals travel. This may 
take into account day to day frequent travel, e.g. 
to work, school, etc., as well as less frequent 
travel such as by air, ships, or international trains. 
This determines with whom, and how frequently, 
each individual may come into contact. In addi-
tion, the travel characteristics may be influenced 
by the disease state. For example, an individual 
may or may not be able to travel when in the in-
fected state. 

Figure 1: SEIR states model 

Models such as the one in Rvachev and Longini (1985) 
model the spreading of diseases using aggregate behaviors. 
The model in Rvachev and Longini (1985) and Grais, Ellis 
and Grass (2003) only capture the rates of the characteris-
tics relevant to the spreading of diseases. Examples of such 
rates include the rate by which transitions through the dis-
ease states occur, and the rates by which individual travel 
between cities. The progression of a disease is then calcu-
lated in an iterative manner, based on a set of differential 
equations. However, based on the characteristics of such 
models as outlined above, it seems that there may be value 
in modeling each individual separately. This is as such 
modeling may enable taking into account individual differ-
ences with respect to these characteristics. Several exam-
ples of this are the following: 

1. There may be different individual reactions to the 
disease, resulting in different model of transition 
through the disease stages 

2. Disease transmission behavior could differ be-
tween individuals 

3. The people with which an individual comes into 
contact, as well as patterns of individual travels 
could vary widely between individuals 

4. Individuals may response differently to interven-
tions such as vaccinations.   
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Therefore, the results of a model based on individuals may 
differ substantially from the results of aggregate models, 
such as the ones based on rates. At the very least, such in-
dividual models could be used to test when the aggregate 
models capture the relevant aspects of an epidemic or a 
pandemic, and when such aggregate models may be suffi-
cient to capture the relevant aspects of the real world. 

Due to the above justifications for the need of individ-
ual disease modeling, several such recent efforts have been 
carried out, and more are underway. Such efforts model 
individual behavior relevant to epidemiological modeling, 
using a simulation paradigm known as agent based simula-
tion model (Macal and North 2005). This paradigm is a 
special type of discrete event simulation, suitable for mod-
eling individual behavior, as well as interactions between 
individuals. An example of an ongoing agent based epide-
miological effort is the MIDAS initiative 
(<https://www.epimodels.org/midas/about.
do>), which is a set of grants funded by the NIH for the 
agent based modeling of infections diseases. 

To obtain the benefits of the additional potential accu-
racy provided by agent based epidemiological models re-
quires that the individuals be modeled in sufficient detail. 
Therefore, the creation of global model requires fairly de-
tailed representation of a large part (if not all) of the 
world’s population. As a result, significant computational 
resources are required for the execution of such models – 
far beyond what can be provided by today’s even most ad-
vanced single node computer. Therefore, such simulations 
require the ability to distribute such models across CPUs, 
and even across computers. This need is compounded by 
the fact that in the event of an actual outbreak, the charac-
teristics of existing models may need to be modified to fit 
the actual outbreak, and then executed as quickly as possi-
ble in order to enable policy makers to reach decisions re-
garding the actual outbreak.  

2.1 Architectural Considerations in Distributing 
Agent-based Models 

Agent-based discrete simulation models represent agents 
(sometimes only active ones) as the modeled component of 
their virtual world.  Rules are defined that apply to each 
agent.  Therefore on a next scheduled event or synchronous 
basis these rules are reviewed by the simulation program 
for each agent and action is taken.  This action can change 
the state of the agent or another agent or the virtual envi-
ronment  In an epidemiological model this might include 
passing an infection, moving between state of susceptible, 
exposed, infected, recovered/dead i.e., the SEIR epidemi-
ological progression), or a spatial movement (i.e., home to 
work.)  

Some hard problems in large agent-based from a com-
puter point-of-view are: 

1. Keeping quick access to all the information 
about the agents -- Typically this means the in-
formation has to be kept resident in local mem-
ory.  As the numbers of agents grow, potentially 
into the billions, this becomes a constraint.  
Sometimes, depending on the question the 
model is trying to answer it maybe reasonable to 
reduce the number of agents by clumping them 
(i.e., an agent becomes a family versus an indi-
vidual for very infectious diseases.)  On the 
other hand, some important epidemiological 
problems may require the inclusion of large sets 
of new agents to represent disease vector. 

2. The computation needed dealing with all the 
agents – Dealing with complex operations on 
billions of agents can be a daunting computa-
tional task.  Different computer science tech-
niques are often tried, such as very efficient al-
gorithms, distributed computation (SMP or MPI), 
and modeling only the active agents.  Some of 
these computations can be computationally ex-
pensive, such as calculation of spatial closeness. 

3. Handling movement of agents – We have to 
keep the data about an agent close to the compu-
tational resources using it.  If we use a cluster-
based distributed approach to providing extra 
computation and/or memory we have to con-
tinually move the information about agents.  
This means moving potentially vast amounts of 
data between nodes in a cluster.  Work will be 
held up while the system waits for the data to be 
delivered. At a cost in modeling accuracy, one 
approach to helping with this problem is to only 
update agents that need to move between com-
putational resources on fixed schedules (syn-
chronous agent-based models.)  A hardware ap-
proach is to use low latency internode 
communications like Myrinet.  Still, if the prob-
lem is big enough and is divided between 
enough nodes, even this approach eventually 
ends up spending so much time on data man-
agement and communications that relatively lit-
tle is actually applied to solving the actual prob-
lem.  

4. Many reruns and a massive total computation 
needs -- These, like the more general class of 
discrete simulation models, often have to be run 
many times for any interesting epidemiological 
experiment.  This is as the models are typically 
stochastic in nature and often have to be run 
many times with different random seeds to get a 
distribution of results in order to obtain statisti-
cally significant outputs.  Typically, these set of 
runs themselves have to be repeated many times 
in order to do parameter sweeps that allow sensi-
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tivity analysis on the results.  A given scenario 
might therefore require hundreds of runs.  For 
that reason it might, sometimes make sense to 
not worry about wall clock time for any individ-
ual run, since all runs may need to be completed 
before human interventions.  Two of the MIDAS 
models are not parallelized at all and are run 
many times on different nodes of a Linux cluster 
at the same time.  This approach to computation 
goes by the humorous name of “Embarrassingly 
Parallel.”  Therefore an architecture with many 
parallel slow and steady parts might make sense 
in some modeling situation. 

5. Agent based models can produce explosively 
large logs of agent movement.  Since the large 
ones run as batch activities, only by saving these 
can detailed analysis and visualization be done 
after the run.  Clearly this information can be 
limited, but that comes at a cost of the types of 
analysis that are possible.  For example, post 
analysis of the EpiSims logs can tell how many 
from each age group infects each other age 
group.  Post analysis of multiple run logs allows 
the understanding of the distribution of these re-
sults.  The amount of data produced can be so 
vast as to add a significant amount to communi-
cations load that running the simulation pro-
duces at the same time that the computer it is 
running on has to handle the heavy movement of 
agent information. 

These considerations demonstrate just some of the issues 
and tradeoffs in deciding when and how to distribute an 
epidemiological agent-based model. 

3 GENERAL PARALLELIZATION
FRAMEWORKS 

The need for parallel execution of simulation models is a 
general need for large scale detailed simulation. Therefore, 
as mentioned in the introduction, generic methodologies 
for such parallel implementation and execution exist. 

A discrete event simulation models a physical (real) 
system in terms of events and states. The execution of the 
simulation consists of processing events to modify the state. 
Each simulation also has an abstraction of the time at 
which events occur, known as simulation time or virtual 
time. Each event occurs at a particular instant in simulation 
time, known as the timestamp of the event. A single proc-
essor (sequential) discrete event based simulation therefore 
consists of the following: 

A set of state variables which collectively de-
scribe the state of the system. 
An event list containing those events yet to be 
processed 

A global clock denoting the current simulation 
time. 

A sequential discrete event simulation can easily en-
sure that events are processed in timestamp order as it 
processes the event with the smallest timestamp in the 
event list. However, ensuring that the events are processed 
in timestamp order when a simulation is distributed re-
quires coordination, and is the major source of the commu-
nication overhead existing in parallel simulation models. 
This is as a parallel discrete event simulation (PDES) is 
distributed across multiple Logical Processes (LPs). Dis-
tributing the simulation over multiple processes requires 
multiple event lists, one for each LP. A consequence of this 
is that ensuring the events are processed in timestamp or-
der is less straightforward. 

Two main types of synchronization algorithms exist to 
ensure that the events are processed in timestamp order: 
Conservative algorithms and optimistic algorithms. In con-
servative algorithms, each LP advances its clock only 
when it can be ensured that this advancement will not re-
sult in events being processed out of timestamp order. Such 
algorithms require defining a parameter known as a looka-
head time, that is an amount of time in which each LP can 
advance its local clock while ensuring that no events can 
be received out of time stamp order. In optimistic algo-
rithms, each LP can advance its time independently of oth-
ers. In such algorithms, events may arrive out of time 
stamp order. To handle such cases, optimistic algorithms 
define rollback mechanisms.  

The speedup achieved by conservative algorithms is 
directly proportional to the size of the lookahead time. 
Therefore, implementing conservative distribution algo-
rithms for simulation models in which either the lookahead 
time is too small, or no lookahead times can be assumed 
will result in a very large communication overhead. In op-
timistic systems, on the other hand, the communication 
overhead depends on the actual event rollbacks that occur 
in the system. Such rollbacks are proportional to size of the 
differences in the simulation time of the different LPs in 
the system. For more details regarding optimistic and con-
servative algorithms, see Fujimoto (2001). 

In order to attempt and overcome the shortcomings of 
conservative and optimistic algorithms, hybrid algorithms 
have been proposed. Such algorithms allow events to ar-
rive out of time stamp order, and contain a rollback 
mechanism, similarly to optimistic algorithms. However, 
such algorithms also ensure that the difference between the 
simulation times of different LPs in the system does not 
exceed some size, thereby attempting to ensure that the 
number of rollbacks is not too large. For examples of such 
algorithms, see Fersha (1995) and Sokol and Stucky (1990). 

Attempts have also been made to add to these generic 
frameworks features that will be suitable for general agent 
based simulation (i.e., without taking into account the 
problem domain of the simulation).  In agent based simula-
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tion, it does not make sense to distribute the simulation of 
an existing agent across multiple LPs. This is due to the 
fact that one of the main aspects modeled in agent based 
systems is complex behavior of an agent. Therefore, dis-
tributing the simulation of this complex behavior across 
multiple LPs would result in a large amount of inter LP 
communication. Therefore, the question becomes how to 
distribute the agents between LPs in an efficient manner. 
Another important aspect of agent based simulation is the 
interaction between the agents. The way in which agents 
interact depends on the environment in which they exist. 
One aspect of such an environment is the geographical as-
pect. For example, in global pandemic models, the geo-
graphical environment is the globe, as well as the manner 
in which agents may travel around the globe. Therefore, a 
central question in distributed agent based simulation is 
how to distribute the environment. In Logan and Theo-
doropolous (2000), a suggestion has been made to separate 
the LPs of a distributed simulation such that there are sepa-
rate LPs for agents, and separate LPs for the environment. 
A different type of adaptation to agent based simulation 
appears in Lees, Logan and Theodoropolous (2003),  in 
which hybrid synchronization algorithms specific to agent 
based modeling have been proposed, based on the Sphere 
of Influence (SoI) of a simulation event.  The SoI of an 
event is defined as the set of state variables read or written 
as a consequence of the event and depends on the type of 
event, the state of the source of the event (agents or envi-
ronment) and the state of the environment (Lees, Logan,  
and Theodoropolous 2003).  

As described above, an agent based simulation is dis-
tributed by breaking up the environment into logical proc-
esses. For example, in a global pandemic model, different 
LPs would model different cities or different groups of cit-
ies. However, due to agents moving around in their envi-
ronment, any static partitioning of the environment may 
cause some LPs to become extremely overloaded. For an 
example, consider a global pandemic model in which at 
some stage, most of the infected agents become concen-
trated in a small number of cities. The LPs in which these 
cities are present will require considerable computational 
power in order to continue the simulation. It is obviously 
impossible to know before the simulation begins if such 
concentration will occur, and if so, in which cities. Dy-
namic load balancing mechanisms, which redistribute the 
environment between different LPs during the execution of 
a simulation can overcome this problem. In Logan and 
Theodoropolous (2000), such a dynamic load balancing al-
gorithm is proposed, based on creating a conceptual tree of 
logical processes, upon which a distributed load balancing 
algorithm is defined. 

In the realm of distributed simulation, the IEEE High 
Level Architecture (HLA) standard (IEEE standard 1516) 
has been defined. There have been implementations of dis-
tributed agent based simulation based on HLA, e.g.  Lees, 

Logan and Theodoropolous (2002). However, HLA was 
designed more for allowing simulations to interoperate, 
rather then for efficient parallel simulation. 

In order to implement parallel/distributed simulation 
algorithms, a parallel/distributed software infrastructure is 
required, providing elements such as communication be-
tween nodes. Two libraries for generic implementations of 
parallel/distributed algorithms are OPENMP for shared 
memory architectures (<http://www.openmp.org/ 
drupal/>), and MPI (<http://en.wikipedia.or 
g/wiki/Message_Passing_Interface>) for ar-
chitectures with a distributed memory (e.g. separate com-
puters connected by some high speed backbone). A good 
example a model based on such low level frameworks are 
the MIDAS EpiSims model lead by Stephen Eubanks at 
Virginia Biotechnical Institute (VBI).  The model can be 
used to represent large urban areas (~10M person) and 
provides a very high level of fidelity for movements and 
contacts. This model distributes individuals in geographi-
cal groups to different computers and has custom designed 
approach based on MPI to implement movements between 
geographies/computers. High speed computer interconnect 
speeds were critical in benchmarks of EpiSims (e.g., using 
Myrinet or instead of Gbyte Ethernet.) For this reason, the 
core MIDAS computational facility was designed with 
high speed computer interconnectivity (Myrinet.) 

As both MPI and OPENMP are low level frameworks, 
there have been attempts made to abstract away the details 
of creating parallel/distributed algorithms. Examples of 
this are the OptimalGrid framework, (<http://www.
alphaworks.ibm.com/tech/optimalgrid>), and 
the Distributed Computing Toolbox from Mathworks 
(<http://www.mathworks.com/products/dist
ribtb/index.html>). The OptimalGrid framwork is a 
generic framework for distributed computing, that abstracts 
away the communication layer and provides automatic 
load balancing capabilities. The Distributed Computing 
Toolbox from Mathworks provides some abstraction for 
parallel computation when using the Matlab tool. 

4 PROBLEM SPECIFIC CHARACTERISTICS OF 
GLOBAL EPIDEMIC MODELLING 

As discussed in Section 2, an agent based simulation of 
epidemics needs to take into account the following factors: 
The stage an individual goes through regarding the epi-
demic, the way the epidemic is transmitted between indi-
viduals, and the manner the individual travels around a 
globe. 

An assumption that is made in many existing models 
is that an individual travels much more frequently within a 
close geographical proximity then within a larger one. For 
example, an individual is much more likely to remain in 
the same city then to travel to cities which are in another 
continent. This assumption seems reasonable in today’s 
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world. This assumption seems to indicate that a good way 
to distribute these types of simulation would be according 
to geographic proximity. In such cases, an LP would tend 
to simulate geographic locations which are close together 
in the sense relevant to the model. For example, a single 
LP could simulate suburbs within a city that are close to-
gether, or cities which are geographically close or have a 
direct airline connection. 

The question that then arises is what would occur if an 
agent travels between geographical locations that are simu-
lated by different LPs. In order to deal with this case, use is 
made of another assumption that is fairly common in these 
types of models. This assumption is that it in the model, 
agents can be constrained to pass between certain types of 
geographical locations only at certain points in time (rather 
than continuously), without impacting the validity of the 
simulation results. For example, in the model appearing in 
Rvachev and Longini (1985), it is assumed that it is suffi-
cient to model the traveling of agents between cities as if 
they occur only at the end of each day. In such a case, if 
different LPs simulate different cities, each LP can simu-
late an entire day, and still no events will arrive out of time 
stamp order.  This is an example of discrete (or batched) vs. 
continuous time.  Note that the model in Rvachev and 
Longini (1985) is equation, rather than agent-based, and 
never was distributed across multiple computers   All agent 
based models explicitly or implicitly assume a certain time 
accuracy.

A good example of modeling assumptions made to 
improve performance to allow better scalability are those 
made by Jon Parker at Brookings as part of MIDAS.  Both 
assumptions reduce the necessary frequency of synchroni-
zation.  Communications between computers typically has 
high latency (bad) and throughput (good).  Therefore one 
wants to greatly reduce the frequency of synchronizations. 

First he tried out a default time precision of about 14 
minutes. (one 1/100th of a day).  Any events by all agents 
during this time are treated as simultaneous. This assump-
tion is equivalent to saying that we are indifferent to the 
order of processing of events within this time block.  This 
allows him to reduce synchronization to this time period 
(or multiples.) Importantly, Jon parameterized this time pe-
riod to allow him to validate this assumption with increas-
ing smaller time slices.  For example, he could run the oc-
casional model at 1/1000th of a day and see if the results 
varied. 

As a second approach to limiting the number of syn-
chronizations, Jon moved the synchronization period to 
just less than the disease’s incubation period (infected until 
infectious.) This is typically one or more days.  This ap-
proach greatly reduced the total number of synchroniza-
tions during a simulated epidemic. 

This turns out to be a “sweet spot” for epidemic mod-
els.  In the worse case, if a person is infected and wait until 
just before becoming infectious to travel between geogra-

phies (agent moved between computers) they can, at most 
only pass on the disease to one more generation.  Since this 
synchronization period is much longer than the time preci-
sion, events can get out of order between synchronizations.  
But, since these can only be one generation of events, 
backing out the effects is computationally simple and we 
do not have geometric growth of effected agents. 

Through these two assumptions, the first testable and 
the second which has no effect on model results, he greatly 
reduced the number of necessary synchronizations during 
the run of a simulated pandemic.  A number of architec-
tural approaches now become relatively viable for running 
vast agent-based models such as: 

1. Clusters with simple and cheap Ethernet inter-
connections

2. Grid computing, perhaps even including “at 
home” shared volunteered PCs over the internet 

3. Single PC operations where each spatial area is 
run for a given synchronization period and then 
swapped with the next spatial area. 

As is common to agent based models, dynamic load 
balancing may also be required for such epidemic model-
ing, (e.g., when the simulation develops in a way such that 
most of the infected people are concentrated in a small 
number of cities.) Separating the simulation according to 
geographical regions provides the basis for such load bal-
ancing, as geographic regions (e.g. cities) may dynamically 
migrate between LPs, based on the load.   

Note that the above assumptions enabled the creation 
of a parallel simulation of epidemic models, using the as-
sumptions of geographic distribution and inter city travel 
time, without having to implement a generic synchroniza-
tion algorithm. 

5 SUMMARY AND FUTURE WORK 

In this paper, we have described the need for parallelizing 
simulation execution. We have demonstrated this need in 
the context of the modeling of global epidemics. We’ve 
provided an overview of general mechanisms for enabling 
parallel/distributed simulation. Finally, we have shown 
how using the characteristics and assumptions relevant to 
specific domains and models can be used to implement a 
parallel simulation without the use of a generic simulation 
distribution framework. 

Efficiently distributing a simulation, even in a specific 
domain, entails intelligently utilizing modeling assump-
tions that can be made for specific models. Therefore, de-
pending on the specific assumptions, it may be possible to 
define patterns (or anti patterns) for efficiently distributing 
a simulation. To define such patterns requires working 
closely with as many teams as possible teams who are cre-
ating different related models, and sharing knowledge re-
garding the model itself and the distribution mechanisms. 
The quality of the patterns/anti patterns created will be in 
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direct proportion to such sharing, and the various types of 
models (in a specific domain) which are distributed. 
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