Corrections.

Corrections to "Physically Rigorous Modeling of Internal Laser-Probing Techniques for Microstructured Semiconductor Devices"

Robert Thalhammer and Gerhard Wachutka

The following typesetting errors are in the original version of this article published in [1].

• Equation (9) on p. 63 and equation (37) on p. 68 should be

$$M_{k,2}U(z_{k+1}) = M_{k,1}U(z_k).$$
 (1)

- The reference in the fourth line of the last paragraph on p. 65 should be Fig. 6.
- On p. 63, the subsections of Section II-C2 "Boundary Conditions in Propagation Direction," should be:
 - *a)* Boundary condition in the k_x -z-space;

b) Matrix representation of the boundary conditions in real space.

- In the Appendix, the correct plot for Fig. 12 is missing. Fig. 12 is reprinted here.
- In the Appendix, the section numbering was incorrect. The Appendix should be as follows.

APPENDIX A PROPAGATOR MATRICES

To derive the propagator matrix, (7) and (8) are integrated analytically over the interval $[z_k, z_{k+1}]$, assuming a linear interpolation of the computational variables $E^{F,B}$ and the dielectric constant ε_R . The resulting summands comprise products of $E^{F,B}(x, z_{k,k+1})$, $\varepsilon_R(x, z_{k,k+1})$, and $e^{i\kappa z_{k,k+1}}$. Sorting by $E^{F,B}(x, z_k)$ and $E^{F,B}(x, z_{k+1})$ transforms (7) and (8) to a matrix equation of the following form:

$$\begin{pmatrix} A_k(x) - \frac{i\Delta z_k}{4\kappa} \partial_x^2 & B_k(x) + K_k \partial_x^2 \\ C_k(x) + K_k^* \partial_x^2 & D_k(x) + \frac{i\Delta z_k}{4\kappa} \partial_x^2 \end{pmatrix} \begin{pmatrix} E^F(x, z_{k+1}) \\ E^B(x, z_{k+1}) \end{pmatrix} \\ = \begin{pmatrix} \tilde{A}_k(x) + \frac{i\Delta z_k}{4\kappa} \partial_x^2 & \tilde{B}_k(x) + \tilde{K}_k \partial_x^2 \\ \tilde{C}_k(x) + \tilde{K}_k^* \partial_x^2 & \tilde{D}_k(x) - \frac{i\Delta z_k}{4\kappa} \partial_x^2 \end{pmatrix} \begin{pmatrix} E^F(x, z_k) \\ E^B(x, z_k) \end{pmatrix}.$$
(33)

In this equation, the constants K_k and \tilde{K}_k are functions of ω , κ , z_k , and z_{k+1} , while $A_k(x)$, $B_k(x)$, $C_k(x)$, $D_k(x)$, $\tilde{A}_k(x)$, $\tilde{B}_k(x)$, $\tilde{C}_k(x)$, and $\tilde{D}_k(x)$ additionally depend on $\varepsilon_R(x, z_k)$ and $\varepsilon_R(x, z_{k+1})$.

Finite difference discretization at $x = x_j$ yields three terms at each side of the equation referring to the positions x_{j-1}, x_j , and x_{j+1}

$$\begin{split} M^{1}_{k,j}U(x_{j+1},z_{k+1}) + M^{2}_{k,j}U(x_{j},z_{k+1}) + M^{3}_{k,j}U(x_{j-1},z_{k+1}) \\ &= M^{4}_{k,j}U(x_{j+1},z_{k}) + M^{5}_{k,j}U(x_{j},z_{k}) + M^{6}_{k,j}U(x_{j-1},z_{k}) \end{split}$$

Manuscript received February 3, 2004.

G. K. M. Wachutka is with the Institute of Physics of Electrotechnology, Munich University of Technology, 80290 Munich, Germany.

Digital Object Identifier 10.1109/TCAD.2004.825598

 $\begin{array}{c|c}
\widetilde{E}_{+}^{l} & \varepsilon_{l} \\
\widetilde{E}_{-}^{l} & k_{z} \\
\widetilde{E}_{-}^{l} & -k_{z}^{l}
\end{array}$ $\begin{array}{c|c}
\varepsilon_{r} & \varepsilon_{r} \\
\widetilde{E}_{-}^{r} & k_{x} \\
\widetilde{E}_{-}^{r} & k_{x} \\
\widetilde{E}_{-}^{r} & k_{x} \\
\widetilde{E}_{-}^{r} & k_{x} \\
\widetilde{E}_{-}^{r} & \widetilde{E}_{+}^{r} \\
\end{array}$

Fig. 12. Impinging and emerging waves with wave vector component k_x at an interface z = 0 between two regions of different dielectric constants.

with

$$U(x_j, z_k) = \begin{pmatrix} E^F(x_j, z_k) \\ E^B(x_j, z_k) \end{pmatrix}.$$
(35)

The complex 2×2 matrices $M_{k,j}^{1...6}$ can be straightforwardly derived from (33). Defining the vector of unknowns [cf. (10)] by

$$U(z_k) = \left(E^F(x_1, z_k), E^B(x_1, z_k), \dots, E^F(x_{N_x}, z_k), E^B(x_{N_x}, z_k)\right)^T$$
(36)

we finally obtain the relation

$$M_{k,2}U(z_{k+1}) = M_{k,1}U(z_k).$$
(37)

With the complex 2×2 matrices $M_{k,j}^{1...6}$ [cf. (34)] as their coefficients, the matrices $M_{k,2}$ and $M_{k,1}$ are band structured with only one occupied superdiagonal and subdiagonal line. Thus, the propagator matrices $P_k = M_{k,2}^{-1}M_{k,1}$ can be calculated very efficiently by multiplying band-structured matrices.

APPENDIX B BOUNDARY CONDITIONS IN PROPAGATION DIRECTION

The impinging and emerging waves at an interface between the regions with dielectric constants $\varepsilon_{l,r}$ (cf. Fig. 12) are related by the refraction law [44]

$$\begin{pmatrix} \tilde{E}_{+}^{l}(k_{x},0)\\ \tilde{E}_{-}^{l}(k_{x},0) \end{pmatrix} = \begin{pmatrix} \frac{k_{x}^{l}+k_{x}^{r}}{2k_{z}^{l}} & \frac{k_{z}^{l}-k_{x}^{r}}{2k_{z}^{l}}\\ \frac{k_{z}^{l}-k_{x}^{r}}{2k_{z}^{l}} & \frac{k_{z}^{l}+k_{x}^{r}}{2k_{z}^{l}} \end{pmatrix} \begin{pmatrix} \tilde{E}_{+}^{r}(k_{x},0)\\ \tilde{E}_{-}^{r}(k_{x},0) \end{pmatrix}$$
(38)

with $k_z^{l,r} = \sqrt{\varepsilon_{l,r}k_0^2 - k_x^2}$. To derive the boundary conditions, the travelling waves have to be expressed in terms of the electric field E_y and the magnetic field B_x and finally in terms of the computational variables \tilde{E}^F and \tilde{E}^B [cf. (6)].

At the entrance plane $z = z_1$, the field \tilde{E}^l_+ is equal to the incident field \tilde{E}_i , while \tilde{E}^l_- represents the unknown reflected wave. ε_l is given by the dielectric constant ε_a in front of the entrance plane (i.e., for $z < z_1$). We thus get the boundary condition at the left hand boundary of the simulation domain (12) and the conditional equation of the reflected wave (13) with $k_z^a = \sqrt{\varepsilon_a k_0^2 - k_x^2}$.

(34)

R. Thalhammer is with Infineon Technologies, 81730 Munich, Germany (e-mail: robert.thalhammer@infineon.com).

For a compact notation, the components $\tilde{E}_i(k_x)$, $\tilde{E}_r(k_x)$, and $\tilde{E}_t(k_x)$ are summarized in the vectors \tilde{E}_i , \tilde{E}_r , and \tilde{E}_t , respectively. Defining $N_x \times 2N_x$ matrices $\tilde{B}^{a,b}_{\pm}$ by

$$\begin{bmatrix} \tilde{B}_{\pm}^{a,b} \end{bmatrix}_{i,2i} := \frac{1}{2} \left(1 \pm \frac{\kappa}{k_z^{a,b}} \right)$$

$$\begin{bmatrix} \tilde{B}_{\pm}^{a,b} \end{bmatrix}_{i,2i+1} := \frac{1}{2} \left(1 \mp \frac{\kappa}{k_z^{a,b}} \right), \quad \text{for } i = 1, \dots, N_x$$

$$\begin{bmatrix} \tilde{B}_{\pm}^{a,b} \end{bmatrix}_{i,j} := 0, \quad \text{otherwise}$$

$$(39)$$

transforms the boundary conditions to the form listed in (14).

REFERENCES

 R. K. Thalhammer and G. K. M. Wachutka, "Physically rigorous modeling of internal laser-probing techniques for microstructured semiconductor devices," *IEEE Trans. Computer-Aided Design*, vol. 23, pp. 60–70, Jan. 2004.