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Optimal IT Service Availability:
Shorter Outages, or Fewer?

Ulrik Franke

Abstract—High enterprise IT service availability is a key suc-
cess factor throughout many industries. While understanding of
the economic importance of availability management is becoming
more widespread, the implications for management of Service
Level Agreements (SLAs) and thinking about availability risk
management are just beginning to unfold.

This paper offers a framework within which to think about
availability management, highlighting the importance of variance
of outage costs. The importance of variance is demonstrated using
simulations on existing data sets of revenue data. An important
implication is that when outage costs are proportional to outage
duration, more but shorter outages should be preferred to fewer
but longer, in order to minimize variance.

Furthermore, two archetypal cases where the cost of an outage
depends non-linearly on its duration are considered. An optimal
outage length is derived, and some guidance is also given for
its application when the variance of hourly downtime costs is
considered.

The paper is concluded with a discussion about the feasibility
of the method, its practitioner relevance and its implications for
SLA management.

Index Terms—Service level agreements, optimization tech-
niques, availability, SLA management, fault management, policy-
based management.

I. INTRODUCTION

MANAGING enterprise IT services in order to maintain
high availability is a difficult yet very important task. In

a classic 1998 survey, IBM Global Services reported that the
cost of unplanned downtime to American businesses was $4.54
billion in 1996 [1]. The situation has not improved since. A
Gartner report, based on surveys conducted in 2007 and 2008,
concludes that the ”overall proportion of mission-critical IT
services continues to increase, along with the cost of business
downtime” [2]. In a recent survey, 178 enterprise IT system
executives and practitioners from Sweden and the German-
speaking countries were asked to assess future IT system
quality priorities in their companies. On a five point Likert
scale, 48.9% of respondents gave availability the highest mark,
making it the most highly prioritized system quality in the
survey [3]. Conversely, reliability and its costs were identified
as the second highest frustration with IT in a 2010 survey
among CEOs and senior business executives [4]. Furthermore,
the market value of publicly traded companies is affected by
IT incidents which disrupt business operations [5], [6], even
though this effect might be small [7].
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Design of high availability systems is an old field, but over
the decades focus has changed. Fifty years ago, hardware com-
ponents were the major source of faults and outages, whereas
operations, environment, and software faults have since caught
up [8]. This underscores the importance of business continuity
[9], [10], where the focus is on the services delivered, not on
the systems providing them. Naturally, executive visibility of
the costs associated with IT service downtime is important
[11], as is management of service level agreements (SLAs)
with availability specifications. One source, among many,
giving practical recommendations on SLAs is [12].

This paper offers a framework for thinking about IT service
availability that is more mature than the simple percentage
concept (e.g. 99.9%). Doing so, we will address at length
the issue of variance and the role it plays in investments and
SLA management. In a nutshell, the paper seeks to establish a
view of IT service availability similar to the mainstream view
on capital investment: any strategy for maximizing expected
returns must be considered also in the light of its risk, i.e. the
variance of the expected returns.

A. Outline

The remainder of the paper is structured as follows: Section
II introduces some related work. Section III introduces a
basic model of availability investment, which is extended in
Section IV. Some empirical examples follow in Section V.
Different decision-making strategies with regard to availability
are discussed in Section VI. Section VII discusses the fea-
sibility of applying the analytical model in practice and its
relevance for practitioners. Finally, Section VIII summarizes
the contribution and offers some concluding remarks.

II. RELATED WORK

Some good textbooks on the general area of IT systems
availability are [13], [14]. In [15] the authors present an ap-
proach for analytical service availability assessment, mapping
dependencies between low-level ICT infrastructure and high-
level services. In [16] a similar mapping is presented, but here
the focus is on the impact of ICT infrastructure availability
upon business processes. An effort to identify factors impact-
ing software reliability is presented in [17], where 32 factors
impacting software reliability are identified. In [18], 16 factors
affecting enterprise IT systems availability are presented,
subsequently evaluated in 9 case studies [19]. However, most
work on availability is delimited to very particular technical
areas. End-to-end discussions on how IT systems availability
impact business revenue are quite rare. While in [18], [19]
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the whole enterprise architecture is considered, the percentage
concept of availability is retained.

However, an early consideration of the market for ”fault-
less” telecommunications introduces an outage-cost concept
similar to ours [20]. The argument about telecommunications
can be readily extended also to more modern ICT systems.
Another work closely related to the present article is [21],
where the impact of computer breakdowns on pricing and
capacity decisions in companies is examined. One result is that
backup capacity should be acquired when computing is critical
to the firm. However, no analysis is made of the optimal
use of these backups. Another article by the same author
investigates pricing and capacity decisions of clustered twin-
computer systems subject to breakdowns [22]. In this context,
the conclusion is that it pays to reduce the mean time to repair
rather than to increase the mean time between failures. This is
an issue at the heart of the present article, though we consider
it in a more general setting.

One well-established and mature area of economic analysis
of the worth of reliability is power systems economics. Even
though reliability or availability of power delivery is not
identical to the issue of IT systems, parallels can be drawn.
This is all the more true in light of recent arguments about
the ”commoditization of IT”, making it more like electricity
[23]. For example, in [24] the reliability of power distribution
systems is investigated from a cost perspective: redundancy
schemes improve system reliability, but also entail double
investments. In [25], a cost-benefit method for determining
optimal power system capacity and reliability of electricity
supply using customer shortage costs is described. There is
also work, with numerical results, on finding reliability levels
that match customers’ willingness to pay [26]. An interest-
ing study on the impact of electricity outages on industrial
customers is reported in [27], indicating a large variation in
customer preferences for reliability. In [28], the willingness to
pay for reductions in power outages is investigated. The results
indicate that the marginal willingness to pay increases with
the duration of the previous outages and is higher if previous
outages occur during weekends and during winter months.
This highlights the importance of considering availability not
only as a mere percentage of uptime, but also its distribution
over time. Another supply security study is [29], where a
trade-off perspective for finding the optimal level is adopted:
reductions in the number of power interruptions are often
possible, but also very costly.

The research area of optimal SLA management is still grow-
ing, but has produced some interesting work. In [30] decision
models are derived that aim for optimally scheduled outages
(service-windows) in terms of lowest expected business im-
pact. This is similar to the present paper, except that our
interest is un-scheduled outages. Other research such as [31]
is related insofar as it attempts to find optimal managing and
pricing strategies for SLAs, but different in that availability is
not in focus. Still other papers such as [32] consider first and
foremost the specification of SLAs, rather than quantitative
risk analysis of them.

(a) Marcus & Stern version (b) ITIL version

Fig. 1. The availability continuum graphed against investment, reprinted
from [13] and the same with the axes flipped, reprinted from [34]. Note that
no scales are specified in either graph.

III. THE DECISION-MAKER’S PROBLEM

Availability refers to the ability of an item to perform its
required function at a stated instant of time or over a stated
period of time [33]. The average availability can be computed
as the Mean Time To Failure (MTTF) divided with the total
time of operation, which is the sum of MTTF and the Mean
Time To Repair or Mean Time To Restore (MTTR) as seen
in Eq. (1) [33]:

A =
MTTF

MTTF + MTTR
(1)

A more cautious availability estimate is found by instead using
the ”Maximum Time To Repair”, corresponding to a worst-
case scenario.

In a modern service-oriented environment of enterprise
information systems, availability is most often addressed at
the management level by contractual instruments such as
Service Level Agreements (SLA), Operational Level Agree-
ments (OLA), and Underpinning Contracts (UC), to use the
terminology of ITIL [34]. This raises the question of how these
documents ought best to be written. This question is both
qualitative – what KPIs should be used? – and quantitative
– what are their appropriate levels? The aim of the following
discussion is to offer a framework within which to think about
these issues.

A conceptual view of the relation between the investment in
availability of IT systems and the resulting actual availability,
reprinted in Fig. 1(a), is offered in [13]. A similar graph
is given in the popular ITIL practitioners’ framework [34],
seen in Fig. 1(b). What is displayed is a classic example
of diminishing returns. As described in [13], ”costs increase
until the cost curve nearly flattens out along the top” and
”the highest levels of availability approach but never quite
reach 100 percent”. The ITIL text similarly speaks of ”the
exponential cost of delivering higher levels of availability”.
Formalizing these descriptions, a function A = f(A0, c)
describing the relationship between investment c ≥ 0 (c for
cost) and resulting availability A ∈ [0, 1] should meet the
following requirements:

R1. f(A0, 0) = A0. This means that we start out at a
reference level A0, and if no investment is made, we
remain there.

R2. fc(A0, c) > 0. The function is monotonously in-
creasing, so any investment results in higher avail-
ability.
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Fig. 2. Availability (upper left), separate downtime costs and investment
costs (upper rights), and net costs according to Eq. 3 (lower left). α = 0.3
for all functions.

R3. fcc(A0, c) < 0. The rate of increase, however, is di-
minishing, so the availability improvement achieved
for each additional dollar invested shrinks.

R4. limc→∞ f(A0, c) = 1. As the amount invested
in availability approaches infinity, availability does
approach 100%.

Cases where investment leads to increased technical com-
plexity – and thus to more human errors – challenge
monotonicity. However, investments in availability should be
broadly construed to include both technical and organizational
investments, e.g. staff training.

What is gained by increasing availability? A simple formula
for the estimated average cost of 1 hour of downtime is the
following [35]:

Empl. costs/hour · % Empl’s affected by outage
+ Avg. Rev./hour · % Rev. affected by outage
= Estimated average cost of 1 hour of downtime

(2)

Multiplying this cost estimate with the number of hours per
operating year (e.g. 365 days · 24 hours for 24-7 systems),
gives a maximum potential loss L, a percentage of which
is actually lost due to unavailability. With availability A, the
losses are (1 − A)L, e.g. A = 95% entails a loss of 0.05L.
Observe that this hourly cost is constant, regardless of outage
duration, an assumption to be further analyzed in Section VI.

Adding the downtime costs to the investment costs, we
obtain a net cost function:

Net cost = (1− f(A0, c))L + c (3)

The rational decision maker ought to find the level of in-
vestment c∗ that minimizes this function. Note that c∗ will
always be smaller than (1 − A0)L, i.e. smaller than the
expected costs from outages ex ante. To see this, observe that
0 < A0L − f(A0, c

∗)L − c∗ < A0L − c∗, so 0 < A0L − c∗.
Thus, it is not the case that the budget for availability
improvements should equal the expected costs of outages (this
observation echoes one made in [36] on investments in IT
security). Figure 2 gives some graphical examples of different

functions that meet the requirements R1-R4:

f1(A0, c) = 1− (1−A0)e
−αc

f2(A0, c) = 1− 1−A0

1+αc

f3(A0, c) = A
1

1+cα

0

(4)

All the functions are parametrized with a parameter α ∈ (0, 1),
affecting their shape. It is, of course, difficult to see whether
function 1, 2, or 3 is the most likely candidate for the function
in Fig. 1(a), as depicted by [13] – or if still another function is
more suitable. Finding a suitable function is not our purpose
here – rather we discuss the issue conceptually.

Functions f1−f3 are depicted in Fig. 1(a), with A0 = .95%
and α = 0.3, to give an impression of their characteristics.
In the upper right sub-figure, the resulting availabilities have
been converted into downtime costs (i.e. 1 − fn(A0, c)L),
and supplemented with the investment cost c (i.e. the x = y
line). This amounts to graphing the two components of Eq. 3
separately, before adding them together as in the lower left
sub-figure.

To minimize the net cost, we need to find the zero of
the derivative of Eq. 3 with respect to c (assuming that the
optimal investment level c∗ is an interior point). This first
order condition on c∗ is:

fc(A0, c
∗)L = 1 (5)

For functions f1 and f2 this readily translates into nice
closed-form optima, whereas the f3 condition is somewhat
more cumbersome:

c∗1 = ln(α·L·(1−A0))
α

c∗2 =

√
(1−A0)·α·L−1

α
αc∗3

α−1

(1+c∗3
α)2 = −A

1+c∗3
α

0 L lnA0 must hold for c = c∗3
(6)

These optima are marked to the lower left in Fig. 2.
The model outlined so far is clearly an idealized one. Two

important complications can be readily discerned:
1) The use of average hourly revenues. The variance of

hourly revenues might make such an average mislead-
ing.

2) The use of average hourly downtime costs. Downtime
costs can vary with outage duration.

The focus of this article is the first of these complications,
which is addressed in the subsequent sections. Looking at
Eq. 2, the hourly revenues seem most prone to exhibit a large
variance. The second complication is then reviewed in the
latter part of Section VI.

IV. THE VARIANCE OF AVERAGE REVENUES

What happens to this optimization approach if the hourly
costs of downtime can vary? The simplest way to reflect
the variability of downtime costs is to make L a stochastic
variable. The stochastic version of Eq. 3 uses the expectation
of L:

Net cost = (1− f(A0, c))E[L] + c (7)

A confidence interval is found by adding or subtracting n (not
necessarily an integer) standard deviations from the result:

Net cost = (1− f(A0, c))(E[L]± n
√
V [L]) + c (8)
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For an unknown distribution of L, the Chebyshev inequality
can be used:

P (|L− μ| ≥ nσ) ≤ 1

n2
(9)

μ is the expectation and σ is the standard deviation of L.
Thus, at worst, 50% of observations will fall outside of E[L]±√
2
√
V [L], decreasing to 25% for n = 2, 11% for n = 3 etc.

For some known distributions we are much better off.
However, a better model accounts for the fact that the time

of occurrence greatly influences the outage cost. The total cost
of downtime is a sum over the set Out of hours when outages
occur, where each hour has a separate random cost variable
Li. The expected total cost is:

Net cost = (1 − f(A0, c))
∑

i∈Out

E[Li] + c (10)

The variances are more complicated. In general, V [X +
Y ] = V [X ]+V [Y ]+2Cov[X,Y ]. There are two extreme cases
to this equation: For independent random variables X and Y ,
V [X+Y ] = V [X ]+V [Y ], since the covariance is zero. For a
sum of the same random variable V [X +X ] = 4V [X ], since
Cov[X,X ] = V [X ], and in general V [aX ] = a2V [X ]. This
means that the variance exhibited by downtime costs summed
over outage hours can take several (approximate) forms:

V

[ ∑
i∈Out

Li

]
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

≈ |Out|2 · V [Li]
all Li approximately
the same

=

∑
i∈Out V [Li] +

2
∑∑

i<jCov[Li, Lj ]
in general

≈ ∑
i∈Out V [Li]

all Li approximately
independent

(11)
Are any of the approximate cases plausible? One way to

look at the problem is as follows: assume that the random vari-
ables in the series of hours for the whole year (365 days times
24 hours for continuously running systems) L1, . . . , L365·24 all
belong to some distribution D: Li ∈ D. If outage hours are
picked uniformly over the year, the Li ∈ Out are more or less
independent, and the variance of their sum should look more
or less like the third alternative above. However, if outage
hours are not uniformly picked, but appear together in longer
outages of consecutive hours, they become more dependent.
For example, two consecutive outage hours in a retail business
before Christmas probably have a greater covariance than one
hour from before Christmas and one hour from a February
Monday morning. So, as outages become fewer, we move
towards the first case – all Li approximately the same – which
might be a useful approximation for a single long outage of
consecutive (and similar) hours.

Thus, the number of outages plays an important role for the
variance of downtime costs, since it determines whether outage
hours are mostly consecutive or non-consecutive. The most
basic model used in reliability theory to find this number is to
model the occurrence of failures as a homogeneous Poisson
process (HPP) [37], which will be used in this paper. The
probability that a failure occurs exactly n times in the time
interval [0, t] is

P (N(t) = n) =
(λt)n

n!
e−λt for n ∈ N (12)

N(t) belongs to the Poisson distribution: N(t) ∈ Po(λt). λt
is the expected number of outages in [0, t]: the product of λ,
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Fig. 3. Overview of Dataset 1.

the intensity of the HPP [occurrences/time] and t, the length
of the time interval.

V. EMPIRICAL REVENUE DATA

To shed some empirical light on the theoretical discussion
of the previous section, this section applies the theory to two
datasets of approximate downtime costs.

A. Dataset 1

The first dataset reflects hourly revenues for the Swedish
retail business during a year. It is based on [38], a report from
the Swedish Retail Institute (HUI) with revenue statistics from
the Swedish retail sector. The report contains annual revenue
distribution over months, weekly revenue distributions over
hours from 9 a.m. to 10 p.m. each day (for normal weeks and
payweeks) and the impact of holidays (e.g. Christmas and
Easter). Based on these statistics, a dataset of 13 hours times
365 days was generated and normalized, reflecting relative
hourly revenues over the year. The dataset most closely reflects
revenues in the consumer goods market, since the hourly
statistics is based on supermarkets. An overview of Dataset 1
is given in Fig. 3, which also presents a boxplot with the lower
quartile, median, and upper quartile values marked. As seen in
Fig. 3, there is lot of variance. The hour with the least revenue
contributes 0.0053% of annual revenue, whereas the hour with
the most revenue contributes 0.0670%, i.e. more than 12 times
as much. A single high revenue hour outage might cost as
much as a dozen low revenue hour outages. Furthermore,
since the dataset has been computed backwards from statistical
averages, this variance is actually a lower bound.

Eq. 11 requires a suitable model for Li, the stochastic vari-
able representing hourly downtime costs. Using the standard
method of quantile-quantile plots, we find that Dataset 1 can
be approximated reasonably well by a Gamma distribution,
a Rayleigh distribution or a Weibull distribution. For its
mathematical simplicity, we use the Rayleigh distribution,
Li ∈ R(σ):

fLi(x) =
x
σ2 e

−x2/2σ2

E[Li] = σ
√

π/2 V [Li] = 2σ2
(
1− π

4

)
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Fig. 4. Means and standard deviations as predicted by the Rayleigh model
and as simulated from Dataset 1.

For Dataset 1, the maximum likelihood estimate gives σ ≈
0.0165.

To investigate the implications for optimal decision-making
in terms of Eqs. 10 and 11, Monte Carlo simulations were
made where outage hours were randomly selected from
Dataset 1 corresponding (i) to different availability invest-
ments, giving different availabilities according to f1 of Fig. 2,
(ii) to different expected numbers of outages according to
Eq. 12. For example, the investment case resulting in 97%
availability corresponds to simulating 3% · 4745 = 142.35
hours of downtime. These hours were drawn from Dataset 1
with an expected number n of 200, 50, 10, 5, 3, and 1 outages
by Eq. 12, i.e. with expected average outage length ranging
from less than one hour to more than 142 hours. Each of these
cases was simulated 1 000 times. The results are plotted in
Fig. 4. It should be stressed that the six scenarios all show the
same levels of availability – the difference is that the downtime
is distributed over more or less outages. In each of the sub-
figures in Fig. 4, as we move to the right the investment
in availability is increased, as is availability as such. In this
respect, Fig. 4 is just like the lower left sub-figure of Fig. 2. In
each of the six sub-figures, the blue dashed lines are depictions
of the Rayleigh model. Five such lines are plotted: the one in
the middle is the mean (i.e. E[Li] = σ

√
π/2), moving out

from the middle it is followed by two lines denoting a single
standard deviation (E[Li]± h

√
V [Li]) under the assumption
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of independent Li (cf. Eq. 11, and then by two lines denoting
a single standard deviation (E[Li] ± h2

√
V [Li]) under the

assumption of Li from the same distribution. h is the number
of outage hours. The blue dashed Rayleigh lines are identical
in all sub-figures, and are provided for reference.

The expected number of outages is given in the title of each
sub-plot – the actual number of outages is of course different
between each simulation round. The three red lines describe
the results. Again, the one in the middle is the mean, whereas
the two others represent E[

∑
Li]±

√
V [
∑

Li], based on the
empirical standard deviation of the simulated sample.

From the series of sub-figures a few observations can be
made. First, the Rayleigh approximation seems to be adequate
– its mean and standard deviation matches the simulations
based on Dataset 1 for the situations with reasonably many
outages. Second, as the number of outages decreases, the
standard deviation grows – it resides somewhere in the interval
between the limiting cases of (i) independent or (ii) identical
approximations of Eq. 11. Third, when the expected number
of outages is just a single one, the mean drops significantly.
The reason is that a fair share (e−1 ≈ 37%) of the simulations
will now have zero outages, with a corresponding zero cost
of downtime. As seen in the graph, this change also entails a
greater standard deviation.

B. Dataset 2

Dataset 2 represents trading volumes on the Elspot market
of Nord Pool Spot – the largest physical power market in
the world. The dataset was created by multiplying hourly
energy volumes [MWh] with hourly prices [AC/MWh] for 2009,
both of which are readily available at the Nord Pool website
(www.nordpoolspot.com). Figure 5 illustrates the dataset
– a rare example of a business process running continuously,
24 hours day, 7 days a week, every week of the year. Other
stock markets typically close and open every day. It comprises
the hourly trading volume for every hour of 2009, except for
four anomalous hours in the statistics provided – 8756 hours
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Fig. 6. Means and standard deviations as predicted by the Rayleigh model
and as simulated from Dataset 2.

in all. As evident from Fig. 5, there is a seasonal variation –
the trading volume is greater in the winter than in the summer.

A disadvantage is that the connection between the monetary
trading volume and the actual downtime cost (as stipulated
in Eq. 2) is somewhat disputable. However, even though
a large trading volume does not necessarily mean a large
downtime cost, there is some correlation. Even though the
best measure of downtime cost on the power market might
not even be monetary, the monetary volume hints at the
amount of adjustments that are necessary to meet the balance
requirements in the power grid. Furthermore, for the purpose
of the article, we might disregard the context and just consider
an interesting IT system, running 24/7, facilitating the transfer
of large amounts of money (285.5 TWh were traded on the
Elspot market in 2009, at an average price of 35.02 AC/MWh),
with readily available data.

To model Li, we again select the Rayleigh distribution using
quantile-quantile plots. For Dataset 2, the maximum likelihood
estimate of the Rayleigh parameter gives σ ≈ 0.0086. Figure
6 displays simulations for Dataset 2 corresponding to those
for Dataset 1 in Fig. 4. Again, Monte Carlo simulations
were made where each given availability investment level was
simulated under conditions of different expected numbers of
outages. Each of the cases was simulated 1 000 times.

Considering the two sets of simulations, it seems that the
simple model for optimal availability investments epitomized

by Eq. 5 is relatively robust in terms of means. The Rayleigh
distribution approximation also appears adequate to yield more
or less optimal investment levels c∗. This is true to the extent
that the minima of modeled and simulated net costs coincide
in Figs. 4 and 6, as they do rather nicely in most cases.

However, with a decreasing number of expected outages,
the standard deviation grows. As observed in section IV, a
prudent decision-maker would like to make an investment with
a certain confidence interval, as expressed by the Chebyshev
inequality (Eq. 9). Since both sets of simulations show that
the standard deviation of the costs grows steadily as the
number of outages decreases, the prudent decision maker
might trade a somewhat higher expected cost for a somewhat
lower standard deviation, i.e. prefer a solution with many short
outages to a solution with fewer and longer outages, even if
the first on average has slightly more downtime. Exploring the
implications of this for optimal decision-making is the subject
of the next section.

VI. AVAILABILITY MANAGEMENT STRATEGIES

A. Prudent decision-making

The simulations based on empirical data confirm that the
decision problem of section III is a bit naive. To make optimal
decisions, we need to take account both of availability A (as
defined in Eq. 1) and the number of outages N (which might
be modeled as in Eq. 12).

In section III, we implicitly took for granted that the relevant
preferences concerning availability of IT systems are simply
the expected monetary net cost, which is to be minimized.
This makes perfect sense in the deterministic case, but it is not
necessarily as sensible in the presence of uncertain outcomes,
as our variance studies showed.

Figure 7 uses the cost distribution of dataset 2 to show
simulated net cost outcomes with 95.5% availability (an
arbitrarily chosen figure, non-optimal by Eq. 5) and 96.7%
availability (the optimal figure by Eq. 5) for different expected
numbers of Poisson outages. Each boxplot is based on 1 000
simulations. The relation between investment c and availability
is that of function f1 of Fig. 2, with α = 0.3. Studying these
figures, we can observe the same trends that were described
in the previous section. As the number of outages drops, the
mean expected net cost holds relatively steady, whereas the
variance grows. For the cases of 5 or 3 expected outages, zero
downtime simulations start to appear, lowering the smallest
costs down to the baseline cost for having the expected average
availability of 95.5% or 96.7%, respectively. On the other
hand, the largest costs observed climb correspondingly. So,
what should be preferred to what?

Decision rule 1 (Minimize expected net cost): Choosing
between alternatives, the alternative with the lowest expected
net cost should be selected.

Minimizing the expected net costs is popular and straight-
forward. With this strategy, variance does not matter, and the
alternatives depicted in Fig. 7 are ordered from worst to best
(A ≺ B means that B is preferred to A) like this:

(95.5%, 10) ≺ (95.5%, 200) ≺ (95.5%, 50) ≺ (95.5%, 5) ≺
(96.7%, 10) ≺ (95.5%, 3) ≺ (96.7%, 200) ≺ (96.7%, 50) ≺
(96.7%, 5) ≺ (96.7%, 3)
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Fig. 7. Simulated net cost outcomes with 95.5% availability (left, non-optimal by Eq. 5) and 96.6667% availability (right, optimal by Eq. 5) for different
expected numbers of Poisson outages with costs from dataset 2. Each boxplot is based on 1 000 simulations.

Of course, not all of the differences are statistically significant,
but the principle is clear. On average, the expected cost of the
”suboptimal” 95.5% availability alternatives is slightly higher
than that of the ”optimal” 96.7% availability alternatives – as
is to be expected. However, this is not a strict rule: With only
3 outages, 95.5% actually perfomes better than 96.7% with
10 outages. Of course, another 1 000 simulations might give
a different result, but this again underlines the importance of
variance.

Minimizing expected cost derives much of its force from the
argument that if it is adhered to in a long series of repeated
cases, the result will be better than by any other strategy.
However, when the number of outages approaches just a few,
this argument loses some of its force. What good is it to be
better off on on average if there are just a few outcomes,
and those were bad? This is the rationale for more cautious
decision rules:

Decision rule 2 (Minimize maximum net cost): Choosing
between alternatives, the worst outcomes of all the alternatives
should be evaluated, and the alternative with the best worst
outcome, i.e. the smallest maximum cost, should be selected.

This rule, Minimax for short, is usually applied for decisions
under ignorance, i.e. when no probabilities are known [39].
Nevertheless, it can be applied to the alternatives depicted in
Fig. 7, ordering them from worst to best:

(95.5%, 3) ≺ (95.5%, 5) ≺ (96.7%, 3) ≺ (96.7%, 5) ≺
(95.5%, 10) ≺ (96.7%, 10) ≺ (95.5%, 50) ≺
(96.7%, 50) ≺ (95.5%, 200) ≺ (96.7%, 200)

It is striking that the most preferred alternative under the
Minimize expected cost rule, (96.7%,3), turns out to be the
third worst alternative under the Minimax rule. With just
three expected outages, they might occur at very critical
times, and last for a long time (in this example, based on
dataset 2, that corresponds to long outages during a cold snap,
when electricity prices are very high). So, while favorable
on average, (96.7%,3) also offers a large potential setback.
Splitting the outage duration into 200 different occurences
gives a much smaller variance.

Of course, Decision rule 2 might seem overly cautious and
pessimistic: it decides based on the worst possible outcome.
The worst outcome (i.e. the smallest maximum cost) is typ-
ically an outlier (the boxplots mark as outliers, with a red +
symbol, any value situated more than 1.5 interquartile range
above the third quartile or below the first). To accommodate
for this, less outlier-sensitive cautious rules could be devised,
where it is not the maximum costs that should be considered,
but for instance the third quartile. Such rules will still be
cautious, but not quite as pessimistic as the minimax rule.

The different decision rules and orderings again underline
the fact that a single availability figure (e.g. 99%) is ambiguous
and needs to be supplemented with the number of outages.
The discussion so far indicates that among strategies that are
equivalent in terms of availability as a percentage, it is prudent
to select the strategy with many short outages rather than a
few long. However, such a recommendation is only valid for
particular scenarios, since the decision also highly depends on
the type of business and service run. We now turn to a more
formal consideration of this question.

B. Non-linear hourly outage costs

In section III, we make the simplifying assumption that
the financial losses L incurred by an outage are simply
proportional to the outage duration t. While useful as a first
approximation, this is clearly not true. It is instructive to
consider two archetypal cases of how this assumption fails:

Fixed restart cost For some services, each outage entails
a fixed cost for restarting equipment and getting
the business process back to where it was. The
archetypal case is an IT service connected to a
physical industrial process, e.g. a rolling mill. It is
easy to understand that working temperatures in the
1 000 ◦C range and daily supply chains involving
thousands of metric tons make each and every un-
planned restart of sch a system very expensive.

Snowball effect For some services, short outages can
go unnoticed. In a workshop conducted in May
2011, a number of practitioners from the enterprises
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Fig. 8. Different conceptual loss functions L of outage duration t.

participating in the study described in [19] had the
opportunity to discuss issues related to availability
modeling and prediction. Consider three example
given during the workshop: (i) An automated teller
machine (ATM) out of bills to dispense can still
deliberately be kept open for transactions. Customers
will notice a closed ATM as being down, whereas
the customer who cannot make a withdrawal from
an open ATM will not necessarily consider it an
outage. (ii) In Internet banking, a small hiccup
will just make the customer reload the website, no
harm done. (iii) A credit card transaction that fails
will most often just result in the customer trying
again. However, if the outage persists, not only will
that particular transaction fail, but other customers
standing in line behind will leave the store, (or stop
using that ATM brand, or switch to a bank offering
more reliable Internet banking) creating a snowball
effect in which the losses by far surpass the loss of
expected revenue during the outage itself.

Fig. 8 depicts different conceptual loss functions: First we
have the linear assumption of losses proportional to outage
duration, followed by the two archetypes, and to the lower
right a mixture of the archetypes. The figure also suggests
simple mathematical models for each case.

Clearly, the archetypal cases pull in different directions
when it comes to the trade-off between shorter outages or
fewer. With a fixed restart cost, it is preferable to have fewer
outages, so that fewer restart costs will have to be paid. With
a snowball effect, it is preferable to have shorter outages, so
as to avoid the accelerating cost of longer outages. Again, this
assumes a fixed level of availability. Using the mixed model
of Fig. 8, a cumulative annual loss function is easy to find:

L = n

(
ε

(
h

n

)2

+ ζ

(
h

n

)
+ η

)
(13)

As before, h is the number of outage hours (e.g. 87.6 for
99% availability on a 24-7 service) and n is the number of

outages these hours are distributed over. The optimal number
of outages n∗ is given by setting the derivative with respect
to n to zero, i.e. the first order condition:

Ln = −ε

(
h

n∗

)2

+ η = 0 ⇒ n∗ = h

√
ε

η
(14)

n∗ thus optimally balances the conflicting driving forces of
the archetypal cases.

In a deterministic world, n∗ would be the end of the story.
However, we know from Section V that the ζ parameter –
the outage cost per hour – exhibits a lot of variance. Re-
using the Rayleigh approximation, we can again consider the
two limiting cases of variance from Eq. 11. Fig. 9 depicts the
cumulative annual loss function with three different parameter
settings (ε, ζ, η) along with standard deviations plotted as
in Figs. 4 and 6. Note that the inner limiting case almost
coincides with the mean in the two first cases; only in the last
case is it clearly visible.

In the leftmost figure, the snowball effect is comparably
large to the fixed restart cost. With a low fixed restart cost, it
might be prudent to aim for a greater number of outages than
n∗, in order to make sure that the standard deviation is closer
to the inner than the outer limiting case. This can be contrasted
with the case depicted in the middle. Here, the fixed restart
cost is much larger, so moving to more outages in order to
reduce variance does not seem like a good idea. The rightmost
figure again exhibits a sizable fixed restart cost. Here, however,
the standard deviation in its outer limiting case is large enough
to warrant a move to a number of outages greater than n∗, in
order to keep variance down, even though this increases the
expected total loss.

Thus, even with a known analytical model for the optimal
number of outages, it might be worth to aim for a number
of outages greater than n∗, considering variance, as is clearly
shown in Fig. 9.

This particular analytical model should, of course, be taken
with a grain of salt. However, the qualitative phenomena of
fixed restart cost and snowball effect are real. This section
shows that even in the presence of such effects, it is important
to keep in mind the variance of hourly costs. Sometimes this
variance overshadows non-linear effects, sometimes it does
not.

C. Increase MTTF or decrease MTTR?

Eq. 5 gives a first order condition for an optimal investment
in availability. To realize higher availability, such an invest-
ment can employ either one, or both, of two different strategies
inferred from Eq. 1:

Increase the MTTF This will result in fewer outages per
time unit, leading to higher availability. (A mech-
anism to achieve this might be the introduction
of redundant system parts with automatic failover
switching.)

Decrease the MTTR This will result in shorter outages
whenever they occur, leading to higher availability.
(A mechanism to achieve this might be to train repair
crews better.)
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Fig. 9. Optimal number of outages n∗ for a mixed loss function with different parameters. Standard deviations based on the Rayleigh approximation for ζ
and on the two limiting cases of Eq. 11.

In the light of this, the discussion in this section can be
summarized like this:

1) In the case of a linear loss function, i.e. the cost per
downtime hour not being affected by the outage length,
decreasing MTTR is preferable to increasing MTTF. The
reason is the lower variance of the resulting availability
and hence the lower worst-case cost. This is the basic
case considered using empirical data and simulations in
Section V.

2) In the case of a fixed restart cost loss function, increas-
ing MTTF is generally preferable to decreasing MTTR.

3) In the case of a loss function with snowball effect,
decreasing MTTR is generally preferable to increasing
MTTF.

4) In the general case of a loss function with both fixed
restart cost and snowball effect, Eq. 14 gives a first order
condition for an expected optimal number of outages.
However, the variance of the hourly outage cost can still
make it prudent to aim for a greater number of outages
than this expected optimum.

VII. ANALYSIS

A. Feasibility

In order to make the approach described in the previous few
sections as valuable as possible to decision makers, a number
of functions, distributions and parameters must be obtained.

First, functions like the examples in Section 4 must be
found. This task basically amounts to finding how much
availability is increased when various actions are taken to
improve it. While this is a difficult task, it is not impossible.
In [18], an expert-based causal model is presented, where
the relative importance of 16 factors affecting availability is
accounted for. Using this model, it is possible to predict,
quantitatively, to what extent a given action is likely to in-
crease availability of an enterprise IT system. This framework
is further detailed and tested in 9 industrial case studies
in [19], where the model is also cast into a form based
on standardized ITIL terminology. Renowned consultancy

firm Gartner offers another model, quantifying the relation
between investment and availability [40]. Here, the authors
define a baseline cost X corresponding to a ”standard IT
service”. Making such a service ”highly available” (defined as
a minimum of 99.3% availability) is assessed to cost 2.15X .
Moving up to ”continuous availability” (99.81%) is assessed
to cost 6.45X . The final step on the Gartner ladder is dubbed
”multisite continuous availability”, deemed to cost 8.6X . A
third example of an investment-availabilty functional model
is found in [24]. Even though this model makes assumptions
somewhat different from requirements R1-R4, it nevertheless
demonstrates the feasibility of finding the desired functional
forms. To conclude, it is clear that functions such as 4 can
indeed be found.

Second, downtime durations and distributions should be
found. There are numerous papers that have empirically ex-
plored the repair rate of various types of failures, e.g. [41]–
[43]. However, these contributions typically do not deal with
enterprise level services, but rather with particular applications
such as parallel computing, or with de-bugging software.
However, in a recent study, restore times of enterprise IT
services in a large Nordic bank were studied, based on a
dataset of more than 2 000 incidents [44]. A lognormal
distribution was found to best represent the distribution of
restore times. It is instructive to consider a few examples: For
a service with 848 downtime incidents to analyze, the 95%
confidence intervals for the parameter estimates μ̂ and σ̂ of the
lognormal distribution were μ̂ ∈ [4.41, 4.62], σ̂ ∈ [1.50, 1.65].
For another service, with just 49 downtime incidents in the
sample, the corresponding estimates were μ̂ ∈ [3.44, 4.20],
σ̂ ∈ [1.11, 1.66]. To conclude, it is clear that downtime
durations and distributions can indeed be estimated with good
precision, even on the enterprise service level.

Third, the fixed restart and snowball effects need to be
quantified. Fixed restart costs are relatively transparent to
the companies affected. Snowball effects, on the other hand,
are typically more dependent on customer behavior, and thus
harder to predict. A qualitative discussion of how service
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managers can control customer perception of a queuing expe-
rience is found in [45], whereas [46] offers quantitative results
on how reliability, among other factors, affects customer
perceptions of e-service quality in online shopping. Another
detailed analysis of customer behavior in face of delays is
found in [47]. Using such sources, an estimate of the snowball
effect can be obtained.

Fourth, an enlightened trade-off between MTTF and MTTR,
as described at the end of Section VI, requires robust estimates
of these figures. An interview-based method for obtaining
such estimates is proposed and empirically tested in [48],
where enterprise architecture models are used to estimate
the availability of 5 enterprise services from the banking
and electric utility industries. The annual downtime estimates
found using this method were always within eight hours from
the actual downtimes. Since no case study required more than
twenty man-hours of work (including making the architectural
models, conducting interviews, and make calculations), this
demonstrates that accurate MTTF and MTTR values for en-
terprise IT services can be found relatively easy. This method
is particularly useful if logs (cf. above) are not available.

B. Practitioner relevance and SLA management

Is it really the case that practitioners do not know how to
invest to improve availability? Recall the workshop referred
to above. The participants, mostly from the financial industry,
agreed that even when action lists for improving availability
are decided upon, no predictions are made of the consequences
of individual actions. Clearly, this is an area where the results
of this paper can give some guidance.

Furthermore, the workshop participants noted that many
companies are immature when it comes to writing service
level agreements (SLAs). This is critical, as the use of external
services is becoming ever more common and their complexity
is increased by having services delivered by sub-contractors
to sub-contractors, i.e. service layering. The workshop par-
ticipants noted that a lot of mistakes when it comes to SLA
management are made not by the service provider, but rather
internally. Poor requirements analysis can lead to fulfilled
SLAs but dissatisfied users or customers.

One key lesson of the present paper is the importance
of viewing availability as a more complex concept than a
mere percentage. The number and duration of outages also
need to be taken into account. However, when it comes to
writing SLAs, well-regarded practitioner sources such as ITIL
and Gartner offer a mixed bag, sometimes reflecting the full
complexity of availability, sometimes not.

The importance of outage duration in SLAs is consistent
with some Gartner recommendations such as [40], where the
criticality of mean-time-to-restore-service (MTRS) is stressed,
and [12] which includes response times (a key part of MTTR)
as a key SLA element. However, in a Gartner report on
cloud-based contact center services, while stressing SLA
importance, only availability percentages are discussed [49].
Similarly, another report titled ”Best Practices for Service-
Level Agreements for Software as a Service” fails to address
the importance of outage duration [50].

The ITIL framework, in appendix F to the volume on ser-
vice design, contains a sample SLA [34]. This SLA suggests

that an availability target be specified as a percentage, and also
that a maximum number of service breaks be stipulated. How-
ever, a maximum outage duration (i.e. a maximum MTTR) is
not specified in the template.

As for the state of the practice, several trends can be
observed. One finding very much in line with the verdict of
the practitioner workshop is a Gartner survey where only 46%
of the respondents in a 2008 questionnaire at all had formal
availability SLAs for their mission-critical IT services [2]. On
the other hand, the same survey showed that more than 50%
of the audience had a Recovery Time Objective (RTO) of one
hour or less for top-tier, mission-critical applications.

The main implications of our investigation for SLA manage-
ment are the bullet points at the end of Section VI. However,
when applying them, one should always be aware that there
is a potential conflict of interest between the service provider
and the service consumer. For example, even if the service
consumer would like to achieve an availability goal with
shorter outages, rather than fewer (following the arguments
above), the service provider might find it more convenient to
do the opposite. If the SLA is written only with respect to an
availability percentage, a service provider might install new
components with a better MTTF and simultaneously cut back
on the staff doing restores. Thus the availability percentage is
preserved, but not in the way most beneficial to the consumer.

Another important insight from Section VI is that no service
level requirement should be taken for granted. An ambi-
tious service level requirement from the business side should
sometimes be negotiated down – it might not be worth the
cost. This is well known. However, a mandatory service level
requirement, such as one mandated by law, should sometimes
be negotiated up – it might be worth the extra cost. All service
level requirements ought thus to be scrutinized using Eqs. 5
and 14, without exception.

VIII. CONCLUSIONS

We have shown the importance of seeing availability not
as a mere percentage, but as a more complex phenomenon,
where the number of outages and their duration, as well as
the variance of hourly downtime costs, play important roles.

The importance of variance was demonstrated using sim-
ulations on existing data sets of revenue data. An important
implication is that when outage costs are proportional to out-
age duration, more but shorter outages should be preferred to
fewer but longer, in order to minimize variance. Furthermore,
we considered two archetypal cases where the cost of an
outage depends non-linearly on its duration: (i) the case of
fixed restart costs and (ii) the case of a snowball effect. An
optimal outage length was derived for this case, but some
necessary guidance was also given for how to apply this rule
when the variance of hourly downtime costs is considered.

The mathematical nature of the analysis makes it suitable
for implementation in a tool. Some feasibility issues were
discussed in the paper, including a survey of how the necessary
data could be acquired. While some information, such as
functional forms, are suitable to be derived from academic
publications, most of the data needs to be supplied as a
business intelligence-solution, where statistics both from the
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financial and the operations department are continuously fed
and integrated for analysis. Implementing such a tool, and
evaluating it in a corporate setting with an approprite design
science methodology, is a possibility for future work. Judging
from practitioner experience, one important area of application
is writing service level agreements. The state of the practice
is mixed, and far from all SLAs written consider availability
to be more than a mere percentage.

Two additional important themes for future work have been
identified: First, there is a need for more research on the
functional relationship between investment in different solu-
tions (independent variable) and resulting average availability
and number of outages (dependent variables). The existing
academic literature is quite void in this respect, but our results
indicate that this is a crucial connection to investigate further.

Second, as outsourcing and service-orientation grow ever
more popular, the relationship between service-providers and
service-consumers ought to be investigated using game theory
in the spirit of [51]. By acknowledging that service providers
and service consumers can have conflicting as well as mutual
interests, a game-theoretic approach can bring a lot of clarity
to the activity of writing SLAs.
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