Talk to Your Semantic Web

Craig W. Thompson ¢ University of Arkansas
Paul Pazandak ¢ Object Services and Consulting
Harry R. Tennant ¢ Harry Tennant and Associates

communicating with computers, yet that

capability remains the grand challenge prob-
lem it was 30 years ago in the hey-day of question-
answering systems. Back then, we knew how to
parse sentences using augmented finite state
machines and context-free and transformational
grammars, and could translate results into SQL,
predicate calculus, or equivalent semantic net-
works. We knew we’d need more powerful repre-
sentations, so we targeted or invented temporal
logics, modal logics, and nonmonotonic logics. But
by the 1980s, we realized that we had only
scratched the surface — just beneath was a complex
of common-sense meaning representations, then
referred to as frames, scripts, and knowledge rep-
resentations. At present, we’ve made real progress
in natural language technologies: keyword-based
information retrieval is in everyday use; spelling
and grammar checkers are commonplace; speech-
to-text and text-to-speech utilities are widely avail-
able if not yet an integral part of how most people
communicate with computers; and limited but use-
ful translation services on the Web convert docu-
ments from one language to another. But we still
cannot successfully use natural language to query
and command computers.

To understand the difficulty, try typing or
speaking to a system that has a natural language
interface (NLI) — it won’t understand many of your
questions and commands because they overshoot
the capabilities of the NLI system or the underlying
application to which it interfaces. Not only that,
you can’t really know what you can ask about —
does the system handle map or statistical queries?
— so your questions and commands also under-
shoot the system’s capabilities. This mismatch
between user expectations and NLI system capa-
bilities is called the habitability problem.

We've developed LingoLogic, an interface tech-

N atural language seems like a great idea for

IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE

Architectural Perspectives

nology that uses menus to specify natural language
queries and commands in order to combat the hab-
itability problem.! It doesn’t claim to provide deep
understanding of natural language. Rather, we see it
as a potentially widely useful human interface tech-
nology that can extend the Semantic Web.

Menu-Based Natural

Language Interfaces

LingoLogic technology uses standard NLI technol-
ogy in a directed completion-based way to restrict
the user to performing commands and queries that
the underlying system can understand. The tech-
nology targets an unfilled niche in user interface
design that lets untrained users make complex
queries and commands. LingoLogic interface
development is much easier than traditional NLI
development, which must cover every possible
way of expressing a question or command.

The user composes a sentence either by typing
it in or selecting items from a cascade of menus
driven by a grammar and predictive parser.
Domain experts provide domain-specific pop-up
menu support for specifying values. When the user
selects an expert, a menu supports the user in
specifying a value (Figure 1).

The user can also choose from the following
options:

e Restart erases the entire sentence and reinitial-
izes the parser to begin again.

e Rubout erases the last phrase selected.

e Translate translates the sentence to a target
language, such as SQL.

e Exrecute translates the sentence, sends a message
to the target application, and displays the result.

In the case of relational databases, default stan-

dard grammars and translations are provided and
can be automatically combined with DBMS

Published by the IEEE Computer Society

NOVEMBER e DECEMBER 2005

75

Architectural Perspectives

K;: LingoLogic - "‘- Dlxl
file Commands Tools Format Help
~|Restart| |undo|Rubout| |Translate Execute|
List the elephants whose herd is
CONTINUE
Entities
‘ *CONTINUE*
Attributes Aftributes
herd ’ whose nameis »
time *| whose location is »
basal skinresponse » whose altitude is »
pulse * whose velocity is »
blood pressure *| whose air temperature is »
bodytemperature »| whose humidity is »
humidity ' whose bodytemperatureis »
air temperature *| whose blood pressure is »
velocity ' whose pulseis »
altitude * whose basal skin responseis »
location ' whosetimeis »
m » Miscellaneous
Miscellaneous {
count of the » Actions
average »| -format the report
minimum » Choose one
maximum »
std deviation of the > [nero_t]
el

Figure 1. Specifying a natural language query using a LingoLogic interface. A
user selects words and phrases from menus to create a query. Using menus
avoids the habitability problem and ensures that users cannot overshoot or

undershoot the interface’s capabilities.

schemas at runtime to automate the
generation of LingoLogic interfaces to
DBMS systems that use SQL. After
phrasing a query, the user can see the
translation or execute the query.

The LingoLogic interface developer —
either an end user or someone who
builds interfaces for end users —
employs an interface generator to
produce new interfaces for relational
databases. The generator attaches to any
open database connectivity (ODBC)
database and extracts schema and other
information. These parameterize a
grammar and lexicon so that a new Lin-
goLogic interface is ready for use at the
push of a button, as Figure 2 shows.

LingoLogic System Architecture

In its simplest form, a LingoLogic sys-
tem is a kind of translator. It acts sim-
ilarly to how a compiler translates
from a higher-level language source to

76 NOVEMBER e DECEMBER 2005

a target lower-level language, except
that it is left-to-right completion dri-
ven. The architecture, shown in Figure
3, consists of

e auser interface that displays a col-
lection of menu selections. The user
selects one of these and this choice
is returned to the parser;

e a grammar and lexicon that defines
the language the LingoLogic sys-
tem recognizes, as well as defines
how to translate to a target sys-
tem’s interface language;

e a parser that uses the grammar and
lexicon, parses one word or phrase
at a time, and computes the com-
pletion of the next legal words or
phrases, which it then sends to the
user interface.

After the user completes a question or
command, the system translates it into

www.computer.org/internet/

a command that is sent to the back-end
system for execution. For instance, if the
translation results in a SQL query, the
query is sent to a DBMS and an answer
is returned.

Extending the Semantic

Web with LingoLogic

In its earliest, simplest form, the World
Wide Web consisted of client-side
browsers that could display HTML doc-
uments to users — that is, it was a
document server with a nice user inter-
face. Now, though, the Web is much
more sophisticated, and many of its
pages are created on the fly. In the past
several years, a more semantically rich
Web has been the focus of much
research,? with a goal of extending the
Web so that programs can communi-
cate with each other. Toward this end,
Web page developers would add meta-
data to Web pages to include classifi-
cation information and rules among
other data. This extra information can
be discovered and added to registries,
and programs can then find the meta-
data and use it to better process other
remote content. So far, the most suc-
cessful form of metadata is Web service
interfaces. These can be written in Web
Service Description Language and reg-
istered in UDDI interface broker reposi-
tories on the Web; other programs can
then connect to these remote Web ser-
vices using SOAP, a lightweight XML-
based messaging protocol.

So far, there’s no simple way to
extend the Semantic Web with NLIs, but
we’ve developed a recipe to accomplish
this. To the Semantic Web metadata on a
Web page, add the idea of a LingoLogic
Interface Descriptor (LL-ID) as addition-
al metadata that can be stored on any
Web page. There might be several kinds
of LL-IDs, such as a LingoLogic gram-
mar and lexicon. The corresponding
translations might translate to WSDL;
that is, for a given WSDL command,
there might be a LingoLogic phrase or
sentence. Or the translations could map
to other interface description languages
or to SQL. In the latter case, the LL-ID

IEEE INTERNET COMPUTING

could specify the DBMS from which to
extract the schema (and login and pass-
word) and a template grammar and lex-
icon, and a LingoLogic grammar could
be created on the fly.

Scaling LingoLogic to the Web
requires changes to the simple Lingo-
Logic architecture, as Figure 4 shows.
Many users might be accessing the
same or different Web pages, asking
questions, so a parser farm would be
necessary to have, with millions of
parsers processing LingoLogic sen-
tences that would translate to millions
of target systems.

This extension would permit some
users to browse and query stock Web
pages, ask about price-to-earning
ratios, and receive custom answers,
while other users posed inquiries about
recipes involving chocolate milk or
price comparisons of digital cameras.
Today’s Web doesn’t allow such pre-
cise questions, but the LingoLogic-
enabled Semantic Web would.

Given that LingoLogic languages
are small and domain-constrained,
with a limited choice of words,
speaker-independent speech recogni-
tion is probably feasible, and speaker-
dependent speech recognition is
clearly feasible. That means users
could talk to their Web page content,
a step beyond just speaking drop-
down menu commands as found in
some of today’s dictation systems.

Of course, this scheme presumes
the existence of a large number of LL-
IDs. Because menus constrain the
domain-specific language, the inter-
face developer does not fall into the
habitability trap of traditional natural
language interfaces. The interfaces can
be small and domain-specific. A cot-
tage industry of LingoLogic interface
developers could develop these inter-
faces for the rest of us.

Talking to the

Internet of Things

An earlier Architectural Perspectives
column described a coming Internet of
Things where everything is alive, “a

IEEE INTERNET COMPUTING

Talk to Your Semantic Web

Eﬂmgomgmlmerface Generator =|0] x
File Edit Help
: >
Df=a [»[=a ¢
B
@ [Relations Attribute Name: [Altitude | type: [NUMBER |
@ [Elephant
MM Name
[Location T% String: | ElephantAltitude Expert: pBCHOICE RelName:Elé
[Atitude
% Xﬁ?::'r?p Menu Strings:
M Humidity Type | Menu String Value
[BodyTemp default altitude in feet
[BloodPressure short altitude
i Pulse plural altitudes
[BasalSkinRespong whose-is-default | 'where the elephant's altitude is
5 Time whose-is-short whose altitude is
Herd
© [Lion _ Add || Delete |
& Joins Operators: Select From:
4 »
Delete Attribute

Figure 2. The LingoLogic interface generator. The generator reduces the cost of
developing new LingoLogic interfaces to DBMS systems. Rather than requiring a
custom grammar for every DBMS, the interface generator extracts a schema
from the DBMS; an interface designer then augments the specification with
words and phrases mapping to relations, attributes, and joins. When this
specification is automatically combined at runtime with a LingoLogic grammar
targeted at SQL, the result is a new LingoLogic interface targeted at that DBMS.

| User interface (including menus and answers) |

Grammar and lexicon

Other information Predictive parser

(including translations) |

(for example,

a DBMS schema)

| Target system (for example,a DBMS or resource)

One
machine

Figure 3. LingoLogic system architecture. The architecture consists of an interface
(cascading menus); a grammar for a particular domain; a predictive parser for
recognizing strings, calculating next legal choices, and translating commands to a
target system; and a target system that executes the commands and returns results.

world in which common objects
(including those that are inanimate
and abstract) can have individual
identities, memory, processing capa-
bilities, and the ability to communicate
and sense, monitor, and control their
own behaviors.”> A later column
described “soft controllers,” a kind of
universal remote (actually a PDA with
a pointer, GPS, and wireless) used to
communicate with devices* in a move
to extend the Internet and Web to the
world of sensors, actuators, and

www.computer.org/internet/

devices. We can start by assuming that
such devices (and even passive objects
such as items and containers) have
explicit identities. RFID technology
provides one implementation. In addi-
tion, in this not-so-future world, such
devices, sensors, or actuators will have
APIs through which we can control
them remotely. For instance, Open
Geospatial Consortium’s SensorML
(www.opengeospatial.org/functional/
?page=swe) and IEEE 1451 (the stan-
dard for transducer electronic data

NOVEMBER e DECEMBER 2005 77

Architectural Perspectives

User

User

Y

A

interface
Web page i

LingoLogic

|=——= .
grammar and lexicon

interfa .
tel < Device

LingoLogic
interface descriptor

[¥

A

2l

N

Parser
farms

Ill

Target systems
(for example,a DBMS or resource)

Figure 4. Scaling the LingoLogic architecture. The LingoLogic architecture could
be scaled to the Semantic Web by separating the interface from the parser and
supporting a plethora of grammars and a parser farm. Any user at any machine
could then start a query on any grammar, which will be parsed by some parser
in the farm and executed by some back-end application.

sheets) are developing smart sensor
technology.® Other metadata can be
associated with device identities and
APIs using normal Web mechanisms.
For instance, we could associate a his-
tory wrapper with a light that recorded
each time the light was turned on or
off, as well as a scheduler wrapper that
controlled the object according to a
given schedule, or a security wrapper
that allowed only certain people or
programs to control the APL

For example, assume a room con-
tains a light, thermostat, clock, and
picture. If you pointed your universal
remote at any of these, its identity,
API, and associated metadata becomes
available. If the “device” had a Lingo-
Logic-ID (was LingoLogic-enabled), its
interface descriptor would become
available and you could “talk” to it
using LingoLogic:

“Light, turn on.” ... “How many
times have you been turned on in
the past week?”

e “Tivo, record Alias and 24 reruns
from season one.”

“Picture, who painted you?”
“Kitty, where are you hiding?”

None of these interactions use the full
spectrum of natural language. Instead,
things could understand just small

NOVEMBER e DECEMBER 2005

domain-restricted sublanguages relat-
ed to their APIs (the things they can
understand).

eyond building and deploying a

world-wide LingoLogic infrastruc-
ture complete with speech (pretty
straightforward), there are some inter-
esting technical challenges. We will
want to talk not just to individual
things but to collections of things.
Sometimes this involves plurals like
“Bedroom lights, turn off,” and some-
times it involves rules referencing mul-
tiple objects such as, “If the tree needs
water and the Internet weather service
says rain is not in the forecast for the
next two days, then turn on the sprin-
klers.” Because we have individual
grammars for individual kinds of
things, we will need a way to combine
grammars. Other operations on gram-
mars can turn rules on and off on the
basis of the user’s access privileges,
which can be reflected in the Lingo-
Logic interface. This could restrict who
could watch what stations, control the
thermostat, or activate a smart car.

If we build LingoLogic and enough
grammars to become interesting, and
extend it to the Internet of Things, that
will extend the Semantic Web in a
straightforward way. Will it be enough

www.computer.org/internet/

to add natural language to our everyday
interactions with computers? We predict
so — we'll know in five to 10 years. [

References

1. H. Tennant et al., “Menu-Based Natural Lan-
guage Understanding,” 21st Meeting of the
Assoc. for Computational Linguistics, Assoc.
for Computational Linguistics, MIT, 1983,
pp. 151-158.

2. T. Berners-Lee, J. Hendler, and O. Lassila,
“The Semantic Web,” Scientific Am., May
2001, pp. 34-43.

3. C.W. Thompson, “Everything is Alive,” [EEE
Internet Computing, vol. 8, no. 1, 2004, pp.
83-86.

4. C.W. Thompson, “Smart Devices and Soft
Controllers,” IEEE Internet Computing, vol.
9, no. 1, 2005, pp. 82-85.

5. Draft Standard 1451 for A Smart Transducer
Interface for Sensors and Actuators — Com-
mon Functions, Communications Protocols
and Transducer Electronic Data Sheets (TEDS)
Formats, IEEE P1451.0 Working Group, Mar.
2005, http://grouper.ieee.org/groups/1451/0/.

Craig W. Thompson is a professor and Charles
Morgan Chair in Database at the University
of Arkansas and president of Object Services
and Consulting, a middleware research com-
pany. His research interests include data engi-
neering, software architectures, middleware,
and agent technology. Thompson has a PhD
in computer science from the University of
Texas at Austin. He is a senior member of the
IEEE. Contact him at cwt@engr.uark.edu.

Paul Pazandak is a senior computer scientist at
Object Services and Consulting. His research
spans distributed and agent-based systems,
middleware, net-centric warfare, unmanned
aerial vehicles, multimedia languages, and
natural language interfaces. Contact him at
pazandak@objs.com.

Harry R. Tennant is president of Harry Tennant
& Associates, an Internet consulting firm
focused on applications for K-12 education.
While at Texas Instruments, he conceived of
the notion of menu-based natural language
interfaces. Tennant has a PhD in Computer
Science from the University of Illinois. Con-
tact him at harry@htennant.com.

IEEE INTERNET COMPUTING

