
Mark Burstein
BBN Technologies

Christoph Bussler
and Michal Zaremba
Digital Enterprise Research Institute

Tim Finin
University of Maryland,
Baltimore County

Michael N. Huhns
University of South Carolina

Massimo Paolucci
DoCoMo Communications
Laboratories Europe GmbH

Amit P. Sheth
University of Georgia

Stuart Williams
Hewlett-Packard Laboratories

A Semantic Web
Services Architecture

The Semantic Web Services Initiative Architecture (SWSA) committee has

created a set of architectural and protocol abstractions that serve as a foundation

for Semantic Web service technologies. This article summarizes the committee’s

findings, emphasizing its review of requirements gathered from several different

environments. The authors also identify the scope and potential requirements

for a Semantic Web services architecture.

Formed in February 2003, the Seman-
tic Web Services Initiative Architec-
ture (SWSA) committee’s mission is

to develop the necessary abstractions for
an architecture that supports Semantic
Web services. The resultant framework
builds on the W3C Web Services Archi-
tecture working group report (and is
motivated in part by Tim Berners-Lee’s
vision for the Semantic Web1). Other
groups developing Semantic Web services
frameworks contributed to the discus-
sions, including the Web Ontology Lan-
guage for Services (OWL-S) consortium,
the Web Service Modeling Ontology
(WSMO; www.wsmo.org) group at the
Digital Enterprise Research Institute
(DERI), and the Managing End-to-End
Operations-Semantics (METEOR-S; http://
lsdis.cs.uga.edu/projects/meteor-s/) group
at the University of Georgia.2,3

In this article, we describe the proto-
cols exchanged between the interacting
entities or agents that interpret and rea-
son with semantic descriptions in the

deployment of Semantic Web services.
We focus specifically on those capabili-
ties that extend the potential range of
Web services; we also discuss security,
reliability, and a flexible means of recov-
ery from the problems that can occur in
open and evolving environments. The
SWSA architectural framework attempts
to address five classes of Semantic Web
agent requirements — dynamic service
discovery, service engagement, service
process enactment and management,
community support services, and quality
of service (QoS) — which we cover in
detail here as well.

Multiple Distributed
Environments
Systems developed via Web service tech-
nologies are often limited by their need to
agree in advance on the syntax and
semantics of various communications.
Whereas the World Wide Web is success-
ful in part because it makes it easy to
interact with and gather information from

72 SEPTEMBER • OCTOBER 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Se
rv

ic
e-

O
ri

en
te

d
C

om
pu

ti
ng

 T
ra

ck Editors: Michael N. Huhns • huhns@sc .edu
Munindar P. Singh • s ingh@ncsu .edu

sites that are discovered dynamically, traditional
Web services are designed to function more like
distributed object-oriented computing systems. In
contrast, semantically transparent services will
make it possible for clients to successfully use ser-
vices that are dynamically discovered without prior
negotiations between client and service developers.

Such goals are important for commercial Web
service environments, including business-to-busi-
ness and business-to-consumer applications, grid
computing, ubiquitous computing, and informa-
tion management. For commercial Web services, it
will be increasingly important for service providers
to be able to adapt their interfaces to support new
products and service options without interrupting
or requiring changes to the software that clients
use to access those services. Likewise, clients that
wish to comparison shop or use alternate services
when the ones they traditionally use are unavail-
able will need to adapt flexibly to the differences
between the interfaces those alternative services
present. Similar issues arise with grid computing
services, in which computational resources are
often oversubscribed and different sites that can
perform the same functions often have different
interaction requirements.

These environments often have two barriers to
interoperability: incompatible information models
and mismatches in different service providers’
interaction protocols. Dynamically accessible
semantic descriptions of service capabilities and
utilization protocols, based on shared semantic
models published on the Semantic Web, are seen
as a way to overcome these barriers, but they will
require additional infrastructure so that individual
software agents can directly interpret published
service descriptions (which sometimes use unfa-
miliar ontologies). Given the open-ended nature of
Web-oriented distributed environments, this archi-
tecture must also handle semantically interpretable
security authorizations and ensure the privacy of
transmitted information.

Some aspects of our proposed architecture will
be more central to particular applications than oth-
ers, and some will take longer to be widely adopt-
ed. Our near-term emphasis is on semantics for
user-directed service interactions: users specify
what they want from a service, rather than the
details of how to ask for it. For this family of uses,
a service client will need to avoid hard-coded
knowledge of the syntax for interacting with par-
ticular providers, instead using information from
published semantic service descriptions to mediate

interactions with classes of functionally similar
providers, even when their detailed interfaces dif-
fer. These software clients must translate user
requests into suitable forms for each potential
provider, and then use the interaction methods
specified by those providers by reasoning from the
methods’ published semantic descriptions.

As the technology matures, we anticipate that
methods now being explored will support more
widespread use of mechanisms for automated
service discovery and matchmaking. A key ele-
ment of this phase will be the development of
shared, extensible, community-wide ontologies
for describing capabilities, services, and goods,
and — equally critically — for making these
ontologies publicly accessible for use by Web
applications. Open-source ontologies for differ-
ent kinds of services and products will enable
broad-based, automated, service discovery in the
same way search engines now make it easy to
discover new Web sites.

Underlying Assumptions
Our architectural framework builds on two
emerging technological concepts: Web services
and the Semantic Web. Web service providers can
publish descriptions of service interfaces on the
Web using the XML-based Web Services Descrip-
tion Language (WSDL). These descriptions include
information about the message forms used to
invoke the services, which can be serialized using
HTTP and SOAP protocols, among others. WSDL
does not, however, have a systematic way to
associate meanings with the messages and mes-
sage arguments that appear in those descriptions.
The Semantic Web vision takes Web-publishing
of descriptions to the next level by introducing
semantic description languages built on XML,
which lets people publish and share ontologies —
set of conceptual terms labeled by URLs — that
can be used in describing other published mate-
rials. Semantic Web services are Web services in
which semantic Web ontologies ascribe meanings
to published service descriptions so that software
systems representing prospective service clients
can interpret and invoke them.

This is a good time to talk about how clients
and services can act as software agents with goals.
In the discussions that follow, we assume the fol-
lowing general capabilities of agents in Semantic
Web service environments (in this context,
“agents” include requesters [clients], service
providers, and middle agents).

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 73

A Semantic Web Services Architecture

• All agents can access and interpret Web-
published ontologies, and can communicate
using messages whose content is represented,
or can be interpreted, in terms of published
ontologies.

• Service providers publish semantic descriptions
of their service capabilities and interaction pro-
tocols, which prospective consumers can then
interpret when selecting appropriate services
and when formulating their interactions with
those services.

• Requestor agents wishing to delegate internal
objectives to external agents can reformulate
those objectives as well-formed requests to ser-
vice providers by using those providers’ seman-
tically described service interfaces as guides.

For dynamic Web services to function, clients must
be able to interpret the published semantic descrip-
tions of unfamiliar services to help them decide
which services to use and how to interact with
them. As a result of this style of interaction, clients
will be able to adjust smoothly as service interfaces
evolve. Such interaction also lets clients discover
and substitute new services for ones that are no
longer available, even if those new services use
different protocols or message types.

Phases of Semantic
Web Service Interaction
The overall process of discovering and interacting
with a Semantic Web service will, in general,
include three phases:

• Candidate service discovery is the distributed
search for available services that can (poten-
tially) accomplish some set of a client’s inter-
nal goals or objectives. One architectural
approach to this phase is interaction with a
semantic matchmaker, a registry agent, or a
peer agent serving either function.

• Service engagement includes the process of
interpreting candidate Web service enactment
constraints (partly or fully described in each
service’s published self-description), and then
negotiating with prospective services until
reaching an agreement. This phase concludes
when both service and client agree to the
service-provision terms in an explicit or implic-
it service contract. Negotiations can include
service price, product attributes, and the qual-
ity and timeliness of service, security and pri-
vacy, and so on.

• Service enactment is the process that completes
the mutually agreed upon objectives of client

74 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 1. Service interaction process. Client (green) and service provider (blue) goal descriptions (hexagons) drive the three
main phases of interaction (discovery, engagement, and enactment). At the lower level, these goals are communicated
during message exchanges utilizing protocols (green boxes) that follow general, phase-specific patterns.

Abstract
characterizations of
candidate service

Published
advertisement and

service model
Service

provision process

Interactions
with service

registries

Client
achievement process

Candidate
service discovery

Service contract
negotiation

Characterization
of desired service

as a request

Service
discovery

query protocol

Monitoring
and execution

of service

Service
initiation

Service
monitoring

Termination
and

compensation

Service
agreement

Client’s
internal goal

Service
provider’s

internal goal

Service
enactment

Selected service
provider and
agreement

Service selection
and engagement

Candidate
services

Client goal
description reformulation

Negotiation with
candidate services,

commitment to
service agreement

and service by following the service’s published
protocols. If the contract’s primary objectives
aren’t accomplished, then the client and service
can use a compensation protocol to restore
financial equity or a stable operating state. If
the underlying message transport mechanisms
allow for asynchronous interactions, then
clients can use protocols to monitor the service
process’s status during execution.

Figure 1 gives an overview of the workflow with-
in and relationships among these three phases. A
client (a user plus a software agent) starts with an
internal goal that it intends to accomplish via an
external service request. Correspondingly, service
providers have the general goal of providing the
services they were designed to provide — often in
exchange for some form of compensation. Dur-
ing the three interaction phases, client goals are
represented in different forms by the semantic
descriptions created to query semantic service
registries and in the semantic descriptions of
requests to potential service providers; service
provider goals are explicitly represented in the set
of effects produced by those services in published
service descriptions.

In the overall service-utilization process, ser-
vice requests (messages from clients to prospective
services) are part of the engagement stage. A
provider can simply honor these requests (in which
case we move directly to the enactment stage) or
these requests can serve as preludes to multistep
negotiations, in which case engagement culmi-
nates in a “handshake” that indicates mutual
acknowledgment of a joint contract. Interactions
during the service-enactment stage can use one of
several alternative protocols for each subphase:
initiating service activity, monitoring service
processes, and confirming service completion. If
the service terminates abnormally after a contract
is formed, a final set of protocol interactions can
address compensation issues.

The rest of this article summarizes require-
ments for each phase, and its architecture in
terms of abstract protocols for accomplishing
phase-specific requirements. By “abstract proto-
cols,” we mean a set of message exchanges char-
acterized in terms of abstract semantic concepts
and roles. The protocols also identify the agents’
state changes that result from such messages. An
ontology represents abstractions of the various
message types used in these protocols, in terms of
the performatives of the Foundation for Intelli-

gent Physical Agents’ communication language
(FIPA; www.fipa.org/specs/fipa00037/). FIPA per-
formatives represent different speech acts and
abstractly identify a sender’s intent (such as
INFORM, QUERY, REQUEST, and AGREE). Due to
space limitations, we show only one abstract pro-
tocol in detail.

Service Discovery
Service discovery is the process by which a client
(service requestor) identifies candidate services to
achieve its objectives. It involves three types of
stakeholders:

• service providers indicate that they will perform
services,

• service requestors seek services that can accom-
plish an internal objective, and

• matchmakers accept descriptions of available
services from providers and match them
against requirements from requestors.

Service providers use publish protocols to advertise
their services with matchmakers; service requestors
use query protocols to ask the matchmakers which
services most closely satisfy their needs. For today’s
Web services, this process is manual: service client
developers, rather than requestors, query registries
such as Universal Description, Discovery, and Inte-
gration (UDDI). In contrast, Semantic Web match-
makers process queries to find appropriate services
from among those advertised using Semantic Web
language descriptions.4

Selecting the abstraction level of the terms in a
capability description query to be handed to a
matchmaker involves several trade-offs. Typically,
a requestor has a specific goal to be achieved at a
particular time, whereas service providers publish
generalized descriptions of their capabilities that
will enable clients to find them. For effective match-
es to occur, capability queries should be more
abstract than the specific goals of the agent at the
moment, but they should include information about
how the goal should be achieved, and under what
constraints, to avoid receiving too many extrane-
ous candidates. This use of abstract capability
descriptions in matchmaker queries is one of the
reasons for the architectural distinction between dis-
covery and negotiation. Discovery involves cached
service-capability advertisements, and clients can
afford to do more detailed filtering of and negotia-
tion with potential providers during the engagement
process, ultimately leading to an agreement between

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 75

A Semantic Web Services Architecture

the requestor and a valid provider.
We can divide the requirements for service dis-

covery into three parts. Language requirements
help express capabilities and goals, and they
include

• available services’ characteristics and con-
straints (preconditions and fulfillment limita-
tions),

• protocols to be followed during interactions
(message semantics), and

• requestor requirements (goals, quality, securi-
ty, and privacy).

Functional requirements specify the tasks each
entity will perform:

• Providers must describe the capabilities and
constraints on offered services.

• Requestors must create abstract characteriza-
tions of required services to facilitate matching
with published capabilities.

• Requestors must locate and interact with peers
or matchmakers that can respond to queries for
advertised service descriptions.

• Matchmakers must compare descriptions of
queries and capabilities.

• Requestors must decide if they can satisfy the
preconditions specified in a prospective ser-
vice’s self-description in order to use it.

Finally, architectural requirements identify the var-
ious classes of agents necessary to produce the
final result of the phase: clients that know what
services with which to negotiate. Discovery phase
protocols include

• advertising protocols used by service providers
to announce capability availability (this adver-
tising can be largely passive, such as postings
on Web pages), and

• candidate service-discovery protocols used by
requestors looking for services that satisfy
their goals.

Matchmakers, like other kinds of registries, can
also be federated and organized by community or
activity domains.5 Matchmakers that both find and
invoke services as proxies for requestors — called
brokers — play the role of the client in discovery,
engagement, and enactment. As such, they use dif-
ferent protocols for interacting with requestors, not
covered here.

Service Engagement:
Negotiation and Contracts
Service engagement is the initial phase of inter-
action between a requestor and a potential
provider. The result of this phase is an agreement
between requester and provider such that both
parties expect, explicitly or implicitly, that a spe-
cific service will be provided by the provider.
Although it is during this phase that service con-
tract negotiation occurs, negotiation might be
necessary during the later enactment phase to
ensure compliance with prior agreements or to
resolve disputes.

Functional requirements for engagement vary
with the interaction’s complexity, but we can
nonetheless divide them into four basic areas:

• Service request formulation. The requestor must
be able to acquire the message and protocol
information required for composing valid ser-
vice requests or participating in service nego-
tiation and invocation protocols. It must also
be able to interpret clarification requests and
counterproposals.

• Contract preliminaries. Potential partners need
a means to exchange information about
respective goals and capabilities.

• Contract negotiation. Potential partners need a
means for reaching agreement regarding a ser-
vice’s provisioning.

• Agreement. All partners need a means for iden-
tifying the terms of an agreement and when an
agreement is reached.

Architectural requirements for engagement can
vary with the complexity of the negotiations
appropriate to the domain, but can include

• Negotiation protocols. Protocols that let parties
propose and accept or reject aspects of a ser-
vice agreement must be available in a standard
form, and at least one must be appropriate for
the particular domain.

• Negotiation services. One or both parties can
contract with a neutral, stand-alone negotiation
expert (similar to an authentication service).

• Auditing services. Compliance with a negotiated
agreement might require tracking commitments
and auditing the parties’ enactment activities.

Service-engagement protocols describe the
messages exchanged between providers and
requestors that eventually result in agreements.

76 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 77

A Semantic Web Services Architecture

Three abstract protocols reflect the range of
sophistication among the parties to an agreement.
The simplest, equivalent to the FIPA query-reply
protocol, establishes agreement to a service’s pro-
vision without any negotiation or formal contract.
It’s the equivalent of saying, “please provide your
service for me” and requires no acknowledgment
or agreement from the provider, which automati-
cally attempts to enact its service. The second pro-
tocol, which is equivalent to the FIPA request
protocol, requires the provider to agree to or refuse
a request and results in a non-negotiated but
explicit commitment to provide a service.

The third protocol, negotiate-commitment,
establishes a formal negotiated contract for a ser-
vice’s provision. This abstract protocol provides a
model for the temporal flow and semantic under-
pinnings of negotiations that can occur between
requestors and providers. Each party is required to
notify the other if they abandon the negotiation,
and explicit recognition of time-outs ensures that
no party is left hanging when another party mis-
behaves or communication fails. The result of a
successful negotiation is an explicit shared
acknowledgment of a contract, which can then be
modeled as a commitment between the parties, as
in this dialogue two people might have:

• Requestor: “Will you provide your service for
three dollars?”

• Provider: “Only if you pay 10 dollars.”
• Requestor: “I will pay five dollars if you pro-

vide your service by 5:00 pm.”
• Provider: “OK.” | “No.”

The result of this dialogue, if between Web agents,
would be an explicit commitment (perhaps cap-
tured by a message trace) between the agents by

which the service provider agrees to provide the
service under the negotiated terms and the client
agrees to any negotiated compenstating actions.

Figure 2 (next page) shows the full abstract
model, with the common subdialogue for clarifi-
cation summarized. Table 1 shows the semantics
of the messages used in all the engagement pro-
tocols of Figure 2, as well as their respective FIPA
performatives.

Service Process
Enactment and Management
Once the requestor and the provider agree on the
service to be performed, the service is ready to be
initiated. The requester determines what informa-
tion is necessary for requesting the performance of
the service and how to react when the service
responds with either success or failure.6,7 Func-
tional requirements for enactment include

• Response interpretation. The client must be able
to interpret responses to its requests (as
described in the service description).

• Response translation. A translation must be
produced when a requestor and provider use
different ontologies for communication.

• Choreography interpretation and execution. A
semantically grounded language is necessary
to describe the temporal constraints among
process elements, so that the requestor agent
can produce the correct sequence of behaviors
for the chosen service.

• Process mediation and delegation. To hide chore-
ography differences when interacting clients and
services use fixed, incompatible protocols,
agents can use process mediation services.

• Dynamic service composition. Requestors need
support, not only to invoke dynamically dis-

Table 1. Engagement message semantics.

Message type Performative From To Comment
RequestService Request Client Server Message content describes desired service, identifies requestor,

provides authorization, and conveys nonfunctional preferences and
conditions

AcceptRequest Agree Server Client Acknowledges receipt of request and intention to perform the service
CancelRequest Cancel Client Server Informs that the client no longer needs the server to perform the

requested service
OfferService Inform Server Client Provides clients with a service description (typically used to make a

counteroffer)
AcceptOffer Inform Client Server Informs server that client agrees to perform the offered service
RefuseOffer Inform Client Server Informs server that client doesn’t agree to the offered service

covered services but also to compose them
when no single service meets their needs. A
composition can use automated planning tech-
niques to invoke a collection of services for a
joint purpose.6,8

• Process-status monitoring and event notifica-
tion. Tracking an execution’s state can help a
requestor determine when and whether it will
complete.

• Service-failure handling and compensation.
Services must provide declarative descriptions
of their failure modes and associated means of

recovery as well as their types of (and proto-
cols for) compensation.

• Dispute resolution and compliance. Clients and
service providers can invoke third-party services
for conflict resolution, proof of verification,
claim adjudication, and settlement compliance.

• Nonrepudiation, audit tracking, and explana-
tion. All parties must be confident that a trans-
action is secure, that all parties are authentic,
and that the transaction is verified as final.
Systems must ensure that a party can’t reject a
transaction after this point.

78 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 2. Negotiate-commitment protocol. The left and right graphs show the state transitions of the requestor and
provider, respectively. Conditions on transitions are in square brackets. The CLARIFY state in both diagrams represents a
subdialog, not shown.

Precondition: the requestor has selected a candidate service provider,
based on a prior discovery and selection process/protocol.

Input: the identity of the candidate service provider and the requestor’s requirements.

Notation
R – a request for a service including QoS
 requirements and requestor ID
R' – a revised request or refusal leading to
 a new offer
O' – an offer of a service, including
 QoS guarantees
CLARIFY* – indicates a possible CLARIFY
 and/or AUTHORIZATION sub-dialog

Provider

Output: an agreement about the service to be enacted and the provider's identity.
The agreement includes the negotiated QoS.

[Receive (R)]

Wait

Evaluate request

[Receive (agree)]

[Receive (R')]

[Receive (cancel)]

[Unacceptable]/Send(Refuse)

Evaluate request

ENACTMENT

Wait for response

[Negotiable? /Send(Offer)

[Timeout]
/Send(Cancel)

[Acceptable & reply read] /Send(Agree)

Requestor

[Receive (Offer)}

[Init]/Send(R)

[Negotiable?]/Send (R)

Wait for response

Evaluate request

[No reply required]

[Receive(Refuse)]

[Timeout]/Send)cancel)

[Receive(Agree)

ENACTMENT

Wait for agreement

[Acceptable]
/Send(Agree)

[Unacceptable]
/Send(Cancel)

[Timeout]
/Send(Cancel)

CLARIFY*

CLARIFY*

Architectural requirements arise when middle
agents provide support services. We will require
standardized protocols and standard ontologies for
interacting with these agents, which could include

• process-mediation services between agents for
whom semantically compatible interactions are
possible, but whose choreographies don’t align
(in terms of the number and types of messages
to be exchanged);

• process-scheduling and composition services,
which require ontologies for describing tempo-
ral and domain constraints, objectives, and
preferences;

• process-execution and status-logging services
to support execution monitoring, failure recov-
ery, and compensation processes; and

• policy-monitoring services to ensure that
invoked services follow contractually guaran-
teed QoS agreements.

In our framework, we’ve developed abstract
enactment protocols for three types of enactment
interaction. One of our three enactment protocols
assumes synchronous communication, in which a
requestor sends a message and then waits for a
return message. The other two assume asynchro-
nous communication, in which a requestor sends
a message to the provider, but doesn’t expect a
synchronous message in return.

Each scenario has the same preconditions —
namely, the discovery and engagement processes
lead to an explicit or implicit service contract. A
service requestor initiates the enactment phase by
sending an invocation message or by simply com-
pleting the engagement phase (when the parties
don’t explicitly acknowledge the service agree-
ment; see www.swsi.org/swsa for more informa-
tion on these protocols).

Community Support Services
Another class of infrastructural services will be
needed to support communally maintained
Semantic Web service activities. In turn, these ser-
vices will support requirements, such as

• ontology lookup, mapping, and version control
services for communities that create shared,
centrally managed ontologies and therefore
need mechanisms to provide authenticated def-
initions and mappings among concepts and
their derivatives;9

• information and access security, privacy, and

confidentiality management and monitoring,
support for those ubiquitous concerns of com-
mercial and public-access Web services;

• group membership and trust reasoning services
that extend simple ID-based authentication, to
enable policy and relationship-based access by
automated reasoning about known trust rela-
tionships between parties;

• community-based preference and reliability
reporting services based on collected feedback
from service clients;

• policy and protocol management services, like
ontology management services, to provide com-
munities with authenticated semantic descrip-
tions of shared policies and protocols, as well as
validation and dispute resolution services; and

• lifecycle management services to control the
spawning (factories) and management (moni-
toring and allocation) of service resources.

These requirements and service categories were
derived from scenarios using semantically rich ser-
vice agents, and are not necessarily core parts of the
architecture for all environments. However, when
present, they play roles in the effective use of other
services, and thus they can impact the complexity
of the protocols used in conjunction with those
domain services. These interactions are topics for
future investigation by the committee.

Quality of Service
In Semantic Web service applications, suppliers
and customers define binding agreements or con-
tracts among themselves in part by specifying
QoS-level agreements, using metrics such as dead-
lines, accuracy, and cost.10,11 QoS metrics can affect
how services are advertised, can be the topic of
negotiation processes, and must be monitored dur-
ing enactment; thus, when clients’ procedures or
workflows involve multiple services, the underly-
ing discovery, coordination, and execution systems
must be able to monitor QoS measures and control
the services accordingly. In complex workflows,
these monitors must reason about aggregate mea-
sures over the life of the workflow. Enforcement of
these metrics can require complex resource rea-
soning, prioritization, and service resource reallo-
cation. These topics are currently being studied,
thus weren’t addressed in detail by the committee.

Rather than specific software components, our
architectural framework is based on abstract

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 79

A Semantic Web Services Architecture

80 SEPTEMBER • OCTOBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

characterizations of protocols and functional
descriptions of capabilities. Our objective is to
define an interoperability model that can under-
pin a variety of architectures without prescribing
specific implementation decisions. If service devel-
opers build concrete components consistent with
our proposed abstract protocols, then Semantic
Web service clients will be able to interpret pub-
lished descriptions of these components in terms
of the abstract message ontologies and protocols
we’ve developed. This sharing of abstract models,
rather than syntactic and procedural agreements
among developers, could give developers maximal
freedom in building components that can adap-
tively interoperate.

Our belief is that this approach is consistent with
the long-term vision of the Semantic Web at the
W3C; we anticipate that our architecture will indi-
cate requirements for Semantic Web service descrip-
tion languages, which are being designed by our
sister committee, the Semantic Web Services Initia-
tive Language committee (www.swsi.org/swsl/).

Acknowledgments
We thank the other members of the committee, past and pre-

sent, and its organizers, who contributed to the ideas present-

ed here: Bob Balzer (Tecknowledge), Fabio Casati (HP Labs, UK),

Mike Dean (BBN Technologies), Andreas Eberhart (AIFB, Uni-

versity of Karlsruhe), Dieter Fensel (DERI, Insbruck), Carole

Goble (University of Manchester), Mark Greaves (DARPA),

Frank McCabe (Fujitsu Laboratories, Sunnyvale, California),

Enrico Motta (Open University, UK), Juan Miguel (DERI, Inns-

bruck, Austria), Chris Priest (HP Labs, UK), Norman Sadeh

(CMU), Katia Sycara (CMU), Michael Uschold (Boeing), and

Kunal Verma (LSDIS Lab, University of Georgia).

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic

Web,” Scientific Am., vol. 284, no. 5, 2001, pp. 34–43.

2. D. Martin et al., “Bringing Semantics to Web Services: The

OWL-S Approach,” Proc. 1st Int’l Workshop Semantic Web

Services and Web Process Composition (SWSWPC 04),

2004; http://www-2.cs.cmu.edu/~softagents/papers/OWL

-S-SWSWPC2004-final.pdf.

3. I. Foster et al., The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integration,

tech. report, Open Grid Service Infrastructure Working

Group, Global Grid Forum, June 2002; www.globus.org/

alliance/publications/papers/ogsa.pdf.

4. K. Sycara et al., “Dynamic Service Matchmaking among

Agents in Open Information Environments,” J. ACM SIG-

MOD Record, special issue on semantic interoperability in

global information systems, vol. 28, no. 1, 1999, pp. 47–53;

http://www-2.cs.cmu.edu/~softagents/papers/ACM99-L.ps.

5. K. Sivashanmugam, K. Verma, and A. Sheth, “Discovery of

Web Services in a Federated Registry Environment,” Proc.

IEEE Int’l Conf. Web Services, IEEE CS Press, 2004; http://

lsdis.cs.uga.edu/lib/download/MWSDI-ICWS04-final.pdf.

6. D. McDermott, M. Burstein, and D. Smith, “Overcoming

Ontology Mismatches in Transactions with Self-Describing

Agents,” The Emerging Semantic Web: Selected Papers

from the First Semantic Web Working Symp., IOS Press,

Amsterdam, 2002, pp. 228–244.

7. A. Eberhart, “Ad-Hoc Invocation of Semantic Web Services,”

Proc. IEEE Int’l Conf. Web Services, IEEE CS Press, 2004;

www.aifb.uni-karlsruhe.de/WBS/aeb/pubs/icws2004.pdf.

8. S. Narayanan and S. McIlraith, “Simulation, Verification

and Automated Composition of Web Services,” Proc. 11th

Int’l World Wide Web Conf. (WWW-11), 2002; www.daml.

org/services/owl-s/pub-archive/nar-mci-www11.ps.

9. M.H. Burstein, “Dynamic Invocation of Semantic Web Ser-

vices that Use Unfamiliar Ontologies,” IEEE Intelligent Sys-

tems, vol. 19, no. 4, 2004, pp. 67–73.

10. J. Cardoso et al., “Quality of Service for Workflows and

Web Service Processes,” J. Web Semantics, 2004; http://

lsdis.cs.uga.edu/lib/download/CSM+QoS-WebSemantics.pdf.

11. L. Zeng et al., “Quality Driven Web Services Composition,”

Proc. 2003 WWW Conf., 2003, pp. 411–421; http://sky.fit.

qut.edu.au/~dumas/www03.pdf.

Mark Burstein is a division scientist and director of the Human

Centered Computing Group at BBN Technologies, and

cochair of the Semantic Web Service Initiative’s Architec-

ture committee. His research interests include semantic

translation and planning system support for Semantic Web

services, mixed-initiative distributed systems, knowledge

representation, and machine learning. Burstein has a PhD

in artificial intelligence and computer science from Yale

University. He is a member of the IEEE and AAAI. Contact

him at burstein@bbn.com.

Christoph Bussler is executive director of the Digital Enterprise

Research Institute in Galway, Ireland, and cochair of the

Semantic Web Services Initiative’s Architecture commit-

tee. His research interests include Semantic Web services,

Further Reading

For the full SWSA report, visit www.swsi.org/swsa/. For additional infor-
mation on related approaches, visit these links:

• W3C Web Services Architecture WG: www.w3.org/TR/ws-arch/
• OWL-S: www.daml.org/services/owl-s/
• WSMO: www.wsmo.org
• METEOR-S: http://lsdis.cs.uga.edu/projects/meteor-s/

business-to-business integration, and workflow manage-

ment. Bussler has a PhD in computer science from the Uni-

versity of Erlangen, Germany. He is a member of the ACM

and the IEEE Computer Society. Contact him at chbus-

sler@aol.com.

Tim Finin is a professor of computer science and electrical engi-

neering at the University of Maryland, Baltimore County.

His research interests include applications of artificial intel-

ligence to problems in information systems and intelligent

interfaces; software agents; the Semantic Web; and mobile

computing. Finin has a PhD in computer science from the

University of Illinois. He is a member of AAAI and the

ACM. Contact him at finin@umbc.edu.

Michael N. Huhns is the NCR professor of computer science and

engineering at the University of South Carolina, where he

also directs the Center for Information Technology. He

recently wrote Service-Oriented Computing: Semantics,

Processes, Agents (John Wiley & Sons, 2005). Contact him

at huhns@sc.edu.

Massimo Paolucci is a senior researcher at DoCoMo NTT in

Munich, Germany. His research interests include automat-

ic Web service composition and discovery and the applica-

tion of Semantic Web service technology to mobile and

ubiquitous computing. Paolucci is also a member of the

OWL-S coalition, and a former member of the UDDI Tech-

nical Committee.

Amit P. Sheth is a professor of computer science at the Univer-

sity of Georgia, the director of the Large-Scale Distributed

Systems Lab, and CTO and cofounder of Semagix. He also

started the WSDL-S initiative for semantic annotation of

Web services. His research interests include the Semantic

Web, Semantic Web services, and semantic applications in

bioinformatics, healthcare, and risk and compliance. Sheth

has a PhD in distributed databases from Ohio State Uni-

versity. He is a senior member of the IEEE and a member

of the ACM. Contact him via http://lsdis.cs.uga.edu/~amit.

Stuart Williams is a group manager at HP Laboratories in Bris-

tol, UK, and an elected member of the W3C Technical Archi-

tecture Group, which is working to document the Web’s

architecture. His research interests include protocol design

and the application of the Semantic Web for solving inter-

operability problems between networked software compo-

nents, such as Web services. Stuart has a PhD from the

University of Bath. Contact him at skw@hp.com.

Michal Zaremba is a postdoctoral researcher at National Univer-

sity of Ireland. His research interests include Semantic Web

services and its architectures, e-business, enterprise applica-

tion integration, B2B integration, and business process man-

agement. Zaremba has a PhD in industrial engineering from

the National University of Ireland and an MSc in computer

science and management from the Wroclaw University of

Technology in Poland. He is a member of OASIS, W3C, and

the ACM. Contact him at michal.zaremba@deri.org.

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2005 81

A Semantic Web Services Architecture

