
Spotlight

How BPEL and SOA
Are Changing Web
Services Development

E very organization faces the challenge of
integrating diverse IT systems. Developers
must first solve communication-level inte-

gration issues, ensuring that systems using dif-
ferent transport protocols and data formats can
exchange information. Once these issues are
resolved, organizations must decide how their
various IT systems can interact to support busi-
ness processes. Business process modeling (BPM)
environments seek to solve these issues. Histor-
ically, however, these systems have been propri-
etary, locking an organization — and sometimes
its business partners — into a single product.
BPMs also have had limited interoperability with
various IT systems, creating further integration
problems.

Increasingly, developers are using the Business
Process Execution Language (ftp://www6.soft
ware.ibm.com/software/developer/library/ws-bpel.
pdf) for modeling business processes within the
Web services architecture.1 BPEL is an XML-based
standard for defining business process flows. In
addition to facilitating the orchestration of syn-
chronous (client-server) and asynchronous (peer-
to-peer) Web services, BPEL provides specific sup-
port for long-running and stateful processes. BPEL
is an open standard, making it interoperable and
portable across many environments. BPEL is ide-

ally suited to the service-oriented architecture, a
set of guidelines for integrating disparate systems
by presenting each system as a service that imple-
ments a specific business function. BPEL provides
an ideal way to orchestrate services within SOA
into complete business processes.

Here, I describe how BPEL fits into the Web ser-
vices stack, some of BPEL’s key benefits, and how
targeting Web services for use with BPEL makes
the creation of an SOA easier than ever. To illus-
trate some of the SOA principles and how BPEL
affects Web service design, I’ll use a sample inte-
gration project in which a phone company wants
to automate its sign-up process for new customers.
This process involves four separate systems based
on different technologies:

• Payment gateway: a third-party system that
handles credit-card transactions and is already
exposed as a Web service.

• Billing system: hosted on a mainframe, this
system uses a Java Message Service (JMS)
queuing system for communication.

• Customer-relationship management (CRM) sys-
tem: a packaged off-the-shelf application.

• Network administration system: a packaged
off-the-shelf application implemented in
Corba.

60 MAY • JUNE 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

As the use of Web services grows, organizations are increasingly choosing the

Business Process Execution Language for modeling business processes within the

Web services architecture. In addition to orchestrating organizations’ Web

services, BPEL’s strengths include asynchronous message handling, reliability, and

recovery. By developing Web services with BPEL in mind, organizations can

implement aspects of the service-oriented architecture that might previously

have been difficult to achieve.

Editor : Siobhán Clarke • s iobhan .c la rke@cs . t cd . i e

James Pasley • Cape Clear Software

Uniting these systems into a single business
process involves several tasks. First, developers
must solve various integration issues by exposing
each system as a Web service. They can then use
BPEL to combine the services into a single busi-
ness process.

Solving the Integration Issues
SOA advocates a general approach to integrat-
ing diverse systems. I outline that approach
here, highlighting details pertinent to our four
sample systems.

Service-Oriented Architecture
SOA advocates that developers create distributed
software systems whose functionality is provided
entirely by services. SOA services

• can be invoked remotely,
• have well-defined interfaces described in an

implementation-independent manner, and
• are self-contained (each service’s task is specif-

ic and reusable in isolation from other services).

Service interoperability is paramount. Although
researchers have proposed various middleware tech-
nologies to achieve SOA, Web services standards
better satisfy the universal interoperability needs.
Services will be invoked using SOAP typically over
HTTP and will have interfaces described by the Web
Services Description Language (WSDL).2

By using SOA and ensuring that each of the four
systems complies with SOA’s service definitions, our
phone company’s development team can solve the
integration problem. Each system already complies
with some definitions. The billing system, for exam-
ple, is an asynchronous message-based system that
performs specific business functions based on par-
ticular messages sent to it. However, the message
formats are not defined in a machine-readable form.
The network administration system is Corba-based,
so its interface is defined using IDL, but the system
is based on an object-oriented, rather than a mes-
sage-based, approach. To proceed with integration,
the company needs a system to fill these gaps and
raise each system to SOA standards.

Enterprise Service Bus
The enterprise service bus is a new middleware
technology that provides SOA-required features.
Within the IT industry, it’s generally accepted that
developers use an ESB to implement applications
such as those described in our sample project

(www.gartner.com/regionalization/img/gpress/pdf/
gartner_exec_report_sample_WEB.pdf). An ESB
provides a hosting environment for Web services,
whether they’re new and entirely ESB-hosted or
Web service front-ends to existing legacy
systems. An ESB connects IT resources over var-
ious transports and ensures that services are
exposed over standards-based transports (such as
HTTP) so that any Web-service-aware client can
contact them directly. The ESB also provides
other features that are essential to services
deployment, including enterprise management
services, message validation and transformation,
security, and a service registry.

In addition to the runtime environment, an ESB
must also provide a development environment
with tools for creating Web services. Because
reusing — rather than replacing — existing systems
is fundamental to the ESB concept, these tools
should include wizards to automatically create
Web services from other technologies such as
Corba or Enterprise JavaBeans.

As Figure 1 shows, the resulting ESB architec-
ture consists of three layers. The lowest is the exist-
ing enterprise infrastructure, which includes the IT
systems that provide much of the functionality to
be exposed as Web services. The ESB sits on top of
this layer and contains adapters to expose the
existing IT systems and provide connectivity to
various transports. The top layer consists of busi-
ness services created from existing IT systems.
These services provide essentially the same func-

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 61

BPEL and SOA

Figure 1. The ESB architecture. The architecture
consists of three layers: the existing enterprise
infrastructure; the ESB layer, which includes
adapters to expose existing systems and provide
transport connectivity; and the business services
created from the existing IT systems.

Business services

Enterprise service bus

Enterprise infrastru
cture

Third
party

tionality as the existing systems, but they’re
exposed as secure and reliable Web services that the
organization or its business partners can reuse.

So, how does the ESB architecture support our
example integration project? The payment gate-
way is already implemented as a Web service and
requires no further development. Yet, the ESB is
useful nonetheless: in addition to handling secu-
rity and reliable messaging requirements, it offers
a single management view of the service.

To expose the remaining systems as Web ser-
vices requires additional work. The ESB’s
transport-switching capability lets clients access
the services through HTTP (or other transports) and
forwards client requests to the billing system via
JMS. Project developers can define new message
formats using XML Schema3 and create transfor-
mation rules to convert to the existing applica-
tion’s format. The result is a new ESB-hosted Web
service that receives requests and transforms them
before placing them in the JMS queue.

Next, the development team can use an ESB
adapter to expose the CRM application as a Web
service. (Because application vendors are increas-
ingly adding Web service interfaces to their appli-
cations, the need for such adapters is decreasing.)

Finally, the development team must address the
Corba-based network administration system.
Although the system’s interface is defined in inter-
face definition language (IDL), it is also fine-
grained and uses many different objects. The team
can use an ESB wizard to automatically create a
Web service from the interface description. To cre-
ate a more course-grained interface, the team
members have two primary options. They can
define a new interface in IDL, let developers famil-
iar with the Corba system implement it, and then
expose it using ESB wizards. Alternatively, they
can design the new interface in WSDL and create
the Web service from there. The service imple-
mentation can act as a client of the Corba system
directly or through an ESB-generated Web-service
interface. The best option here depends on several
criteria, including the developers’ skill set.

BPEL Features
BPM introduces a fourth layer to the ESB archi-
tecture. Using an SOA, all of an organization’s IT
systems can be viewed as services providing par-
ticular business functions. Because the ESB
resolves integration issues, BPEL can orchestrate
these individual tasks into business processes.

BPEL expresses a business process’s event

sequence and collaboration logic, whereas the
underlying Web services provide the process func-
tionality. To gain the most from BPEL, developers
must understand the dividing line between the
logic implemented in the BPEL processes and the
functionality that Web services provide.

BPEL has several core features. Actions are per-
formed through activities, such as invoking a Web
service or assigning a new value in an XML doc-
ument. Activities such as while or switch offer
the developer control over activity execution.
Because it was designed to implement only the col-
laboration logic, BPEL offers only basic activities.

BPEL describes communication with partners
using partner links, and messages exchanged by
partners are defined using WSDL. Web services
operate using client-server or peer-to-peer com-
munications. In client-server communication, the
client must initiate all invocations on the server,
whereas in peer-to-peer communication, partners
can make invocations on each other. BPEL extends
WSDL with partner link definitions to indicate
whether client-server or peer-to-peer communica-
tion will be used. In peer-to-peer communication,
each partner uses WSDL to define its Web service
interfaces; partner links define each partner’s role
and the interfaces they must implement (WSDL 1.1
alone can’t do this satisfactorily).

BPEL supports asynchronous message exchanges
and gives the developer great flexibility regarding
when messages are sent or received. It also gives
the developer full control over when incoming
messages are processed. Using event handlers, BPEL
processes can handle multiple incoming messages
as they occur. Alternatively, they can use the
receive activity to ensure that particular messages
are processed only once the business process reach-
es a given state. These process instances can per-
sist over extended periods of inactivity. A BPEL
engine stores such instances in a database, freeing
up resources and ensuring scalability.

BPEL provides fault handlers to deal with
faults that occur either within processes or in
external Web services. Developers can also use
compensation handlers to undo any previous
actions, which gives them an alternative approach
to providing a two-phase commit based on dis-
tributed transaction support. When a business
process instance extends over a long period or
crosses organizational boundaries, it’s impractical
to have transactions waiting to commit. The com-
pensation handler approach is more appropriate
in this scenario.

62 MAY • JUNE 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 63

BPEL and SOA

Commercial BPEL engines provide management
consoles that let operators monitor business
process states, including processed messages and
executed activities. This lets operators see inside
the running BPEL processes to a far greater extent
than is possible with other technologies. Such tool
support, which is easily built around BPEL, is an
important benefit to using the language.

Because it is an open standard, developers can
use BPEL scripts in different environments and
exchange them between organizations. They can
use these scripts to provide additional details on
message interactions beyond that offered by
WSDL, including descriptions of business-process
life cycles (the message-exchange order).

In addition, tools can extract correlation infor-
mation from within BPEL scripts to correlate mes-
sages to particular business transactions. For
example, a management console could use such
information to identify messages of interest to the
operator. Developers can also provide sample exe-
cutable BPEL scripts to show partners how to use
their Web services. Business partners can load
these examples into their own environments and
customize them for their own use.

Impact on
Web Service Development
Using Web services to expose applications over the
Internet is now a widely accepted practice. Devel-
opers typically create Web services individually and
expose them either directly over the Internet or
within an organization for particular purposes.

Typically, these Web services are implemented
in Java and invoked by Java clients. It’s thus quick
and easy to generate Web service descriptions (in
WSDL) from APIs defined in code, and subse-
quently generate client-side proxies from the
WSDL. Similar situations exist for other program-
ming languages such as C#. The disadvantage of
this approach is that the Web services tend to
reflect the environments in which they’re devel-
oped. This is why many services are based on syn-
chronous remote procedure calls (RPCs).

BPEL provides a native XML scripting envi-
ronment that is ideally suited to asynchronous
document processing. Designing Web services for
use within BPEL, however, requires more thought
than the generate-WSDL-from-Java approach.

BPEL-Ready WSDL
When creating services for use within BPEL, it’s
helpful to use BPEL’s WSDL extensions:

• add partner link definitions, especially for peer-
to-peer communication, and

• define properties and property aliases for
important message and correlation values.

The third-party developers providing the phone
company’s payment gateway, for example, might
not be using BPEL themselves. Yet, realizing that
the purpose of providing a Web services interface
is to simplify integration and reuse, they might add
the BPEL extensions to their WSDL and follow the
principles described below.

Figure 2 shows the BPEL constructs that devel-
opers can add to WSDL files. The partnerLinkType
defines the roles involved in the business relation-
ship and ties them to given portTypes (the WSDL
term for interfaces). In this example, the presence
of a single role implies a client-server relationship.

The figure also shows the CardNumber proper-
ty definition and a property alias that describes
how to extract that property’s value from the
authenticate message.

The WSDL-First Approach
Two factors are motivating Web services’ move
from RPC to a more document-based approach:

• SOA’s requirements for loose coupling of ser-
vices, and

• the rise of standards that define common doc-
ument formats.

Transitioning from RPC to a document approach

Figure 2. Example of BPEL’s WSDL extensions. PartnerLinkType
defines business roles and ties them to specific portTypes
(interfaces). The CardNumber property shows how to extract that
value from the authenticate message.

<plnk:partnerLinkType
name=“PaymentGatewayLinkType”>

<plnk:role name=“serviceProvider”>
<plnk:portType

name=“tns:PaymentGateway”/>
</plnk:role>

</plnk:partnerLinkType>
<bpws:property name=“CardNumber”

type=“xsd:string”/>
<bpws:propertyAlias

messageType=“tns:authenticate” part=“request”
propertyName=“tns:CardNumber”

query=“/xsd1:CreditCardDetails/CardNumber”/>

64 MAY • JUNE 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

requires a move away from Java-based WSDL gen-
eration. Instead, developers should describe docu-
ment formats with XML schemas and then incor-
porate them into WSDL. The proper use of XML
schemas will let developers take full advantage of
the standard’s features, including validation and
extensible document descriptions. When develop-
ing the Web services to process these documents,
developers can generate Java code from the WSDL,
which lets them easily manipulate the XML. Alter-
natively, they can program against XML APIs,
such as the Java binding for the Document Object
Model (www.w3.org/DOM).

This document-based approach can also
increase service granularity, so that services per-
form specific business functions on documents and
thus fit more naturally into business process mod-
els. This is a significant improvement over situa-
tions in which several RPC-style operations must
be invoked to achieve a single task. Using such
RPC-style operations results in a business process
model that is both less clear and less manageable.

The WSDL-first approach also permits the use

of a common set of data types or documents across
all Web services. This was less an issue when Web
services were deployed and used individually. As
multiple services increasingly act together, how-
ever, orchestrating them is much easier if they
share a set of data types. Developers can resolve
data-structure mismatches using mapping tech-
nologies such as Extensible Stylesheet Language
transformations (XSLT).4 However, a business
process that has to handle several different data
types and continually map between them will be
complex and less clear to the operators.

Adopting a WSDL-first approach requires more
familiarity with XML Schema than the code-first
approach, but the benefits are well worth the
investment. For our phone company, using this
approach means that, rather than expose each sys-
tem independently on the ESB, the developers
would first analyze the systems’ data types. Next,
they’d create an XML schema defining a new XML
format for the shared data types. Each system
reuses this XML schema by creating a WSDL
description to define the operations it performs on
these data types. The format this shared schema
defines will be the starting point for creating
transforms to convert from XML to the billing
system’s format. When exposing the Corba net-
work-administration system, the developers cre-
ate a WSDL file defining the operations performed
on the shared data types. They then use this to
create a Java Web service skeleton using ESB tools
and implement each operation by invoking the
existing Corba system.

The WSDL-first approach also lets developers
add validation rules that wouldn’t normally be pre-
sent in WSDL generated from programming lan-
guages. As Figure 3 shows, for example, XML
schema’s data-type definition for credit-card
details might state that the card number is a 16-
digit string.

Defining data types in this way gives business
partners additional details on how to use services
and lets the ESB automatically validate messages
before they’re delivered to the applications.

Peer-to-Peer Communication
Until recently, most Web services used client-server
communications because organizations generally
thought peer-to-peer communication made service
access too complex. This reliance on client-server
communications has prevented organizations from
creating truly asynchronous or event-based sys-
tems. As a result, problems can arise in many

Figure 3. Validation within the XML Schema. The data-type definition
for credit-card details states that the card number is a 16-digit string.

<xsd:element name=“CardNumber”>
<xsd:simpleType>
<xsd:restriction base=“xsd:string”>
<xsd:pattern value=“\d{16}”/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

Figure 4. A peer-to-peer partnerLinkType. The ServiceProvider
and Client roles describe communication between the client and
billing system.

<plnk:partnerLinkType
name=“BillingSystemLinkType”>
<plnk:role name=”ServiceProvider”>

<plnk:portType
name=“tns:BillingSystem”/>

</plnk:role>
<plnk:role name=”Client”>

<plnk:portType
name=“tns:BillingSystemCallback”/>

</plnk:role>
</plnk:partnerLinkType>

areas, including scalability, because connections
must remain open during message processing, or
when clients need to poll the server to check for
results availability.

BPEL lets organizations offer peer-to-peer ser-
vices, knowing that clients and partners using BPEL
can easily make use of them. For instance, the
billing system is an asynchronous messaging sys-
tem that is now exposed as a Web service. The
WSDL describing this Web service contains two
portTypes: one contains the operations that the
client invokes, and the other contains the operations
that the client must provide so the billing system
can send it results. As Figure 4 shows, the partner
link definition describes this relationship by defin-
ing two roles: ServiceProvider and Client.

The service provided by the BPEL script must
appear synchronous: the client will wait for the
response to indicate that the account has been
created. The billing system, however, is asynchro-
nous and might not respond quickly enough. To
address this, the BPEL script sends the request to
the billing system, but doesn’t wait for the reply.
Instead, it completes its other work and then sends
the reply message back to the client. It then waits
for the billing system’s response and updates the
CRM system when it arrives. Figure 5 shows this
event sequence.

The createAccount operation is a one-way
operation, so it can be invoked asynchronously.
After the BPEL script replies to the customer, a
receive activity makes it wait for the billing sys-
tem’s response message. Once it receives the
response, the script updates the CRM system and
thus completes the process.

State Storage
Traditionally, the Web services community has
advocated making all Web services stateless. This
is good advice for simplifying service development
and deployment. However, some business process-
es need to store state. The BPEL specification
acknowledges this, and compliant BPEL engines
must automatically store process-associated state
to a database. The BPEL engine ensures that all
database access occurs within the appropriate
transaction and that system failures will never
cause inconsistency in a process’s internal state.
When failures occur, the BPEL engine provides
automatic recovery, removing a significant burden
from Web service developers.

Using BPEL, Web service developers can ensure
stateless Web services, letting the BPEL process

store any state a process requires. A Web service’s
tasks can thus be focused on the documents it
receives. If a service performs many tasks — some
of which depend on previously stored state —
developers should consider returning this state to
the BPEL process for storage with the document.
BPEL can then pass it to the Web service again as
part of the document when necessary. Reducing
the number of services that need to store state
offers several benefits in the overall architecture’s
reliability and flexibility.

In our phone company scenario, the service
that exposes the billing system is such an exam-
ple (see Figure 6). This service is essentially two
JMS queues exposed as a Web service that per-
forms data transformation. Requests are received
via SOAP over HTTP, transformed, and passed on
to a JMS queue. The service receives billing sys-

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 65

BPEL and SOA

Figure 5. Communicating with the billing system. Rather than wait
for the billing system’s response, the BPEL script completes its work,
sends the reply message to the client, and then updates the CRM
once the billing system’s response arrives.

<bpws:invoke partnerLink=“BillingSystem”
portType=“ns3:BillingSystem”
operation=“createAccount”/>

<!— Some activities skipped —>

<bpws:reply partnerLink=”customer”
portType=“ns:ProvisioningInterface”
operation=“provisionNewSubscriber”/>

<bpws:receive partnerLink=”BillingSystem”
portType=“ns3:BillingCallback”
operation=“accountConfirmation”/>

<bpws:invoke partnerLink=”CRMSystem”
portType=“ns4:CRMSystem”
operation=“registerBillingAccount”/>

Figure 6. The billing system Web service. The Java Message Service
queues are exposed as a Web service and perform data
transformation.

Mainframe
billing
system

Billing
system
Web

service

SOAP
over HTTP

Java Message Service
queues

tem responses from the reply queue and forwards
them to the client via SOAP over HTTP. Although
the Web service client specifies a reply-to
address, the mainframe system doesn’t use this
addressing mechanism. As a result, the address
must be stored so that the Web service can pass
the reply to the correct address. So, in addition
to hosting the transformations, this Web service
must perform two other tasks: correlate the
request and response messages, and store client
callback addresses. This is an ideal service for
BPEL implementation.

Within the billing system, messages contain an
identifier used to correlate request and response
messages. This identifier is defined as a property
within WSDL. Another set of WSDL definitions,
propertyAliases, shows how that property can
be found in each message. Whenever state is stored
within BPEL process instances, correlation sets
must be used to ensure that subsequent messages
are routed to the correct process instance. As Fig-
ure 7 illustrates, developers can use this property
to define a correlation set and reference it when
communicating with the billing system.

When the message is sent to the billing system,
the invoke operation initializes the correlation set.
The same correlation set is then referenced within
the receive activity. This acts as a filter to ensure
that only a message with a value that matches the
correlation property will be passed to this instance
of the BPEL process.

66 MAY • JUNE 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Figure 7. Declaration of a correlation set. Using correlation sets, the BPEL script lets developers use WSDL-defined
properties to define correlation sets and reference them during billing system communications.

<bpws:correlationSets>
<bpws:correlationSet name=“instanceID” properties=“ns:identifier”/>

</bpws:correlationSets>

<bpws:invoke partnerLink=“MainframeBillingSystem” portType=“ns3:SendQueue”
operation=“sendMessage”>
<bpws:correlations>
<bpws:correlation set=“instanceID” initiate=“yes”/>

</bpws:correlations>
</bpws:invoke>

<bpws:receive partnerLink=“MainframeBillingSystem” portType=“ns3:ReceiveQueue”
operation=“receiveMessage”>
<bpws:correlations>
<bpws:correlation set=“instanceID” initiate=“no”/>

</bpws:correlations>
</bpws:invoke>

Figure 8. Implementing a compensation handler. As this abbreviated
example indicates, if a fault occurs within the CRM system the
billing system operation is also reversed.

<bpws:scope name=“CreateAccounts”>
<bpws:sequence>
<bpws:scope name=“BillingSystem”>

<bpws:faultHandlers>
<bpws:catchAll>

<!— Report error —>
</bpws:catchAll>

</bpws:faultHandlers>

<bpws:compensationHandler>
<!— Delete account —>
<bpws:invoke partnerLink=“BillingSystem”

operation=“deleteAccount”/>
</bpws:compensationHandler>

<bpws:invoke partnerLink=“BillingSystem”
operation=“createAccount”/>

</bpws:scope>

<bpws:invoke partnerLink=“CRMSystem”
operation=“createCustomer”/>

</bpws:sequence>
</bpws:scope>

When Things Go Wrong
Any system that modifies resources must be able
to roll back changes when faults occur. Web devel-
opers should consider the faults that a service
might return and ask: “What action do I expect the
client to take as a result of receiving this fault?” If
clients might need to reverse previous actions,
developers should provide operations on the Web
service API accordingly.

BPEL’s compensation mechanism is quite
sophisticated, and lets developers associate a com-
pensation handler with any activities set. This
gives them a lot of flexibility in how they provide
operations to undo previous actions. However,
developers should ensure that all fault- and com-
pensation-handler operations are easy to use. Oth-
erwise, the code these handlers execute might be
as complex (or more complex) than that for nor-
mal operation.

BPEL executes a fault handler when a fault
occurs and terminates the fault handler’s associ-
ated scope. In contrast, a compensation handler
can be executed only when its associated scope
has successfully completed. The BPEL engine
stores the required state associated with the com-
pleted scope so that the compensation handler can
execute. In our sample process, an account is cre-
ated in both the billing system and the CRM
system. If a fault occurs with one system, the
operation on the other should be reversed. Figure
8 shows an abbreviated example of the BPEL
script that implements this logic.

If a fault occurs in the createAccount oper-
ation, BPEL invokes the report-error fault han-
dler. If the createAccount operation succeeds
and a fault occurs in the createCustomer oper-
ation, BPEL invokes the delete-account compen-
sation handler. If the BillingSystem scope were
inside a loop, BPEL would invoke each succes-
sive iteration’s compensation handler instance in
reverse order.

The code samples here show the raw XML syn-
tax of BPEL and XML Schema. With graphi-

cal tools, however, developers need never deal
with this syntax directly. Figure 9 shows the
sample scenario as seen through the Cape Clear
Orchestrator tool. For the scenario’s full source
code and instructions on how to run it in a BPEL
engine, see www.capescience.com/articles/
IEEESamples.

References

1. D. Booth et al., “Web Services Architecture,” W3C note,

Feb. 2004; www.w3.org/TR/ws-arch/.

2. E. Christensen et al., “Web Services Description Language

(WSDL) 1.1,” W3C note, Mar. 2001; www.w3.org/TR/

wsdl.html.

3. D.C. Fallside and P. Walmsley, XML Schema Part 0: Primer,

Second Edition, W3C recommendation, Oct. 2004; www.

w3.org/TR/xmlschema-0.

4. J. Clark, XSL Transformations (XSLT), Version 1.0, W3C

recommendation, Nov. 1999; www.w3.org/TR/xslt.

James Pasley is chief architect at Cape Clear Software, where

he oversees the development of Cape Clear’s product

suite. He has a BA Mod. in computer science from Trin-

ity College, Dublin. Contact him at james.pasley@

capeclear.com.

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2005 67

BPEL and SOA

Figure 9. Graphical representation of the example scenario. Using
graphical tools such as the Cape Clear Orchestrator, developers can
avoid dealing directly with XML syntax.

