
Michael N. Huhns
University of South Carolina

Munindar P. Singh
North Carolina State University

Service-Oriented Computing:
Key Concepts and Principles

IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society JANUARY • FEBRUARY 2005 75

Se
rv

ic
e-

O
ri

en
te

d
C

om
pu

ti
ng

 T
ra

ckEditors: Michael Huhns • huhns@sc .edu
Munindar P. Singh • s ingh@ncsu .edu

Traditional approaches to software development — the ones embodied in

CASE tools and modeling frameworks — are appropriate for building individual

software components, but they are not designed to face the challenges of open

environments. Service-oriented computing provides a way to create a new

architecture that reflects components’ trends toward autonomy and

heterogeneity.

Although the Web was initially
intended for human use, most
experts agree that it will have to

evolve — probably through the design
and deployment of modular services — to
better support automated use. Services
provide higher-level abstractions for
organizing applications for large-scale,
open environments. Thus, they help us
implement and configure software appli-
cations in a manner that improves pro-
ductivity and application quality.

Because services are simply a means
for building distributed applications, we
cannot talk about them without talking
about service-based applications — specif-
ically, how these applications are built and
how services should function together
within them. The applications will use ser-
vices by composing or putting them
together. An architecture for service-based
applications has three main parts: a
provider, a consumer, and a registry.
Providers publish or announce their ser-
vices on registries, where consumers find

and then invoke them.
Current Web service standards and

techniques support these parts and
enable many important use cases, but the
particular set of basic standards they
employ are incidental to the key concepts
underlying service-oriented computing
(SOC).1 Indeed, although Web services
provide a ready source of practical exam-
ples, they are unnecessarily limited. The
architecture for Web services provides a
framework that can be fleshed out with
more powerful representations and tech-
niques taken from established computer
science approaches. Serious practitioners
already use such representations,
although they are omitted from most
expositions of Web services. The articles
in this track will thus emphasize SOC
concepts instead of how to deploy Web
services in accord with current standards.
To begin the series, we describe the key
concepts and abstractions of SOC and the
elements of a corresponding engineering
methodology.

Abstractions for SOC
We can view SOC in terms of several different
cross-cutting levels of abstractions, ranging from
those that concern services within an application
to those that concern service applications inter-
acting across enterprises. Let’s consider a typical
surgery division in a large hospital. One challenge
in such a setting would be to make the payroll,
scheduling, and billing systems interoperate. Each
system is quite complex, with its own user inter-
faces and databases, perhaps running on different
operating systems.

For obvious reasons, these systems must work
together. Scheduling employees and operating
rooms for surgery is complicated, for example,
because schedules require frequent updating. A
scheduling system must balance staff and equip-
ment availability with unpredictable levels of sur-
gical urgency and advance notice.

The mechanisms for payroll are similarly com-
plex — the payroll system must consider various
kinds of overtime rules for different categories of
labor, such as nurses, residents, consulting
physicians, senior surgeons, radiologists, and so
on — and rely to some extent on data from the
scheduling system.

Likewise, the billing system must also incor-
porate scheduling information. It is used not only
to bill customers, but also to deal with medical
insurance companies and government agencies
(such as those for children, the elderly, retired
government employees, and veterans). Agencies
typically impose complex rules for valid billing
and penalties for violations of these rules. Across
the US, for example, different rules apply regard-

ing how hospitals can bill for anesthesiologists’
efforts during surgeries. In some states, a senior
anesthesiologist can supervise up to four junior
(resident) anesthesiologists. This senior person
thus time-shares his or her effort among four con-
current surgeries, whereas each junior person is
dedicated to one. If an emergency arises, the law
allows a fifth surgical procedure under the same
senior anesthesiologist’s supervision, but the
billing rate is severely reduced.

Hospital systems provide services within an
enterprise, exemplifying the abstraction level of
intraenterprise interoperation. Similar examples
can exist among enterprises, among software com-
ponents, and between the application level of a
system and its infrastructure level, as the follow-
ing sections describe.

Intraenterprise Abstraction Level
If we look at just the interoperation aspects in
our hospital example, we quickly see several hur-
dles to overcome. The first is connectivity among
the applications, which protocols such as HTTP
can readily ensure. The second is the ability of
the various components to understand each
other. XML, particularly XML Schema, can han-
dle communication formatting, but it cannot
decipher the meaning behind a given message.
Meaning usually is not encoded explicitly;
rather, it depends on how various systems
process information, which means system inte-
grators and developers must uncover and recon-
cile the interacting components’ intent. This rec-
onciliation presupposes that accurate declarative
information models exist. In practice, however,
such models are often poorly maintained or sim-
ply do not exist. Developers must thus construct
(or reconstruct) them at integration time. This
process is further complicated by the fact that
information models for different systems might
describe different abstraction levels. Services can
encapsulate component behavior at many levels,
but still describe it in the same way, thus easing
composition of the components.

Because our hospital setting deals with legacy
and other systems and applications that operate
within the enterprise, various enterprise policies
must readily authenticate and authorize the parties
involved in different interactions. A service-oriented
architecture (SOA), by requiring that policies be
made explicit, can organizationally enforce com-
pliance with these policies, thus simplifying the sys-
tem’s management.

76 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 1. Web services architectural model. As a
basis for a service-oriented architecture, Web
services models incorporate how Web services are
advertised, discovered, selected, and used.

Bind
(SOAP/HTTP)

Publish
(WSDL)

Find
(UDDI)

Service
registry and

broker

Service
provider

Service
requestor

A new problem arises when we want to intro-
duce new applications and configure them to inter-
operate. Imagine that the hospital purchases an
anesthesia information management system (AIMS)
to complement its existing systems. An AIMS helps
anesthesiologists manage procedures in surgery as
well as monitor, record, and report activity such as
various gas and drip levels. This information estab-
lishes compliance with government regulations,
ensures that certain clinical guidelines are met, and
supports studies of patient outcomes. Although it is
easy to buy an AIMS, installing and using it is much
more challenging. To introduce one in the operat-
ing room, the installer must ensure that the right
interface is exposed between the new and existing
systems — systems likely developed on different
platforms and perhaps running on different operat-
ing systems. Clearly, adherence to interconnection
standards is crucial.

Even with low-level connectivity, problems
with messaging (components connecting opera-
tionally) and semantics (components understand-
ing each other) remain. We also have to configure
and customize the new application’s behavior: an
AIMS must be populated with a hospital-specific
data model, so that it displays the correct user
interface screens to the staff and logs the right
observations.

SOC addresses these problems by providing the
abstractions and tools to model the information
and relate the models, construct processes over the
systems, assert and guarantee transactional prop-
erties, add flexible decision-support, and relate the
functioning of the component software systems to
the organizations that they represent.

Interenterprise Abstraction Level
Traditionally, enterprises have interoperated in an
ad hoc manner that required substantial human
intervention. Alternatively, they use rigid standards
such as Electronic Data Interchange (EDI), which
leads to difficult-to-maintain systems. Recently, we
have seen a growing interest in supply-chain man-
agement and flexible, on-demand manufacturing,
which has led, in turn, to more cross-enterprise
processes in general. The idea is that businesses that
have to work together anyway can improve their
responses to information, reduce overhead, satisfy
individual customer preferences, and exploit
emerging opportunities by streamlining their inter-
actions through technology.

Returning to our hospital scenario — specifi-
cally, the billing portion — illustrates this process.

The traditional approach would be to send hard-
copy bills to agencies and insurance companies,
which the receiving party would then retype into
its information system. Naturally, such approach-
es are disappearing in favor of online billing.

Yet, online systems must capture data formats in
a reliable manner so that insurance companies can
understand hospital-formatted information, and vice
versa. If a standard approach existed, robust com-
mercial tools could process the format rather than
the custom-software-based systems that are still
widespread. In recent years, industry has converged
on XML as the data format of choice. Although it is
clearly a success, it does not resolve how communi-
cated data is to be understood and processed.2

Next, imagine that the hospital wants to buy
catheters. To efficiently purchase this supply, the
hospital must interoperate with a catheter vendor,
but let’s further suppose the hospital wants to use
whichever vendor offers the best terms. This type
of dynamic selection is increasingly common as
people recognize the benefits of its flexibility. If
an entity can pick its business partners flexibly, it
can select them to optimize any kind of quality-
of-service criteria, including performance, avail-
ability, reliability, and trustworthiness.

Suppose a hospital were performing a business
transaction with a supplier and encountered an
error, such as the supplier being temporarily out of
stock. It would be great if the hospital could rewire
the interaction to an alternative supplier dynami-
cally and transparently to the overall process. To do
this, the hospital’s purchasing system would need
some means of recovery to restore a consistent state
and restart the computation with new suppliers.

SOC provides the ability for interacting parties
to choreograph their behaviors, so that each can
apply its local policies autonomously, yet achieve
effective and coherent cross-enterprise processes.
In addition, it provides support for dynamic selec-
tion of partners as well as abstractions through
which the state of a business transaction can be
captured and flexibly manipulated; in this way,
dynamic selection is exploited to yield application-
level fault tolerance.

Infrastructure Abstraction Level
Building complex applications over distributed
platforms, such as grid architectures, is difficult
and has led to an interest in modular interfaces
based on services. Accordingly, the grid research
community views grid services as analogous to
Web services.3

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 77

Key Concepts and Principles

A Grid provides computing resources as a util-
ity analogous to electric power or telecommunica-
tions, so that enterprises can concentrate on their
core business and outsource their computing infra-
structure to specialist companies. IBM and
Hewlett-Packard, for example, currently offer util-
ity computing services.4

Utility computing presupposes that diverse
computational resources can be brought together
on demand and that computations can be realized
depending on demand and service load. In other
words, utility computing assumes service instances
would be created on the fly and automatically
bound as applications are configured dynamical-
ly. A service viewpoint abstracts the infrastructure
level of an application. It enables the efficient
usage of grid resources and facilitates utility com-
puting, especially when redundant services can be
used to achieve fault tolerance.

Software Component Abstraction Level
Programming abstractions that consider software
components to be potentially autonomous help
improve software development. Services offer pro-
gramming abstractions in which software developers
can create different software modules through inter-
faces with clearer semantics. When a programmer
uses the full complement of semantic representations
for services, the resulting modules are more easily

customizable. The result is that SOC provides a
semantically rich and flexible computational model
that can simplify software development.

Service-Oriented Architectures
The hospital use case provides a challenging set of
requirements for any approach to computing, but
an SOA can satisfy them all. Figure 1 provides a
general architectural model for Web services,
which form the basis for an SOA.

SOC’s emphasis falls on the architecture, be-
cause many of the key techniques for its
components — databases, transactions, software
design — are already well understood in isolation.
Practical success depends on how well we can
place these techniques into a cohesive framework,
so that we can apply them in production software
development. Recent progress on standards and
tools is extremely encouraging in this regard.5,6

Several SOAs can coexist, provided they satis-
fy some key elements for SOC:

• Loose coupling. Tight transactional properties
— maintaining and guaranteeing data and state
consistency — generally do not apply among
components because conventional software
architectures do not typically include transac-
tion managers. Although it would not be
appropriate to specify data consistency across
the various components’ information resources
because they are autonomous, we must con-
sider the high-level contractual relationships
that specify component interactions to achieve
system-level consistency.

• Implementation neutrality. The interface for
each component matters most, because we can-
not depend on the interacting components’
implementation details, which can be unique.
In particular, a service-based approach cannot
be specific to a set of programming languages,
which cuts into the freedom of different imple-
menters and rules out the inclusion of most
legacy applications.

• Flexible configurability. An SOC system is con-
figured late and flexibly, which means differ-
ent components are bound to each other late in
the process. Thus, the configuration can change
dynamically as needed and without loss of cor-
rectness.

• Persistence. Services do not necessarily require
a long lifetime, but because we are dealing with
computations among autonomous heteroge-
neous parties in dynamic environments, we

78 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 2. Normative workflow. For the
development and execution of a Semantic Web
service in a service-oriented architecture, an
appropriate methodology must support the
development of each state shown.

Discovery

Selection

Enactment

Authentication Engagement

must always be able to handle exceptions. The
services must exist long enough to detect any
relevant exceptions, take corrective action, and
then respond to the corrective actions taken by
others. They should also exist long enough to
engender trust in their behavior, because they
are engaged dynamically and reputation might
be the only means available to gauge their reli-
ability. Ephemeral services would not be
around long enough to develop a reputation.

• Granularity. An SOA’s participants should be
modeled and understood at a coarse granular-
ity. Instead of modeling interactions at a
detailed level, we should capture the high-level
qualities that are (or should be) visible for busi-
ness contracts among the participants. Coarse
granularity reduces dependencies among par-
ticipants and reduces communications to fewer
messages of greater significance.

• Teams. Rather than framing computations cen-
trally, we should think in terms of how
autonomous parties, working on a team as
business partners, realize those computations.
Researchers in multiagent systems confronted
the challenges of open systems early on, when
they attempted to develop autonomous agents
that could solve problems cooperatively or
compete intelligently.7

Although SOAs might not be new, they address the
fundamental challenges of open systems, which are
to operate efficiently and achieve coherence in the
face of component autonomy and heterogeneity.
SOC adds the ability to build on conventional
information technology in a standardized way, so
that tools can facilitate the practical development
of large-scale systems.

Engineering an SOA
Because an SOA differs from a conventional archi-
tecture, it requires a different development
methodology than CASE tools typically provide. A
popular and typical methodology for creating con-
ventional software — the unified modeling
methodology (UMM) — involves first describing
business collaborations as use-case diagrams and
then describing business transactions as activity
diagrams. CASE tools then generate the code to
implement the system.

As shown in Figure 2, a service-oriented method-
ology replaces code generation with a combination
of service discovery, selection, and engagement.
Some or all of these steps might occur at runtime.

Figure 3 presents a different view of what is
involved in engineering an SOA. In this case, ser-
vice composition plays a key role.

Service composition is crucial because it lets us
create new value from existing parts. Reuse is a
well-regarded concept in traditional software
development, but it is merely a convenience,
whereas reuse is essential in the case of services,
because services cut across organizational bound-
aries. In traditional software, for example, you can
implement your own data structure or graphics
package, but you cannot implement your own
insurance provider or airline. You have no choice
but to deal with other people’s services, so you
must be able to put them together — or compose
them — appropriately.

Composite services apply in many practical set-
tings. Portals, for example, aggregate information
from multiple sources: the challenge is to person-
alize the information for each user. Electronic com-
merce can involve aggregating product bundles to
meet specific user needs. Virtual enterprises and

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 79

Key Concepts and Principles

Figure 3. Service-oriented architecture. Engineering a service-
oriented computing system is a process of discovering and
composing the proper services to satisfy a specification, whether it is
expressed in terms of a goal graph (top), a workflow (bottom), or
some other model.

. . .

Goal

Subgoal Subgoal Subgoal

Subgoal Subgoal Subgoal

Subgoal Subgoal

Subgoal

Task2 Task6

Task4

Task5

WebService1 WebService2 WebServiceN

Discovering, matching, planning, composing

Discovering, matching, planning, composing

Task3

Task1 Task7

supply-chain management reflect generalizations
of consumer-oriented e-commerce scenarios,
because they include subtle constraints among a
larger number of participants.

Challenges for Composition
Consider a simple business-to-consumer (B2C) sit-
uation, as depicted in Figure 4: a company sells
digital cameras over the Web, combining an online
catalog with up-to-date models and prices, a valid
credit-card transaction process, and a guaranteed
delivery. The B2C transaction software would

• record a sale in a sales database;
• debit the credit card;
• send an order to the shipping department;
• receive an approval from the shipping depart-

ment for next-day delivery; and
• update an inventory database.

However, problems can arise at several points in the
process. What if the order ships, but the debit fails?
What if the debit succeeds, but the order is never
entered or shipped? In a closed environment, trans-
action-processing (TP) monitors can ensure that all
or none of the steps are completed and that the sys-
tems eventually reaches a consistent state, but such
TP monitors do not apply over the Web. Suppose the
user’s modem were disconnected right after he or
she clicked on OK. Did the order succeed? Suppose
the line went dead before the acknowledgment
arrived. Would the user order again? The basic
problem is that a TP monitor cannot get the user —
part of the software system’s open environment —
into a consistent state. The TP monitor cannot con-
trol any part of the environment outside its scope.

There are several possible solutions for han-
dling issues such as these in open environments.

• The server application could send email about
credit problems or detect duplicate transactions.

• A downloaded Java applet could synchronize
with the server after the broken connection was
reestablished and recover the transaction; the
applet could communicate using HTTP or
directly with server objects via Corba’s Internet
Inter-ORB Protocol or remote method invoca-
tion (RMI).

• To make the processing robust against demand
fluctuations, orders could be put in a message
queue, which could be managed by message-
oriented middleware. Because MOM guarantees
message delivery or failure notification, cus-
tomers would be notified by email when the
transaction was complete.

People regularly use email to communicate with
each other, so in using email, the server behaves
like an intelligent agent, further exemplifying
the emerging agent-like aspects of the Web and
its services.

Although our camera store example consid-
ers a user dealing with a particular enterprise, the
problem is more acute in business-to-business
settings. If our camera store were considered
merely a component in a large supply network,
it would have no hope of forcing the other par-
ties to conduct their local transactions in any
particular manner or to reliably converge to a
consistent state across the system. Deeper models
of transactions and business processes could
ensure that the correct behavior was realized in
such cases.

Current specifications for Web services do not
address transactions or specify a transaction model.
Emerging standards include the Business Transac-
tion Protocol8 as well as IBM, Microsoft, and BEA’s
WS-BusinessActivity and allied standards (http://
msdn.microsoft.com/library/en-us/dnglobspec/
html/WS-BusinessActivity.pdf). However, most
implementers believe that SOAP will manage trans-
actions — somehow. Without guidance from a stan-
dard or an agreed-upon methodology by the major
vendors, transactions will be implemented in an ad
hoc fashion, thus unnecessarily complicating inter-
operability and extensibility.

Security will also be more difficult because
more participants will be involved, and service
designers might not anticipate the nature of all the
participants’ interactions and needs. We will prob-
ably also see incompatibilities in vocabularies,
semantics, and pragmatics among service

80 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Service-Oriented Computing Track

Figure 4. Business-to-consumer transaction
environment. This camera-selling Web site must at
times try to infer a user’s state and intentions, and
in doing so, it adopts agent-like behaviors.

SellCamera
Web Service

User

Sales database Shipping database Inventory database

Internet

providers, brokers, and requesters. Performance and
QoS issues might provide additional challenges.

Spirit of the Approach
Although simplistic, Figure 1 makes apparent
many of the problems that must be solved for an
SOA to become viable on a large scale. To publish
effectively, we must be able to specify services with
precision and greater structure. Parties who are not
from the same administrative space as the provider
will eventually invoke the service, and differences
in assumptions about the service’s semantics could
be devastating. The registry must be able to certi-
fy the given providers so that it can endorse them
to the registry’s users.

Service requestors should then be able to find
a registry that they can trust, which means deal-
ing with considerations of trust, reputation, incen-
tives for registries, and, most importantly, for the
registry to understand the requestor’s needs. Once
a service is selected, the requestor and the provider
must develop a finer-grained sharing of represen-
tations. They must be able to participate in con-
versations to conduct long-lived flexible transac-
tions, in such a manner that they can establish and
monitor a service-level agreement.

The keys to the next-generation Web are coop-
erative services, systemic trust, and an overall

understanding based on semantics. The agent
characteristics of proaction and autonomy, and
agents’ ability to negotiate commitments and deal
with exceptions, are needed for the anticipated
applications of SOC. Research is required to
enable a transition to the next generation, espe-
cially because the Web presents a demanding
environment for applications. In particular, its
size and dynamism present problems for open
applications, but its size fortuitously provides a
means for solving them as well. A given topic, for
example, might contain an overload of informa-
tion — much of it redundant and some of it inac-
curate — but a system can use a preponderance of
evidence or voting among the different informa-
tion sources to reduce the information to that
which is consistent and agreed upon. Competing
service providers might not be trustworthy, but a
system could use a reputation network to assess
credibility. Subsequent articles in this track will
address these and other concepts, further explor-
ing and formalizing the principles expressed
throughout this article.

Acknowledgments
This article is based on Service-Oriented Computing: Seman-

tics, Processes, Agents (John Wiley & Sons, 2005).1 Parts of that

text were reproduced with permission.

References

1. M.P. Singh and M.N. Huhns, Service-Oriented Computing:

Semantics, Processes, Agents, John Wiley & Sons, 2005.

2. D.L. McGuinness and F. van Harmelen, eds., “OWL Web

Ontology Language Overview,” World Wide Web Consor-

tium (W3C) recommendation, Feb. 2004; www.w3.

org/TR/owl-features.

3. I. Foster et al., “The Physiology of the Grid: An Open Grid

Services Architecture for Distributed Systems Integra-

tion,” Globus, 17 Feb. 2002; www.globus.org/research/

papers/ogsa.pdf.

4. J.W. Ross and G. Westerman, “Preparing for Utility Com-

puting: The Role of IT Architecture and Relationship

Management,” IBM Systems J., vol. 43, no. 1, 2004, pp.

5–19.

5. F. Curbera et al., “Unraveling the Web Services Web,” IEEE

Internet Computing, vol. 6, no. 2, 2002, pp. 86–93.

6. R. Khalaf et al., “Understanding Web Services,” Practical

Handbook of Internet Computing, M. Singh, ed., Chapman

Hall CRC Press, 2005, chapter 27.

7. F. Bergenti, M.-P. Gleizes, and F. Zambonelli, eds., Method-

ologies and Software Engineering for Agent Systems: The

Handbook of Agent-Oriented Software Engineering, Kluw-

er Academic, 2004.

8. S. Dalal et al., “Coordinating Business Transactions on the

Web,” IEEE Internet Computing, vol. 7, no. 1, 2003, pp.

30–39.

Michael N. Huhns is a professor of computer science and engi-

neering at the University of South Carolina, where he also

directs the Center for Information Technology. His research

interests are in the areas of SOC, multiagent systems, enter-

prise integration, and ontologies. Huhns received a BS in

electrical engineering from the University of Michigan,

Ann Arbor, and an MS and a PhD in electrical engineering

from the University of Southern California. He is a mem-

ber of the IEEE, the ACM, the AAAI, Tau Beta Pi, Eta Kappa

Nu, and Sigma Xi. Contact him at huhns@sc.edu.

Munindar P. Singh is a professor of computer science at North

Carolina State University, where he dabbles in agents and

services, and especially business protocols, trust, and social

networks. Singh has a BTech in computer science and engi-

neering from the Indian Institute of Technology and a PhD

in computer sciences from the University of Texas. He’s

also authored close to 200 articles and columns, and he

served as editor-in-chief of IEEE Internet Computing from

1998 to 2002. Contact him at singh@ncsu.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 81

Key Concepts and Principles

