
Scaling the Web

MOM vs. RPC:
Communication Models
for Distributed Applications

An important aspect of designing a distributed
application is the communication model you
use to connect its various components. Some

middleware solutions,1 such as Web services,2 offer
two of the most important communication para-
digms: asynchronous messaging and remote pro-
cedure call (RPC).

Message-oriented middleware (MOM) lets a ser-
vice’s consumers physically and temporally decou-
ple from the service providers (see www.
webmethods.com and http://www-306.ibm.com/
software/integration/wmq/). Communication be-
tween service providers and their consumers is
asynchronous, and they don’t need to be available
at the same time because they communicate by
sending and receiving messages from designated
message queues. In contrast, RPC is a synchronous
method of requesting remote service execution.
Consumers must suspend service execution until
they receive a reply from the provider.

MOM and RPC have advantages and disadvan-
tages. MOM solutions tend to be more robust to
failures than RPC, and they allow service re-
questers to continue to process while service
providers work on their requests. However, pro-
gramming MOM-based applications is more cum-
bersome because distribution isn’t as transparent
to the programmer as with RPCs. In this column, I
provide a quantitative framework you can use to
compare MOM- and RPC-based solutions.

Basic Model
Consider an application program component (APC)
that requests a service from a service provider (SP).
We assume that the APC could potentially execute
some asynchronous code after sending a request for
service but before receiving a reply from the SP; we
call this time to execute the asynchronous code tasync.
With RPCs, the APC must wait until the RPC returns
a result before it can execute the asynchronous code.

With MOM, the APC and the SP exchange mes-
sages through a message queue broker (MQB), as
Figure 1 shows. After sending a service request to
the SP, the APC can execute its asynchronous
code. The SP is constantly retrieving messages
addressed to it from the MQB that contain requests
for service execution. After completing this exe-
cution, the SP posts a message to the MQB
addressed to the requesting APC, which retrieves
the reply.

Let’s look at how to compute a request’s exe-
cution time, from the APC’s viewpoint, for RPC-
and MOM-based communication with an SP (see
Figure 2).

We give an RPC-based request’s execution
time, TRPC, as

TRPC = tN + ts + tN + tasync
= 2 � tN + ts + tasync, (1)

where tN is the network time between two points
and ts is the response time of a request at the SP.
As Figure 2a shows, the APC can execute the asyn-
chronous code only after it receives the reply from
the SP. The service response time ts is a function
of the average arrival rate � s of requests from all
APCs to the SP and the average time xs to process
a service request. Thus, assuming a simple M/M/1
queuing model,3 we calculate ts as

ts = xs/(1 – �sxs). (2)

I examine the MOM-based communication
with the SP by considering two cases: the asyn-
chronous code execution can complete either
before the service execution (Figure 2b) or after it
ends (Figure 2c). The red bars in Figure 2b and 2c
indicate the average response time tm of the MQB
when it receives requests to execute a post-a-
message or get-a-message operation. The MQB

90 MARCH • APRIL 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Daniel A. Menascé • George Mason University

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 91

MOM vs. RPC

response time tm is a function of the
average arrival rate �m of message
broker operations and the average time
xm to process a messaging operation.
Thus, assuming an M/M/1 queuing
model,3 we calculate tm as

tm = xm/(1 –�mxm). (3)

For the case of Figure 2b, a MOM-based
request’s execution time, TMOM, is

TMOM = tN + tm + tN + ts + tN
+ tN + tm + tN
= 3 � tN + tm + ts + 2 � tN
+ tm. (4)

With Figure 2c, we can compute TMOM
as

TMOM = tasync + tN + tm + tN
= tasync + 2 � tN + tm. (5)

We combine Equations 4 and 5 to
obtain a single expression that accounts
for the two cases in Figure 2b and 2c:

TMOM = max {tasync, 3 � tN + tm
+ ts} + 2 � tN + tm. (6)

Numerical Example
Let’s look at an example that consid-
ers the following parameters: xm =
0.01 seconds, xs = 0.1 seconds, tN =
0.035 seconds. We consider that �m =
10 � �s and use the following values
for �s: 2.5 requests per second, 5
requests per second, and 7.5 requests
per second. We consider tasync equal to
the service processing time xs multi-
plied by a factor f, which varies from
0.1 to 10.

Figure 3 (next page) shows the
variation of a request’s execution time,
TRPC and TMOM, as a function of the
factor f for the three values of �s.

We can draw the following obser-
vations from the curves in Figure 3
and from Equations 1 through 5:

• RPC’s execution time TRPC increas-
es linearly with the asynchronous
code execution time. However, the

intercept of these lines increases in
a nonlinear fashion with the arrival

rate of requests to the SP, due to
Equation 2.

Figure 1. Message queue broker. A queue manager moves messages from
incoming to outgoing message queues (MQs). An application program
component communicates with a service provider through message exchanges.

I

MQ

MQ

MQ

. . .

Message queue broker

MQ

MQ

MQ

. . .

Service
provider

Application
program

component

Network

Queue
manager

Figure 2. Time-axis analysis of RPC versus MOM. (a) In the RPC scenario, the
application program component can execute asynchronous code only after
receiving a reply from the service provider. (b) In this MOM scenario, the
asynchronous code execution ends before the service execution is complete. (c)
In this MOM scenario, the service execution ends after the asynchronous code
execution is complete.

(a)

(b)

(c)

ts

ts

ts

tasync

tasync

tasync

tmtm

tmtm

APC

SP

SP

MQB

APC

SP

MQB

APC

• MOM’s execution time TMOM
doesn’t vary with the asynchronous
code execution time tasync as long
as this time is smaller than the time
needed to obtain a reply from the
SP (see Equation 4). After that
point, TMOM increases linearly with

tasync for a given value of �s. For �s
= 5 requests per second, this hap-
pens when f = 3.2 — that is, tasync =
3.2 � xs = 3.2 � 0.1 = 0.32 seconds.

• For small values of tasync, an RPC-
based request has a smaller execu-
tion time than a MOM-based

request. However, as tasync becomes
significant, the parallelism that
MOM-based communications’
asynchronous behavior obtains
provides better response time. For
�s = 5 requests per second, this
happens when f = 1.45 — that is,
tasync = 0.145 seconds. We can com-
bine Equations 1 and 5 to obtain a
point at which TMOM starts to out-
perform TRPC — that is, tasync = 3 �
tN + 2 � tm. Thus, as the load �m on
the MQB increases, so does the
point at which TMOM starts to out-
perform TRPC, as expected.

The throughput of RPC-based com-
munication always decreases with f,
whereas the throughput of the MOM-
based case is flat for a given value of
�s until tasync starts to dominate the
time for the SP to reply. At this point,
the throughput starts to decrease, and
for very large values of tasync it tends
toward that of the RPC case. Figure 4
shows the throughput of requests from
the APC’s viewpoint.

This simple framework indicates
that both MOM- and RPC-based

communications have their perfor-
mance advantages. RPC is a better
choice when the service provider’s
response is small, thus creating a
negligible penalty for suspending
execution while waiting for a reply.
MOM-based communication works
better for long-lived transactions that
require long execution times from the
SP. Most real applications are likely
to combine situations in which some
SPs reply very fast with situations in
which other SPs take a long time
before replying to the APC. As an
example, consider a purchase order
(PO) business process composed of the
following steps:

1. check PO’s correctness,
2. check item availability,
3. check buyer’s credit limit,
4. request items from the warehouse,

92 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Scaling the Web

Figure 3. Request execution time for the RPC- and MOM-based communication
models as a function of the asynchronous time factor f.The RPC time increases
linearly with f. The MOM-based time is constant for low values of f and then
increases linearly with f. For low values of f, RPC is better than MOM-based
communication. The situation is reversed for larger f values.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
Asynchronous time factor (f)

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

TRPC (5 req/sec)
TMOM (2.5 req/sec)
TRPC (2.5 req/sec)

TRPC (7.5 req/sec)
TMOM (5 req/sec)

TMOM (7.5 req/sec)

Figure 4. Request throughput for the RPC- and MOM-based cases as a function
of the asynchronous time factor f. The throughput of RPC-based requests always
decreases with f, whereas that of MOM-based requests is constant for small
values of f and then decreases for larger values of f. For low values of f, the
throughput of MOM-based communication is smaller than that of RPC. The
situation is reversed for higher f values.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
hr

ou
gh

pu
t

(r
eq

/s
ec

)

Asynchronous time factor (f)

XRPC (5 req/sec)
XMOM (2.5 req/sec)
XRPC (2.5 req/sec)

XRPC (7.5 req/sec)
XMOM (5 req/sec)

XMOM (7.5 req/sec)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

IEEE INTERNET COMPUTING

MoM vs. RPC

5. ship items to buyer, and
6. generate invoice.

If the PO is correct (step 1), we can
expect steps 2 and 3 to be executed in
parallel. Only after steps 2 and 3
complete successfully — the items are
available and the buyer has a sufficient
credit limit — can an SP request items
from the warehouse (step 4). Once the
items arrive, a shipping order is start-
ed (step 5) and an SP generates the
invoice (step 6). This business process
could take several days to process.
Thus, the communication between the
SPs that execute the various steps
should use asynchronous messaging.
However, some of these steps might use
other SPs that return fast responses. An
example would be checking the credit
limit in step 2. This could be accom-
plished via an RPC to a financial insti-
tution’s SP. Thus, both types of com-
munication models, RPC and
asynchronous messaging, must be
used where appropriate.

Acknowledgments
Grant number NMA501-03-1-2022 from the US

National Geospatial-Intelligence Agency (NGA)

partially supports this work.

References

1. S. Vinoski, “Where is Middleware,” IEEE

Internet Computing, vol. 6, no. 2, 2002, pp.

83–85.

2. F. Curbera et al., “Unraveling the Web Ser-

vices,” IEEE Internet Computing, vol. 6, no.

2, 2002, pp. 86–93.

3. D.A. Menascé, V.A.F. Almeida, and L.W.

Dowdy, Performance by Design: Computer

Capacity Planning by Example, Prentice-

Hall, 2004.

Daniel A. Menascé is a professor of computer sci-

ence, codirector of the E-Center for E-

Business, and director of the MS in E-Com-

merce program at George Mason University.

He received a PhD in computer science from

UCLA. Menascé is a fellow of the ACM and a

recipient of the 2001 A.A. Michelson Award

from the Computer Measurement Group.

Contact him at menasce@cs.gmu.edu.

Ensure that your networks
operate safely and provide critical services

even in the face of attacks. Develop lasting security
solutions, with this peer-reviewed publication.

Top security professionals in
the field share information you can rely on:

• Wireless Security
• Securing the Enterprise
• Designing for Security

Infrastructure Security
• Privacy Issues
• Legal Issues
• Cybercrime
• Digital Rights Management
• Intellectual Property

Protection and Piracy
• The Security Profession
• Education

Order your subscription today.

www.computer.org/security/

BE
SECURE.

DON’T
RUN
THE
RISK.

BE
SECURE.

DON’T
RUN
THE
RISK.

