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Intelligent Agents 
Meet the Semantic Web 
in Smart Spaces
A new smart meeting room system called EasyMeeting explores the use of multi-

agent systems, Semantic Web ontologies, reasoning, and declarative policies for

security and privacy. Building on an earlier pervasive computing system,

EasyMeeting provides relevant services and information to meeting participants

based on their situational needs. The system also exploits the context-aware

support provided by the Context Broker Architecture (Cobra).Cobra’s intelligent

broker agent maintains a shared context model for all computing entities in the

space and enforces user-defined privacy policies.

Pervasive computing (sometimes
called ubiquitous computing) is a
vision of our future computing

lifestyle in which computer systems
seamlessly integrate into our everyday
lives, providing services and informa-
tion “anywhere, anytime.” Working
toward this vision, researchers have
developed a wide variety of pervasive
computing applications and infrastruc-
tures. Pineau and colleagues,1 for exam-
ple, developed a mobile robotic assistant
that provides reminding and guiding
services to senior citizens with mild
cognitive and physical impairments.
Song and colleagues2 created a ubiqui-
tous computing infrastructure that lets
users discover and compose services
based on the tasks they intend to per-
form. Roman and colleagues3 built a

novel middleware infrastructure for
managing resources and services in a
user-centric active-space environment.

We have designed and implemented a
pervasive computing system called
EasyMeeting. It supports users in a smart
meeting-room environment in which a
distributed system of intelligent agents,
services, devices, and sensors share a
common goal: to provide relevant ser-
vices and information to meeting partic-
ipants on the basis of their contexts. By
context, we mean a model of a location
and its environmental attributes (such as
temperature, noise level, and light inten-
sity), and the people, physical objects, and
computing entities it contains. This model
necessarily extends to recognizing and
representing the activities and tasks
occurring in a location as well as the



beliefs, desires, commitments, and intentions of the
people and software agents involved.

A great challenge remains in defining an archi-
tecture that supports a community of context-
aware agents in smart spaces. Critical research
issues include modeling and reasoning (how to
represent contextual information for machine pro-
cessing and reasoning), knowledge sharing (how
to enable agents to acquire consistent knowledge
from unreliable sensors and agents), and user pri-
vacy protection (how to give users control of any
private information the smart space acquires).4 To
address these issues, we built our EasyMeeting sys-
tem using the Context Broker Architecture (Cobra),
a middleware agent architecture for supporting
context-aware agents in a smart space.5

Central to Cobra is an intelligent agent called
the context broker. In a smart space, a context bro-
ker is responsible for:

• providing a centralized model of context that
all devices, services, and agents in the space
can share, 

• acquiring contextual information from sources
that are unreachable by the resource-limited
devices, 

• reasoning about contextual information that
can’t be directly acquired from the sensors, 

• detecting and resolving inconsistent knowl-
edge stored in the shared context model, and 

• protecting privacy by enforcing policies that
users have defined to control the sharing and
use of their contextual information.

Cobra differs from other similar architectures
because it uses ontologies expressed in the Web
Ontology Language (OWL) to support context
modeling and knowledge sharing, detect and
resolve inconsistent context knowledge, and pro-
tect the user’s privacy.  

The EasyMeeting System
EasyMeeting is an extension of Vigil,6 a third-gen-
eration pervasive-computing infrastructure devel-
oped at the University of Maryland, Baltimore
County (UMBC). Although the research develop-
ment behind Vigil shows great promise in build-
ing flexible and secure smart spaces,7 it lacks the
necessary support for context awareness and pri-
vacy protection.8 To improve on the previous sys-
tem, we added context-aware support to
EasyMeeting by exploiting Cobra. Figure 1 illus-
trates the EasyMeeting system’s architecture. 

Vigil
The Vigil computing environment comprises
clients, services, and Vigil managers, which are
specialized server entities that facilitate system
communication, client-role management, and
service-access control. Computer applications pro-
vide services to clients — either human users or
computing services — that use or receive such ser-
vices in a smart space.

Services usually register themselves with one
or more service managers, which provide directo-
ry listings of what’s on offer and notify clients
about status changes. Vigil uses a role-based
inferencing mechanism to control access to ser-
vices. When a service registers with a manager,
the service specifies a list of roles that have per-
mission to access it. This list of information is
called role-permission definition. To prove the
information’s authenticity, the service manager
requires the role-permission definition to be
enclosed in a signed digital certificate. Upon
receiving and verifying this certificate, the service
manager adds the enclosed role-permission to its
knowledge base.

To access a registered service, a client must first
request a role-permission handle — a signed digi-
tal certificate — from the service manager and
prove that it fulfills one of the service-defined
roles. To do so, the client usually presents a role
certificate generated by a role-assignment manag-
er, which is a trusted server entity that can reason
about a particular client’s role from predefined sys-
tem policy rules. The reasoning of the role-
assignment manager is built on the Rei framework,
which is a role-based policy reasoning engine.9 A
key feature of Rei is its use of deontic concepts
(rights, prohibitions, obligations, and dispensa-
tions) to construct logic-inference rules. These are
necessary because the system allows clients to del-
egate their right to access a particular service to
other clients; a service manager can also revoke a
client’s right to access restricted services, and ser-
vices can prohibit certain clients from accessing
their services.

EasyMeeting Services
EasyMeeting’s current implementation provides
context-aware services for assisting speakers and
audiences during presentations. We’ve already
developed six services:

• Speech understanding recognizes predefined
voice input vocabularies (such as “yes,” “no,” or
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“show Harry’s presentation”) and generates Cen-
taurus Capability Markup Language (CCML)10

commands for controlling other Vigil services.
• Presentation displays PowerPoint presentations

on an overhead projector in the room and con-
trols the flow of the presentation slides. It can
fetch presentation files from a client-specified
URL, and it invokes the corresponding Power-
Point script commands from CCML commands
(“next,” ”back,” “stop,” “start”). 

• Lighting control adjusts a meeting room’s light-
ing conditions.

• Music plays Web-accessible audio files, typi-
cally a continuous background-music loop
prior to the meeting’s official start.

• Greeting plays a specified audio file as a greet-
ing message (such as “Welcome to the eBiqui-
ty Group, president Hrabowski”).

• Profile display instructs all subscribed Web
browsers to display URLs with speakers’ back-
ground information on the audience’s individ-
ual handheld devices.

Our implementation of the speech understanding

and greeting services uses the IBM WebSphere
Voice Server SDK and Voice XML. The presentation
service’s flow-control mechanism is implemented
via PowerPoint’s existing AppleScript commands.
The lighting control service uses X10 technology.
The music service is implemented with existing
MP3 music player software. Finally, the profile dis-
play service is implemented as a Web-based server
application that communicates with system com-
ponents via a set of predefined network sockets.

Context-Awareness
Exploiting the notion of meeting context is a key
feature in EasyMeeting. This information helps
computer systems decide what services to provide
based on the meeting participants’ needs.

A central element in Cobra is the presence of a
context broker, an intelligent agent that runs on a
resource-rich stationary computer in the space. In
EasyMeeting, the context broker builds and
updates a shared context model and makes it
available to appropriate agents and services. In
particular, it acquires and maintains consistent
knowledge about the meeting participants’ indi-
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Figure 1. EasyMeeting architecture. The context broker shares its contextual knowledge with the MajorDemo agent. Using
this knowledge, MajorDemo selects and then invokes appropriate services from the Vigil pervasive-computing
infrastructure to provide relevant services and information to speakers and audiences.
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vidual locations, scheduled events and presenta-
tions, speaker profiles, and the state of the meet-
ing. The broker discovers and downloads some
contextual information expressed in OWL direct-
ly from the Web or from data provided by sensing
agents. It uses logical reasoning to infer contextu-
al information that it can’t directly acquire. 

To facilitate the interactions between the Vigil
system’s services and Cobra’s context broker, we
introduced the MajorDemo agent (see Figure 1).
This agent’s role is to decide when and what ser-
vices should be provided to meeting participants.
It relies on the broker to provide information
about the meeting context and uses the regis-
tered Vigil services to facilitate different meet-
ing-related tasks.

Let’s look at a typical EasyMeeting use case. On
8 September 2004, a presentation is scheduled to
take place from 1:00 to 2:30 p.m. in Room 338,
which is a smart meeting room. Moments before
the event starts, the room’s context broker acquires
the meeting’s schedule, which is expressed in OWL,
from the Web and concludes that the meeting is
about to start. As the meeting participants begin
to arrive, the room’s Bluetooth sensing agent
detects the presence of different Bluetooth-enabled
devices (such as cell phones and PDAs). Because
each device has a unique device profile represent-
ed in a standard device ontology, the sensing agent
can share this information with the broker.

Based on the user profile information stored in
the broker’s knowledge base (without having any
evidence to the contrary), the context broker con-
cludes that the owners of the detected devices are
also located in Room 338. Among the present par-
ticipants, Harry (the speaker) and president
Hrabowski (the distinguished audience) are two
people listed in the meeting schedule. The broker
shares their location information with the sub-
scribed MajorDemo agent.

Knowing that president Hrabowski has a
distinguished-audience role, the MajorDemo agent
invokes the greeting service. At 1:00 p.m., the con-
text broker informs the MajorDemo agent that all
listed key participants have arrived and that the
presentation can start. Knowing that all the lights
in the meeting are currently switched on and the
background music is still playing, the agent
invokes the dim light method on the light-
control service and the stop music method on
the music service.

As Harry walks to the front of the meeting room,
he speaks to the system via a wireless microphone

— “load Harry’s presentation.” The voice-recogni-
tion service receives his voice input, and it gener-
ates a corresponding CCML command. The
MajorDemo agent sends this command to the pre-
sentation service along with the URL at which the
audience can download Harry’s presentation (the
context broker provides this information). As the
presentation service loads Harry’s PowerPoint slides,
the MajorDemo agent invokes the profile-display
service to show Harry’s home page. Moments later,
all the LCD displays sitting on the conference table
start showing Harry’s biosketch and profile. Using
the same wireless microphone, Harry speaks to the
system to control his presentation.

Cobra
Figure 2 shows a system diagram of the Cobra
design. All computing entities in a smart space are
presumed to have prior knowledge about the bro-
ker’s presence, and all agents are presumed to
communicate with the broker via the standard
FIPA Agent Communication Language and the
ontologies defined by Cobra.

The context broker consists of several com-
ponents:

• Context knowledge base. All context knowledge
is represented in Resource Description Frame-
work (RDF) triples (subject, predicate, and
object), which are stored in a persistent rela-
tional database backed by the Jena 2 Semantic
Web framework.

• Context-reasoning engine. A rule-based inference
engine defines how to deduce context knowledge
via the ontology inference based on OWL’s
semantics and from domain-heuristic rules.

• Context-acquisition module. The goal of this
library of procedures for acquiring contextual
information is to create a middleware abstrac-
tion to hide low-level complexity in context
acquisition.11

• Policy-management module. Before the context
broker shares a user’s information with anoth-
er agent, it uses this module — its “conscience”
— to determine the other agent’s right to
receive this knowledge; the broker shares the
information only if the user-defined policy
allows it.

The context-reasoning engine uses Jena’s reason-
ing API to support inferences licensed by the OWL
ontology and the Jess rule-based engine for other
domain-specific reasoning. The present context-
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acquisition module consists of implementations
for detecting the presence of Bluetooth devices by
sensing their Bluetooth MAC addresses. 

Semantic Web Ontologies in Cobra
Cobra differs from other frameworks in its use of
Semantic Web languages both to express context
ontologies and to reason about contexts.12 We
chose OWL for Cobra for several reasons. Because
OWL is a reasonably expressive knowledge-repre-
sentation language, it’s suitable for defining many
of the general ontologies used in building intelli-
gent pervasive computing applications. Moreover,
ontologies expressed in OWL have a normative
syntax in RDF and XML that can be mapped to
several other forms of surface syntax, which offers
flexibility in processing, displaying, and storing
ontology data. Finally, OWL is expressly designed
as an ontology language, and it has many prede-
fined classes and properties useful for expressing
ontological information.

The Cobra ontology (Cobra-Ont) imports sever-
al different upper ontologies from the Standard
Ontology for Ubiquitous and Pervasive Applica-
tions (SOUPA). The Semantic Web in UbiComp Spe-
cial Interest Group (http://pervasive.
semanticweb.org) developed SOUPA to support

ontology-driven pervasive computing applications.
From the SOUPA ontology, Cobra-Ont imports
vocabularies for expressing time, space, policy,
social networks, actions, location context, docu-
ments, and events. Figure 3 (next page) illustrates
the SOUPA ontology’s structural organization. 

Let’s look at some examples that use COBRA-
ONT to express and reason about user profiles,
meeting events, and temporal and spatial relations.

User profiles. A typical user profile consists of
information that describes the person’s

• background (contact information, employment
information, professional associations, and
preferences), 

• social relations (friends and coworkers), 
• mobile-device or personal-agent profiles (the

type of communication interfaces and display
resolutions a device supports or a personal
agent’s ID), and 

• daily meeting schedule and associated roles
and preferences (meeting times and locations,
slides for the person’s typical presentations,
and so on).

In EasyMeeting, a person’s user profile is publicly
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Figure 2. The Context Broker Architecture (Cobra). A context broker acquires contextual information from heterogeneous
sources and fuses it into a coherent model to share with computing entities sharing the same space.
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accessible through his or her homepage. Figure 4
(next page) shows a partial description of Harry
Chen’s user profile, the beginning of which defines
typical social-network information (including his
contact information and some of the people he
knows). The profile also defines the agt:intends
property, which describes a meeting Harry plans to
attend. Note that the associated meeting’s details
aren’t specified here; the agents that will process
the profile presumably have other means of
acquiring this information. When this information
becomes available to the agents, the meeting’s RDF
resource description URI can help them relate the
person described in the profile to various meeting
properties and infer whether Harry Chen is a
speaker or an attendee.

The last part of Figure 4 describes the profile
for Harry’s cell phone, including the model, serial
number, and Bluetooth MAC address. This infor-
mation can help the context broker reason about
the location of the phone’s owner when it detects
the phone’s location.

Meeting schedules. The context broker can reason
about a meeting’s various properties from its
scheduled events, including the temporal state of
the event, the participants, and their respective
roles. A schedule’s ontological document typically
contains information about the type of meeting,

its location, starting and ending times, and a list
of expected participants. 

In EasyMeeting, meeting schedule information
is publicly accessible via a predefined meeting
event announcement Web site. When describing
an event schedule, the event’s location and the
properties are expressed with vocabularies from
the SOUPA space and time ontologies.

Time and space. COBRA-ONT imports the SOUPA
time and space ontologies, which are extremely
useful for reasoning about context.12 Time ontolo-
gies, for example, can help a context broker rea-
son about the temporal orders among different
events in a meeting room, whereas space ontolo-
gies can help the broker reason about a person’s
location context. 

The SOUPA space ontology supports reasoning
about the spatial relations between various types
of geographical regions, mapping from geospatial
coordinates to the symbolic representation of space
and vice versa, and geographical measurements of
space.

In the symbolic representation model, the
spc:SpatialThing class represents a set of all
things that have spatial extensions in the SOUPA
domain. All the spatial things typically found in
maps or construction blueprints are called
spc:GeographicalSpace. This class is defined
as the union of the spc:GeographicalRegion,
spc:FixedStructure, and spc:SpaceInA-
FixedStructure classes. 

An individual member of the spc:Geo-
graphicalRegion class typically represents a
geographical region controlled by some political
body (for example, the US is controlled by the US
government). This relation is expressed by the
spc:controls property, the domain of which is
spc:GeopoliticalEntity and the range of
which is spc:GeographicalRegion. Knowing
which political entity controls a particular geo-
graphical region, a pervasive computing system
can choose to apply the appropriate policies
defined by the political entity to guide its behavior
— a system could apply different sets of privacy
protection schemes based on policies defined by
the local political entities. 

To support spatial containment reasoning, indi-
vidual members of the spc:Geographical-
Space class can relate to each other through the
spc:spatiallySubsumes and spc:spa-
tiallySubsumedBy properties: a country region
could spatially subsume a state region, a state
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Figure 3. SOUPA consists of two sets of ontology documents: SOUPA
Core and SOUPA Extension.The OWL construct enables a modular
design of the ontology. Different domain vocabularies are grouped
under different XML namespaces.
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region could spatially subsume a building, and a
building could spatially subsume a room. Thus,
knowing the room in which a device is located, we
can infer the building, the state, and the country
that spatially subsumes that room. 

Context Reasoning in Cobra
In its current implementation, the context broker’s
ontology reasoning is backed by the Jena rule
engine and its Java API (http://jena.

sourceforge.net). To reason about contextual infor-
mation that can’t be inferred from ontology
axioms alone, the context broker uses a forward-
chaining inference procedure defined in the Java
Expert System Shell (Jess).

Context-reasoning algorithm. Rules defined in
Jess are executed as part of the context broker’s
reasoning implementation. When a piece of con-
textual information is asserted into the knowledge
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Figure 4. User profile. The vocabularies used to describe Harry Chen’s social network and personal device are imported
from the SOUPA and FOAF (friend-of-a-friend) ontologies.

<foaf:Person> 
<foaf:name>Harry Chen</foaf:name>
<foaf:title>Mr</foaf:title>
<foaf:firstName>Harry</foaf:firstName>
<foaf:surname>Chen</foaf:surname>
<foaf:nick>hchen1</foaf:nick>

<per:gender rdf:resource=”&per;Male”/>

<foaf:mbox_sha1sum>944880c478f58ac2a5a63
fa3e922e712a0e327fc</foaf:mbox_sha1sum>  

<foaf:homepage
rdf:resource=”http://umbc.edu/people/
hchen4”/>

<foaf:depiction
rdf:resource=”http://ebiquity.umbc.edu/
v2.1/faces/136.jpeg”/>

<foaf:workplaceHomepage
rdf:resource=”http://ebiquity.umbc.edu”
/>

<foaf:schoolHomepage
rdf:resource=”http://www.umbc.edu”/>

<foaf:knows>
<foaf:Person>
<foaf:name>Tim Finin</foaf:name>

<foaf:mbox_sha1sum>9da08e2b4dc670d9254ab
4a4b4d61637fed3b18f</foaf:mbox_sha1sum>

<rdfs:seeAlso
rdf:resource=”http://www.cs.umbc.edu/
~finin/finin.rdf”/>

</foaf:Person>

</foaf:knows>

<agt:intends>
<pmt:ParticipateMeeting>
<pmt:meeting

rdf:resource=”http://ebiquity.umbc.edu/m
eeting/2004#aDemoSession”/>

</pmt:ParticipateMeeting>      
</agt:intends>

<aca:oftenUsedSlides
rdf:resource=”http://umbc.edu/~hchen4/pp
t/f1”/>
</foaf:Person>

<dev:NokiaCellphone>
<dev:hasUser>
<foaf:Person>

<foaf:mbox_sha1sum>944880c478f58ac2a5a63
fa3e922e712a0e327fc</foaf:mbox_sha1sum> 

<foaf:homepage
rdf:resource=”http://umbc.edu/people/
hchen4”/>

</foaf:Person>
</dev:hasUser>

<dev:modelNumber
rdf:datatype=”&xsd;string”>3650</dev:mod
elNumber>
<dev:serialNumber

rdf:datatype=”&xsd;string”>351102/50/380
59/8</dev:serialNumber>
<dev:bluetoothMAC

rdf:datatype=”&xsd;string”>00-60-57-5a-
a0-21</dev:bluetoothMAC>
</dev:NokiaCellphone>



base, the context broker first selects the type of
context it attempts to infer (such as a person’s
location or a meeting’s state). If such information
is unknown, the broker decides whether it can
infer this type of context using only ontology rea-
soning. If logic inference is required, the context
broker attempts to find all essential supporting
facts by querying the ontology model. The broker
then converts the RDF representation of the facts
into the corresponding Jess representation and
asserts them into the Jess engine. After executing
the predefined forward-chaining procedure, the
broker adds the corresponding RDF representa-
tions into the ontology model for any new facts it
can deduce.

Assumption-based reasoning. The current imple-
mentation of our logical-inference procedure is
rigid, and we’re investigating an assumption-
based reasoning approach13 to improve flexibili-
ty. A prototype implements a reasoner based on
David Poole’s Theorist framework,14 which is a
Prolog meta-interpreter for processing
assumption-based reasoning. Unlike convention-
al deductive-reasoning systems, this framework’s
logic inference consists of both facts (axioms
given as true) and assumptions (instances of the
possible hypotheses that can be assumed if they’re
consistent with the facts).

One way to use Theorist in Cobra is for context
reasoning, which exploits both default reasoning,
a type of nonmonotonic reasoning that allows a
conclusion to be reached in the absence of any rea-
son to doubt it, and abductive reasoning, the
process of using inference to find the best expla-
nation. When the broker receives an observation (all
contextual information the broker acquires about
the environment), it first uses abduction to deter-
mine possible causes and then uses default reason-
ing to predict what else will follow from them.13

Consider the following example:

H1: locatedIn(Per,Rm),
owner(Per,Dev) => locatedIn(Dev,Rm).
H2: locatedIn(Per,Rm),
meeting(Mt,Rm), speakerOf(Per,Mt),
not(notLocatedIn(Per,Rm))
=> intends(Per,give_prst(Mt)).

F1: locatedIn(t68i,rm338).
F2: owner(harry,t68i).
F3: meeting(m1203,rm338).
F4: speakerOf(harry,m1203).

Hypotheses H1 states that a personal device is
located in a room if the device’s owner is also in
that room. Hypotheses H2 states that if the system
knows someone is in a room where a meeting is
scheduled to take place, and that person is a speak-
er at the meeting, and if no evidence shows that
the person is not in that room, then the system
should infer the person intends to give a presen-
tation at the meeting. Fact F1 states that cell-
phone T68i is located in Room RM338; facts F2,
F3, and F4 state that Harry is the owner of T68i,
that meeting m1203 is scheduled to take place in
Room RM338, and that Harry is a speaker at meet-
ing m1203, respectively. We expect F1 to be
knowledge acquired from the sensors and F2, F3,
and F4 to be knowledge acquired from the OWL
descriptions of the person profiles, device profiles,
and meeting schedules published on the Web.

Our first objective is to infer the cause for the
observation that cell-phone T68i is located in Room
RM338, so we use abduction. Based on the given
knowledge, {locatedIn(harry,rm338),
owner(harry,t68i)} is a plausible explanation
for {locatedIn(t68i,rm338)}. Knowing that
Harry is in Room RM338, our second objective is to
predict his intention in that room, so we use default
reasoning. Using H2, we can infer that Harry
intends to give a presentation in meeting m1203.

Privacy Protection in Cobra
In EasyMeeting, several privacy issues must be
addressed:

• Users might be unaware that their trusted con-
text broker can share private information about
them with services they don’t trust. 

• It is infeasible to require users to manually
define privacy-protection rules for all the pos-
sible contextual information the context bro-
ker can collect. 

• Although users want to hide most of their pri-
vate information from untrusted agents, they
often can’t completely prohibit information
from being shared if they want to receive
context-aware services.

Thus, we need a way to let users adjust the granu-
larity of the information to be shared.

Figure 5 illustrates the SOUPA policy ontology’s
structural organization. Using the SOUPA policy
ontology, users can define customized policy rules
to permit or forbid access to their private informa-
tion. To compute the permissions defined by a user

76 NOVEMBER • DECEMBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track



policy, the context broker uses a policy-reasoning
algorithm that exploits the description logic infer-
ence over OWL. To complement the user-defined
policy with a global policy and let users adjust their
information’s granularity, we also implemented a
metapolicy-reasoning mechanism suggested by the
SOUPA ontology in the context broker. Figure 6
(next page) shows an example of a policy ex-
pressed in RDF’s Notation3 syntax (www.w3.
org/DesignIssues/Notation3.html).

Feedback from Demonstrations
As part of the rapid prototyping methodology we
adopted, we demonstrated the EasyMeeting system
to three groups of people. Our goal was to get feed-
back from users outside of our research team and
observe their experiences in a context-aware smart
meeting-room environment. The groups of users
we invited to our demonstrations included UMBC
university administrators and visitors from com-
mercial companies and other universities.

We began each session with a brief introduc-
tion to the system’s underlying infrastructure and
the tasks the users were expected to perform. Dur-
ing the initial stage, we set up distinctive user
profiles for each participant and posted these

ontological documents on the Web. We also gave
each participant a Bluetooth-enabled mobile
device and asked them to activate the Bluetooth
connection before arriving at the meeting room.
In addition, we published a document with OWL
annotations that described the meeting schedule
on the Web. After all the participants arrived, the
smart meeting room dimmed the lights and turned
off the background music. The speakers were
encouraged to ask the system to load presentations
(described in their profiles).

In general, all the testers’ feedback was posi-
tive. Most were excited about the concept, but they
also raised several critical issues that pointed to
key weaknesses in our current system. First, the
system has a limited ability to handle unexpected
situational changes. The absence of anticipated
participants, for example, affected the context bro-
ker’s logic reasoning. Second, the workflow
process was too rigid and could be unsuitable for
everyday usage — the current system doesn’t take
into consideration that a meeting can be paused
and resumed, for example, and thus can’t imple-
ment specific behavior to handle such situations.
Finally, some users argued that merely using pol-
icy to control how private information is shared
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policyOf creator enforcer

target

PermittedActionPermittedAction owl:disjointWith ForbiddenAction

createdOn defaultPolicyMode

rdfs:range rdfs:range

rdfs:subClassOfrdfs:subClassOf

OWL Class

DatatypeProerty or ObjectProperty

rdfs:domain

Namespace: http://pervasive.semanticweb.org/ont/2004/06/action#

Namespace: http://pervasive.semanticweb.org/ont/2004/06/policy#
Policy

permits forbids

actor recipient instrument

Action

location time

Figure 5. The SOUPA policy ontology. By importing SOUPA’s action and time ontologies, we can define
the vocabularies for describing rules that permit or forbid different agents’ access.



doesn’t address other kinds of privacy concerns
such as the logging and persistent storage of a
user’s private information by the agents, and the
possibility for the agents acquiring certain private
user information by reasoning over an aggregat-
ed collection of their public information. We plan
to address these issues in the future.

Conclusions
The EasyMeeting and Cobra prototypes we’ve
developed demonstrate the feasibility of using
OWL ontologies to let distributed agents share
knowledge, reason about contextual information,
and express policies for user privacy protection.

Although the initial results of our informal user
evaluation shows that users are enthusiastic about
context-aware services in a smart meeting room
environment, we have many challenging research
issues yet to address. These challenges include the
scalability of knowledge sharing in a distributed
and dynamic environment, the performance and
time complexity of context reasoning in the pres-
ence of a vast amount of sensing data, and the
user-interface issues associated with editing and
maintaining user privacy policies. One of our
short-term objectives is to optimize our existing
implementation for a long-term use-case study
within the UMBC Computer Science and Electrical
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Agent Track

# For a complete and more elaborate
policy example, see also 
#
http://cobra.umbc.edu/ont/2004/05/
harrychen-policy

<http://umbc.edu/~hchen4/hchen.pol> a
pol:Policy;
pol:policyOf  [ a per:Person; per:name

“Harry Chen”^^xsd:string ] 
pol:defaultPolicyMode pol:Conservative;

# Rule 1: all individuals of CLS2 are
permitted actions#
pol:permits ha:CLS2;

# Rule 2: all individuals of CLS3 are
forbidden actions#
pol:forbids ha:CLS3.  

ha:CLS2 a :Class;

rdfs:comment “Share my location
information with the ebiquity group
members iff 

the location information describes
me being in ITE210A, ITE325B or on the
UMBC campus.”;

:intersectionOf  (
ebact:ShareLocationInfo 
[ :allValuesFrom

ebm:EbiquityMember; :onProperty

act:recipient ]
[ :onProperty act:target;

:someValuesFrom
ha:MyRestrictedLocationContext ] ) .

ha:CLS3 a :Class;
rdfs:comment “Share my location

information with untrusted service
agent”;

:intersectionOf  (
ebact:ShareLocationInfo 
[ :allValuesFrom

ha:UntrustedServiceAgent; :onProperty
act:recipient ] ) .

ha:MyRestrictedLocationContext a :Class;
:intersectionOf  (

loc:LocationContext 
[ :onProperty loc:boundedWithin;

:someValuesFrom ha:foo-a1 ] ) .

ha:foo-a1 a :Class;
:oneOf  (ebgeo:ITE210A  ebgeo:ITE325B

ebgeo:UMBCMainCampus).

ha:UntrustedServiceAgent a :Class;
rdfs:subClassOf agt:Agent;

:oneOf  (
<http://www.orbitz.com#locTrack>

<http://www.foobar.com#whereRu> 
<http://www.foofoobar.com#abc>  )

.

Figure 6. The SOUPA policy expressed in N3 notation. This policy allows some of Harry Chen’s location information to be
shared with the members of the eBiquity Group, but it also forbids any location information from being shared with
untrusted agents. The action classes CLS2 and CLS3 describe the types of actions the individual policy rule regulates.



Engineering Department, using the EasyMeeting
system as a common platform for building new
services and intelligent agents. In the future, we
plan to expand our context-aware support to
include tracking an absent participant’s location,
tracking the availability of a portable projector
device, and exchanging contact information
between attendees.
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