
Architectural Perspectives

Agents, Grids,
and Middleware

Agents, grids, and middleware are more close-
ly related than you might think. I am
involved in developing the software archi-

tecture for two software projects: one involves
infrastructure for distributed, pervasive comput-
ing; the other involves partitioning huge data sets
across data grids consisting of thousands of PCs.
On the surface, these projects seem very different,
but there are similarities and lessons we can learn
from comparing them that have implications for
agents, grids, Web services, pervasive computing,
and middleware.

Everything is Alive Agent System
The Everything is Alive (EiA) project at the Uni-
versity of Arkansas is developing an agent system
for pervasive computing — extending Internet and
Web-based agents to communicate with everyday
things that, in turn, communicate with each other.
In this world, toys play together, pets converse
with their owners, vehicles talk to road signs,
refrigerators know when items inside expire, and
backpacks let you know if you forgot your socks.
The EiA thesis is that sensors, actuators, proces-
sors, memories, and communications are becom-
ing cheaper and smaller and will soon be every-
where. Indeed, there is much evidence that this is
happening already.1 The EiA project is targeting a
lightweight, evolvable system architecture that
could potentially be standardized.

EiA Architecture
From the start of the project, we adopted an
agent architecture to model large numbers of
distributed, autonomous entities. Initially, we
prototyped a collection of interesting agents that
could interact with people and each other. A
homeland security scenario included agents rep-
resenting rangers, platoon leads, headquarters,
vehicles, and various sensors. All agents com-

municated in XML using a schema based on the
standard Foundation for Intelligent Physical
Agents (FIPA) Agent Communication Language,
which specifies publish and subscribe messages
that let agents request and receive periodic
updates from other agents. The prototype also
included more abstract agents that represented
data sources and messaging systems. Imple-
mented as proxy agents, these specialized agents
translated messages back and forth between
EiA’s interagent XML language and legacy inter-
faces of preexisting systems, so that they
appeared as agents to the rest of the EiA system.

In the architecture, EiA messaging supports
blind-carbon-copy messages to message-logging
agents. Later, the message log could be replayed
to simulate agent communication or provide
after-action analysis. Finally, a “world agent”
simulated the environment and sent agents mes-
sages that were ostensibly from sensors or exter-
nal stimuli. In the initial prototype, agents began
life as generic agents, and acquired their roles
(for example, as a ranger or sensor), maps, and
address books by receiving messages.

Maximal Agents
One problem with our design was that every
agent’s codebase was maximal — each contained
all the code to take on any role, and also contained
all the system services (messaging, a GUI to let
humans interface with them, filters to control
incoming and outgoing messages, and so on). This
approach clearly wouldn’t scale to hundreds of
agent types, nor could the system evolve so that
agents could receive additional capabilities at run-
time. We had observed a similar problem earlier
when trying to characterize agent systems — some
agents were mobile, some were intelligent, some
needed interfaces to human operators, and the list
goes on. Which elements from this long list of

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society SEPTEMBER • OCTOBER 2004 97

Craig W. Thompson • University of Arkansas

properties are central to making some-
thing an agent?

Agents and Plug-ins
We needed some way to provision a
baseline agent with capabilities that
could be added or removed dynami-
cally. We considered the idea of plug-
ins (code modules that could be
dynamically loaded) and located a
promising approach in the Eclipse
project (www.eclipse.org), which is
successfully developing editors and
integrated development environments.
Eclipse plug-ins can define extension
points for additional plug-ins. This
provided a way to dynamically load
code (such as Java .jar files). We
developed our own variant of this
architecture that used XML as the
interface extension definition lan-
guage. On reflection, we realized we
should also make the system compat-
ible with the Web Services Description
Language (WSDL).

The restructured architecture now
consists of a generic container with a
bootstrap communication and inter-
pretation module that can receive
plug-ins via messages. We are cur-
rently developing the following plug-
in services:

• a messaging service that depends,
in turn, on sockets, email, and
other message-transport plug-in
services;

• a GUI consisting of a collection of
XForm panels;

• a natural language interface;
• a digital rights management service

that defines security and privacy
limitations to constrain what
agents can say to one another; and

• a licensing service that monitors
service usage and micro payments.

We can now develop many other
agent capabilities in a modular way.
By becoming compatible with WSDL,
EiA can now use any Web service
defined by any universal description,
discovery, and integration (UDDI) reg-

istry. We can also choose whether a
service should be local (dynamically
loaded) or remote. Furthermore, we
plan to extend the plug-in architec-
ture to make it possible to define
“before” and “after” plug-ins, which
will provide implementations for
adding new aspects to the existing
EiA architecture. If successful, we will
remain compatible with the Web ser-
vices world (including the SOAP,
WDSL, and UDDI standards) while
generically adding dynamic loading,
digital rights, licensing, and other ser-
vices that agents need.

Data Grids
The second project involves develop-
ing an architecture for data grids.
Generally, grids involve some kind of
sharing, and much of the effort over
the past several years has involved
sharing computation among large
numbers of commodity machines.
Much of the grid research community
bypassed Interface Description Lan-
guage (IDL) and Java and went
straight to adopting XML as an IDL,
recently retargeting WSDL. Mean-
while, some in the database commu-
nity discovered that commodity PC
platforms can be used to store
massive data sets. Oracle and
Microsoft are developing grid-based
relational database-management sys-
tems (DBMSs). Our second project
involves operating on giant flat files,
spread across hundreds of PCs,
processed with custom operator alge-
bras. At one level, the architecture
provides a pool of grid nodes and
mechanisms for allocating a collection
of these to a higher-level application;
the next-level architecture builds
indexing structures using grid nodes;
and at a still higher level, operator
workflows function in parallel on
records to transform, augment, or fuse
information sources. Some of the sub-
problems we’re working on involve:

• Hotspot management. Grid data
nodes report their resource utiliza-

tion to manager nodes. Automat-
ing hotspot detection is desirable
for providing automatic recovery.

• Index creation. Huge indices are
distributed across grid nodes so
that a query can access many grid
nodes in parallel to return results,
and batched streams of records can
be inserted in parallel across many
grid nodes.

• Fault tolerance. Applications need
hot backup nodes when grid
nodes fail.

• Workflow automation. Currently,
workflows are manually specified,
but we’re looking for ways to treat
them as goals that a problem solver
can refine into optimizable plans.

The current implementation uses a mix
of Corba and XML. From the outside,
we could view the emergent system as
a massive and monolithic database
machine, but, from an internal per-
spective, we can view it as an open,
extensible collection of middleware
design patterns arranged in the form
of a service-oriented architecture,
including familiar services such as
name services, persistence services,
metadata registries, network manage-
ment services, and security services.

Similarities
At first glance, agent and data grid
architectures are very different. But can
we learn from one to improve the other?

Consider the data grid — its data
and management nodes (as well as
other nodes not described) could be
viewed as types of agents. If we take
this view, we might discover that we
could use XML everywhere as the IDL.
Some of the services and plug-ins we
defined for agents might also work
for data grids; for instance, the digi-
tal rights service could ensure that
customer data in one part of the grid
can be combined with another cus-
tomer’s data only if both agree and if
the composition does not violate a
privacy constraint.

How would the agent system ben-

98 SEPTEMBER • OCTOBER 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Architectural Perspectives

efit from the data grid? Perhaps it
could reuse the fault-tolerant scheme
for creating and managing replicas to
make individual agents more likely to
survive. Additionally, the system could
use the management service for a sim-
ilar purpose, having it identify when
agents die or are overloaded. It cur-
rently appears plausible that both
might use the same workflow plug-in.

Both systems might benefit from
common use of XML, SOAP, WSDL,
and UDDI, along with a principled use
of “aspects” that extend the SOAP
family framework.2 Such aspects
could include security, logging, licens-
ing, micro payments, and other ser-
vices. Though it is the subject for
another column, both architectures
might benefit from common ways of
exposing metadata about the agents
and modules so that higher-level pol-
icy management engines could oper-
ate to control both the aspects and the
systems’ emergent behaviors.

Lessons Learned
Can we generalize from the obser-
vation that we can compare and learn
from each architecture and transfer
results to the other? We might
speculate:

• Agent architectures and data grid
architectures appear to be con-
structed from middleware primi-
tives; perhaps these provide unifi-
cation for several other
architectures as well. If so, we can
expect the design patterns that the
Object Management Group and
other communities discovered to
resurface and provide inspiration
for the Web services’ plumbing
toolset. By mining older architec-
tures, this observation provides a
quick route to discover the missing
capabilities of the current SOAP,
WSDL, and UDDI family — demand
loading, aspects, policy manage-
ment, autolicensing, and others.

• The agent, grid, database, and
other communities might be miss-

ing the opportunity to learn from
one another. If the agent commu-
nity never realizes that their work
can be mapped to data grid archi-
tectures, we must question
whether the agent community is
doing a good job of transferring
its results to others, for example.
Their results could be locked
inside the presumption that
agents are special and separate
from low-level object middleware
patterns. If we can instead piggy-
back agent services onto today’s
massive deployed infrastructures
(such as the Web, Google, or
email), we might start seeing scal-
able agent solutions become mas-
sively deployed, rather than being

locked inside idiosyncratic agent
systems. In some ways, the agent
community is approaching a sim-
ilar kind of hurdle that hyperme-
dia systems were able to top only
after the invention and wide-
spread adoption of HTML, HTTP,
and browsers. We must overcome
this obstacle to scale agent tech-
nology to the Web.

How does this all relate to the Inter-
net and World Wide Web? We can
view SOAP, WSDL, and UDDI as key
building blocks of the Semantic Web:
these emerging standards provide
ways for programs, rather than just
people, to connect to other programs
in a platform-neutral manner to
acquire information and perform
tasks, independent of human opera-
tors. More research will be required
(on ontologies and metadata, for
instance) for the Web to be semanti-
cally comprehensible, but we can

predict, based on our prior experi-
ences with OMG and Java middle-
ware, that many additional plumbing
services will be added. We also pre-
dict that agents and grids will be
among the staple capabilities in a
future Semantic Web.

Conclusion
Developing applications for the “Inter-
net of things” will not be entirely dif-
ferent than for today’s distributed
middleware and grid system. It seems
straightforward that thermostats,
appliances, toys, and vehicles will
soon come not only with convention-
al instructions but also with RFID
tags, a WSDL interface, wireless con-
nectivity, and a PDA/PC-compatible

GUI controller, plus aspects like secu-
rity, usage monitoring, policy man-
agement, and trouble-shooting. In
short, we will see many of the same
middleware patterns in both agent-
based pervasive computing and large-
scale grid system development.

References

1. C. Thompson, “Everything is Alive,” IEEE

Internet Computing, vol. 8, no. 1, Jan/Feb

2004, pp. 83–86.

2. Aspect-Oriented Software Development, R.E.

Filman et al., eds., Prentice Hall, to appear.

Craig W. Thompson is professor and Acxiom

Database Chair in Engineering at the Uni-

versity of Arkansas and president of Object

Services and Consulting. His research inter-

ests include data engineering, software

architectures, middleware, and agent tech-

nology. He received his PhD in computer

science from the University of Texas at

Austin. He is a senior member of the IEEE.

Contact him at cwt@uark.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2004 99

Agents, Grids and Middleware

At first look, agent and data grid
architectures are very different. But can we
learn from one to improve the other?

