
Scaling the Web

QoS in Grid Computing

Daniel A. Menascé • George Mason University
Emiliano Casalicchio • University of Rome “Tor Vergata”

G rid computing is already a mainstream par-
adigm for resource-intensive scientific
applications, but it also promises to become

the future model for enterprise applications. The
grid enables resource sharing and dynamic allo-
cation of computational resources, thus increas-
ing access to distributed data, promoting opera-
tional flexibility and collaboration, and allowing
service providers to scale efficiently to meet vari-
able demands.1,2

Large-scale grids are complex systems com-
posed of thousands of components from disjoined
domains. Planning the capacity to guarantee qual-
ity of service (QoS) in such environments is a chal-
lenge because global service-level agreements
(SLAs) depend on local SLAs.3 In this column, we
provide a motivating example for grid computing
in an enterprise environment and then discuss the
how resource allocation affects SLAs.

The Enterprise Grid
For our example, let’s consider a large insurance
company (IC) that offers coverage for vehicles,
boats, homes, and businesses. The IC’s primary
goal is to increase its profit by minimizing risks
and attracting or retaining more customers. In the
insurance business, the premiums paid by cus-
tomers are a function of the risk posed by the
insurance policy. Traditionally, ICs use a combi-
nation of actuarial data with some minimal per-
sonal data to calculate the risk associated with a
policy and, thus, its premium. If the assessment
yields an excessive risk, premiums increase, which
means the IC could lose customers.

In an effort to increase its profits, our IC is mov-
ing toward a highly customized risk-assessment
model (RAM). Under this approach, the customized
RAM queries a much larger group of information
sources about a customer to get a richer set of
inputs. Our IC’s previous model uses large categories

(such as “all non-smoking straight-A male college
students under the age of 25”), but the new model
provides a risk assessment specific to a given cus-
tomer (besides being a “non-smoking straight-A
male college student under the age of 25,” John Doe
is 23, a student in the Computer Science Department
at George Mason University, a member of the IEEE,
and part of a programming team that won a region-
al prize in an ACM-sponsored programming contest.
He also has a very good credit record, undergoes a
physical exam every year and is in perfect health,
and has a clean record with federal, state, and local
law-enforcement agencies). Clearly, customized
RAMs are much more sophisticated and signifi-
cantly more compute- and data-intensive. Such
models are decomposed into many parallel tasks
that run at various grid nodes.

The IC plans to establish a Web portal through
which prospective customers can request three
types of insurance-policy quotes:

• Immediate requests use simple RAMs and can
return results in a few seconds.

• Non-immediate requests use more complex
RAMs, but can still return results in a few
minutes.

• Delayed requests use fairly sophisticated RAMs
and can take hours to process.

In the latter case, users receive an email with a link
to the portal, where they can view details about their
quotes. Thus, customers might get potentially lower
premiums if they’re willing to wait longer for the
more sophisticated and complex RAMs to execute.

The IC doesn’t want to invest additional com-
puting resources for running new models, so it
uses a grid to harness the unused cycles of all the
computers connected to its worldwide network —
from desktops to mainframes. The grid that sup-
ports the IC risk-assessment application will

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society JULY • AUGUST 2004 85

schedule resources according to RAM
type and the computational require-
ments needed to evaluate the three
request categories. The new cus-
tomized RAMs draw their inputs from
many data sources, including health-
insurance companies, law-enforce-
ment agencies, financial organiza-
tions, departments of motor vehicles,
professional organizations, and vari-
ous levels of government agencies.
They can also use weather-related
data sources to assess risk for home
and business insurance policies.

Resource Allocation
SLAs are contracts between service
providers and users, specifying accept-
able QoS metric levels; they usually
associate a cost (and sometimes penal-
ties for noncompliance) with a desired
level of service. An important chal-
lenge in grid environments is how to
monitor and enforce SLAs when many
users share the same resources, espe-
cially because a key part of a grid
environment’s definition is that it pro-
vide nontrivial QoS.1

Application-level SLAs must be
mapped to resource-level SLAs. When
negotiating SLAs with lower-level
resources, the grid’s global resource
scheduler must realize that different
service providers might offer the ser-
vice at different levels for different
costs. Thus, an interesting optimization
problem in a grid environment is how
to select services and service providers
in a way that achieves the global SLA
with minimum cost.

Going back to our IC example, let’s
say that a RAM evaluation requires NC
million CPU cycles, must be finished in
at most Tmax time units, and that the
computation cost must not exceed

Cmax dollars. Assume that at most
three compute resources can be allo-
cated for the evaluation, and let si (i =
1, 2, 3) be the speed of resource i in
millions of cycles/sec and ci (i = 1, 2,
3) be the cost in dollars/second to use
resource i. We’ll break down the eval-
uation in up to three independent par-
allel tasks. Thus, the three compute
resources have seven possible alloca-
tions: (1), (2), (3), (1,2), (1,3), (2,3), and
(1,2,3).

Let T and C be the execution time
and cost of a given allocation, respec-
tively. Some allocations might not be
feasible in terms of satisfying the
global SLA Tmax or the global maxi-
mum cost Cmax. If only resource i is
used, then

(1)

(2)

Equation 1 says that the total exe-
cution time at resource i can’t exceed
the global SLA Tmax. Equation 2 is the
cost constraint. The time and cost con-
straints when two resources i and j are
used are given by

, (3)

, (4)

NCi + NCj = NC. (5)

If all three resources are used, then

, (6)

, (7)

. (8)

If we ignore the cost constraint, the
solution that minimizes RAM-
execution time is the one that allocates
cycles proportionally to a resource’s
speed. Thus,

. (9)

Let’s look at the general case in
which we take into account both max-
imum execution time and maximum
cost. One version of the optimization
problem to be solved by the grid’s
resource-allocation mechanism is,
“Find the feasible allocation that sat-
isfies the performance constraint T ≤
Tmax at minimum cost.” A dual prob-
lem is, “Find a feasible allocation that
minimizes execution time T and satis-
fies the cost constraint C ≤ Cmax.”

Consider the following numerical
example: NC = 107 million cycles,
Tmax = 4,800 sec, Cmax = US$1,500.
Table 1 gives the speed and cost values
for the three compute resources.

For each possible resource alloca-
tion, we solve the optimization prob-
lem of finding the allocation of cycles
that minimizes the execution time T,
while satisfying the cost constraint C ≤
Cmax. Table 2 shows the solutions.
Allocations marked in italics are not
feasible (meaning they violate the exe-
cution time SLA or the cost constraint);
allocations marked in bold are feasible.
The last row corresponds to the optimal
allocation, which executes the RAM in
2,593 seconds at a cost of $1,352.

The first two allocations are infea-
sible because they violate the execu-
tion time constraint (a maximum of
4,800 seconds). The third and fifth
allocations are infeasible because they
violate the cost constraint (a maxi-
mum cost of $1,500). Interestingly, in
some allocations (such as the last one),

N NC
s

s
i

i

j
j

= ×

=
∑

1

3

NC NCi
i

=
=
∑

1

3

C c
NC
s

Ci
i

i

i

= × ≤
=
∑

1

3

max

T
NC
s

NC
s

NC
s

T=








≤max max
1

1

2

2

3

3

, ,

C c
NC
s

c
NC

s
Ci

i

i
j

j

j

= × + × ≤ m

T
NC
s

NC

s
Ti

i

j

j

=











≤max , max

C c
NC
s

Ci
i

= × ≤ max i = 1, 2, 3.

T
NC
s

T
i

= ≤ max i = 1, 2, 3,

86 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Scaling the Web

Table 1. Parameters for grid computing resource allocation.

Resource Speed (millions of cycles/sec) Cost (dollars/sec)
1 1,000 0.10
2 2,000 0.25
3 3,000 0.60

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 87

QoS in Grid Computing

the faster and more expensive node —
node 3 in this case — is used only dur-
ing part of the execution time because
of the cost constraint. In fact, because
2,222,222 million cycles are allocated
to it and its speed is 3,000 million
cycles/second, this node is used for
741 seconds, or 28.6 percent of the
execution time.

Final Remarks
If we have n resources, and if a com-
putation can be scheduled into any
number of resources from 1 to n, the
total number of possible allocations to
examine grows in a combinatorial way:

. (10)

Thus, it might be computationally
expensive to analyze all possible allo-
cations and solve an optimization
problem for each one. In this case, the
grid’s resource scheduler might have to
use heuristics to obtain close to optimal
solutions in a more efficient manner.

A real environment is more complex
than the example we’ve considered
here: the computation might have a
structure that reflects interdependencies
among tasks, and we’d have to consid-
er communication delays for data trans-
fers and coordination overheads. Nev-
ertheless, the example discussed here
highlights two important issues that
arise when scheduling computations
into the nodes of a grid — namely, SLA
compliance and cost constraints.

References
1. I. Foster and C. Kesselman, The Grid: Blue-

print for a New Computing Infrastructure,

2nd ed., Morgan Kaufmann, 2004.

2. F. Douglis and I. Foster, “The Grid Grows

Up,” IEEE Internet Computing, vol. 7, no. 4,

2003, pp. 24–26.

3. A. Leff, J.T. Rayfield, and D.M. Dias, “Ser-

vice-Level Agreements and Commercial

Grids,” IEEE Internet Computing, vol. 7, no.

4, 2003, pp. 44–50.

Acknowledgments
Daniel A. Menascé’s work is partially supported

by grant NMA501-03-1-2022 from the US

National Geospatial-Intelligence Agency.

Daniel A. Menascé is a professor of computer

science, codirector of the E-Center for E-

Business, and director of the MS in E-Com-

merce program at George Mason Universi-

ty. He received a PhD in computer science

from UCLA. Menascé is author of the books

Performance by Design, Capacity Planning

for Web Services, and Scaling for E-Business

(Prentice Hall, 2004, 2002, and 2000). He is

a fellow of the ACM and a recipient of the

2001 A. A. Michelson Award from the Com-

puter Measurement Group. Contact him at

menasce@cs.gmu.edu.

Emiliano Casalicchio is a research assistant

professor at the University of Rome “Tor

Vergata,” Italy, from which he received a

PhD in computer engineering. His research

interests include performance modeling,

analysis and simulation, networked com-

puter systems, and Web-based architec-

tures. Contact him at casallicchio@ing.

uniroma2.it.

n

kk

n
n





− = −
=

∑
1

1 2 1

Table 2. Solutions to the resource-allocation problem.*

Allocation Cycle allocation (NCi) in millions of cycles Execution time (sec) Cost ($)
1 2 3

(1) 10,000,000 — — 10,000 1,000
(2) — 10,000,000 — 5,000 1,250
(3) — — 10,000,000 3,333 2,000
(1, 2) 3,333,333 6,666,667 — 3,333 1,167
(1, 3) 4,800,000 — 5,200,000 4,800 1,520
(2, 3) — 6,666,667 3,333,333 3,333 1,500
(1, 2, 3) 2,592,593 5,185,185 2,222,222 2,593 1,352

*Allocations in bold are feasible; italics are infeasible.

25%

N
o

t
 a

 m
e

m
b

e
r

?

J
o

in
 o

n
li

n
e

t
o

d
a

y
!

save

on all conferences

sponsored by the

IEEE Computer Society

I E E E C o m p u t e r

S o c i e t y

m e m b e r s

www.computer.org/join

