
Agent UML Notation for
Multiagent System Design
From the earliest days of multiagent system development, the need has existed for

both a methodology and a modeling notation that assist in design. The Agent

UML community has responded by developing the AUML notation — a UML

profile dedicated to agents that tries to simplify the transition from software

engineering to multiagent system engineering.

Many modeling notations, ranging
from temporal and linear logic to
UML-based notations such as

MESSAGE/UML1 have emerged for mul-
tiagent system development since
Shoham’s seminal first work.2 UML3

offers many advantages because it is
widely used in industrial software pro-
jects and tools are available for this
notation. Moreover, nonmathematician
designers can understand it. As Odell and
colleagues indicated, starting over with a
new modeling language for agents would
be neither useful nor productive.4

Instead, multiagent systems would ben-
efit from an incremental extension of
existing trusted methods. Agent UML
provides such a solution. The idea behind
AUML is to exploit UML extension capa-
bilities such as stereotypes and con-
straints. AUML crystallizes a growing
concern for agent-based modeling repre-

sentations and lets designers move
smoothly from software development to
agent development.

AUML first appeared in 1999 in
Bauer’s proposal on interaction proto-
cols.5 Between 1999 and 2002, the
AUML community proposed three speci-
fications (agent interaction protocols,
agent class diagrams, and social struc-
tures). Today, the community is pushing
to define AUML with the UML 2.0 spec-
ification and to standardize it within the
Foundation for Intelligent, Physical
Agents (www.fipa.org). This article pre-
sents the FIPA modeling technical com-
mittee’s current efforts and future agen-
da for AUML.

Agent design with AUML is still
developing, so we only present it in
part. Please visit the AUML Web site
(www.auml.org) for the most up-to-date
materials.

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society JULY • AUGUST 2004 63

A
ge

nt
 T

ra
ckEditor : Michael N. Huhns • huhns@sc.edu

Marc–Philippe Huget
Leibniz–IMAG/MAGMA

Representing Agent
Interaction Protocols
Interaction protocols were the first part of multi-
agent system design that the AUML community
considered.6 The original idea was to exploit UML
1.x sequence diagrams to represent message
exchange between agents; Odell and colleagues
refined the model to include agents, roles, and
classes in agent communication. An agent is typ-
ically depicted via its identity or role within an
interaction. The class level prefigures the notion
of patterns for agent development — that is, a set
of behaviors agents have if they belong to this
class. A detailed description of the first version of
AUML sequence diagrams appears elsewhere.6

This first version is used in the FIPA specifications.
UML 2.0 and its new package for interactions,

developed by OMG and released in 2003, have
changed how we define message exchange. Four
kinds of diagrams are now available:

• Sequence diagrams focus on message sequence.
• Interaction overview diagrams generalize the

control flow based on activity diagrams.

• Communication diagrams focus on object rela-
tionships in which message passing is central.

• Timing diagrams (also called interaction dia-
grams) show how the interaction changes in
terms of state and condition over linear time.

Figure 1 summarizes the different notations used
in interaction diagrams.

Interaction
Figure 2 shows an example AUML sequence dia-
gram. As in UML 2.0, it is organized around an
interaction frame, which is represented by a rec-
tangle with a pentagon in the upper-left-hand cor-
ner. An interaction frame is defined as a unit of
behavior and contains the protocol name (prefixed
by the keyword sd for sequence diagram), the
related set of objects, and the sequence of mes-
sages between those objects. A sequence diagram
can represent a protocol instantiation or a proto-
col template. (In the latter case, the protocol name
is prefixed with <<template>>).

Contrary to UML 2.0, parameters in AUML are
not written in the pentagon in the upper-left-

64 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 1. The Agent UML sequence diagram notation. This notation is based on the UML 2.0 Interaction specification.
except for the message-with-copy notation, which is from AUML.

agent 1

Delivery to the same lifeline

Message sender will receive a copy (asynchronous communication)

Message sender will not receive a copy (asynchronous communication)

Message sender will not receive a copy (synchronous communication}

Synchronous messageAsynchronous message

card
Agent name:role/class

Lifeline notationInteraction notation

...
parameter-2
parameter-1
<<parameters>>

Local attributes

For a specific agent

Payment Action notation

Action

Termination notationInteractionOccurrence notation

Continuation notation

CombinedFragment notation

Constraint notationMessage notation

Blocking constraint

Nonblocking constraint

Timing constraint

{t..t + 30u}

t = now

[b = 1]

[a = 10]
<<blocking>>

Number of copies

3

sd protocol name

Operator

ref

PaymentPayment

hand corner of the interaction frame; rather, they
appear outside the sequence diagram in a com-
ment. (The comment for parameters is prefixed
with <<parameters>>, see example in Figure 1,
upper-left notation.) This placement reduces the
sequence diagram’s size: protocols can have
many parameters, such as the content language
for messages, the agent communication lan-
guage, or the ontology.

Lifeline
A lifeline in AUML describes a participant or
role’s appearance in an interaction. It is then pos-
sible to retrieve the messages sent and received
by this lifeline: they correspond to this lifeline’s
outgoing or incoming transitions. A participant
that enters the interaction later than other par-
ticipants has a shorter lifeline, as does one that
leaves earlier. The lifeline notation symbol is a
rectangle followed by a vertical line that repre-
sents the participant’s lifeline (see the lifeline
notation in Figure 1). The rectangle can contain
the agent’s identity, its role, its group, and cardi-
nality. (Cardinality constrains the number of par-
ticipants in open interactions.)

Message
Agents interact via messages sent from their lifeline
to the receiver’s lifeline, both of which can be iden-
tical. If this is the case, we can verify that the sender
will not receive a copy of the message by crossing
it out. (A labeled, direct arc from the sender’s life-
line to the receiver’s lifeline depicts a message.) Most
messages in agent communications are sent asyn-
chronously, but messages in AUML can be sent syn-
chronously as well (see the notation on Figure 1).

Constraint
Constraints depict a condition that must be eval-
uated to true to execute the associated actions
(send a message, receive a message, perform
another turn of a loop, and so on). AUML has two
kinds of constraints: blocking/nonblocking and
timing. Blocking constraints keep the lifeline from
participating until the constraints are satisfied (see
the blocking constraint notation in Figure 1). A
blocking constraint is prefixed with <<block-
ing>>; a nonblocking constraint doesn’t block
execution in the interaction. If the constraints are
invalid, the associated messages are not sent or
received. Blocking and nonblocking constraints
are written in square brackets; timing constraints
are equivalent to those in UML 2.0, meaning that

timing constraints correspond to a delay between
two messages (see the example between the cfp
message and the alternative in Figure 2).

CombinedFragment
UML 2.0’s CombinedFragment class offers a con-
cise way to describe multiple traces. It appears in
the sequence diagram as a rectangle with a
rounded-rectangle in the upper-left-hand corner
that contains an InteractionOperator in it (see Fig-
ure 1). A dashed line separates each trace. The
semantics of the CombinedFragment depends on
the InteractionOperator used: alternative, option,
break, parallel, weak sequencing, strict sequencing,
negative, critical region, ignore, consider, assertion,
or loop. Detailed descriptions of these operators
appear elsewhere.7

Continuation
A continuation syntactically represents the differ-
ent branches of a CombinedFragment. Continua-
tions are intuitively similar to labels, representing
intermediate points in a control flow. The notation
is a rounded rectangle with a name in it that cor-
responds to the label. A continuation in which a

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 65

Agent UML Notation

Figure 2. The contract net protocol. In this protocol, an agent (the
submitter) is unable to perform a task. It offers it to other agents,
which make proposals. The submitter awards the task to an agent
based on its proposal and requests it to do the task.

m = n + o

m — t = now
{t..t + 10u} —

n

o

o – 1

1

cfp

refuse

propose

accept-proposal

failure

inform-done:inform

inform-result:inform

reject-proposal

1
: Initiator

m
: Participant

m = n + 0

sd FIPA contract net protocol

Alternative

Alternative

Alternative

black-filled triangle appears before the label indi-
cates the continuation’s entrance. If the triangle
appears after the label, it corresponds to a call to
a continuation.

InteractionOccurrence
An InteractionOccurrence corresponds to a call to
another interaction diagram. The caller’s interac-
tion diagram resumes when the callee’s interaction
diagram ends. The InteractionOccurrence’s nota-
tion is a rectangle with a pentagon in it that says
ref; the called interaction diagram’s name is writ-
ten inside the rectangle.

Gate
A gate is a connection point that adds frame link
messages inside and outside the interaction. Such
points on the frame exist on both sides of the mes-
sage — the incoming and outgoing endpoints.

Termination
A termination denotes the end of a lifeline’s par-
ticipation in the communication and is depicted
with an X.

Protocol Template
A protocol template is depicted when <<tem-
plate>> appears between the keyword sd and the
protocol name. Parameters in protocol templates
can be unbound when no value is actually associ-
ated to these parameters; in such cases, the tem-
plates are prefixed with <<unbound>>.

Action
Agents use agent communication languages to
interact with other agents. Such languages have
a semantics that describes what the agents are
supposed to do before sending and after receiv-
ing a message. In FIPA’s Agent Communication
Language, for instance, sending an inform mes-

sage implies that the sender believes the mes-
sage’s contents and that the receiver doesn’t
know these contents. An action is depicted with
a rounded rectangle linked by an association to
the message that triggers it (see Figure 1). The
action is written as text independent of any pro-
gramming language.

Designing Agents
Class diagrams typically drive object system
design. Although class diagrams can’t express all
the richness of agent behaviors (in particular,
autonomy and goal-driven execution), Bauer pro-
posed enhancing the diagrams to include such
features as turning class diagrams into agent-
class diagrams.8

The AUML community is considering a new
way to represent agents: defining an agent shell as
a UML classifier and letting designers fill this shell
with building blocks that represent specific fea-
tures such as actions, events, or protocols. The aim
is to use this agent shell to design reactive and
cognitive agents.

In this approach, agents are defined via agent
diagrams like the one in Figure 3. In this figure,
we see an empty shell in which the developer will
integrate building blocks to give semantics to the
agent. For instance, the agent’s behavior is
defined by relating events to actions. Two nota-
tions are available: the shorter version includes
the agent’s identity and its groups, roles, and ser-
vices; the longer one describes the agent’s com-
plete structure.

The design process depends on whether we’re
considering reactive or cognitive agents. Let’s first
look at the process of designing reactive agents:

• Group and role assignment. Designers assign
groups and roles to the agent; the roles will
correspond to the agent’s specific behavior.

• Event definition. Designers extract from the
environment the set of events to which the
agent can react.

• Event–action associations. Designers associate
actions to events to react to these events.

Cognitive-agent design follows a similar, but
different, process:

• Group and role assignment. Designers begin by
assigning the agent to groups and defining the
different roles the agent plays in them. The
groups and roles provide several pieces of

66 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 3. Agent UML agent diagram. The figure
presents the two notations for the diagram: short
(just identification) and long (all parts of the agents).

Agent identification

Short notation

Agent identification

Long notation

information such as behavior, services, and
protocols. This first step provides a template for
the agent’s overall structure.

• Service description. Designers then describe the
different services the agent offers — whether
from groups, roles, or the agent itself.

• Protocol description. Protocols support services
for cooperation and coordination or simply
facilitate information exchange. The developer
extracts protocols from the service definition
and from roles.

• Events. Agents react to the events in their envi-
ronments. In this step, the developer gathers all
the events to which the agent can react.

• Goals, plans, and actions. Processing services,
using protocols, and reacting to events imply
defining goals, plans, and actions. Thus, the
designer attempts to relate goals, plans, and
actions to services, protocols, and events.

• Knowledge. Cognitive agents have knowledge
(information, beliefs, user models, acquain-
tances, and so on). In this step, the designer
fills the agent shell with the knowledge to per-
form actions and protocols.

In the rest of this section, I’ll look more closely
at the building blocks for cognitive agent design.
I won’t go into too much detail about knowledge
here, but a more in-depth look at using UML for
knowledge and ontologies appears elsewhere.9

The DAML UML enhanced tool (DUET, http://
grcinet.grci.com/maria/www/CodipSite/Tools/
Tools.html) lets visitors experiment with trans-
lating DAML+OIL specifications into UML class
diagrams and vice versa.

Group and Role Assignment
The first step in designing cognitive agents is to
assign groups and roles to each agent. The
designer defines these groups and roles; the agent
has, at its initialization, a compartment of long
notation and a complement to the agent identi-
fier in the short notation. The notation in the
compartment Groups,Roles is {Group, (Role
+)}*. This means that an agent can play sever-
al roles within a group. The short notation, Agent
id:Roles/Group, can’t be used when agents are
part of multiple groups; it can represent only a
unique group’s roles. Figure 4 shows a bookstore
example: an agent called Smith belongs to the
group Bookstore and takes the role of Seller.

Assigning groups and roles adds information
to the agent:

• Services represent what agents can do and how
to request their services.

• Protocols support services, service requests, and
communication; they are common for a given
role or group.

• Goals (also called desires) and plans are fre-
quently common across agents with the same
role or group. All agents with the role Seller
aim to maximize the company’s income, for
example.

• Knowledge can be defined at both group and
role levels. It corresponds to pieces of knowl-
edge or the agents’ capabilities.

• Norms can be defined at the group level, such
that each agent belonging to the group con-
forms to the group’s norm. In an electronic
institution, for example, the norm might be,
“the winner of an auction pays the hammer
price to get the item.”

Groups and roles don’t provide a static view of
the system because agents can change or stop
roles or change from one group to another. We
don’t integrate the diagram — rather, we just
name it and add that name in the agent shell’s
role dynamics compartment. When the develop-
er implements the agent, it refers to this diagram
and retrieves the different roles and associated
behaviors, services, protocols, and so on to gen-
erate agent code.

Services
A service represents a process that an agent can
handle (sell a book, find a restaurant, and so on).
We use the service-type definition employed in the
AgentCities project (www.agentcities.org) to
describe a service:

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 67

Agent UML Notation

Figure 4. Agents with groups and roles. This figure
presents two notations. The short notation reveals
only the agent’s identity, group, and the roles it
plays in this group. The long notation also reveals
the parts of the agent via compartments.

Smith:Seller/Bookstore
Smith

Groups, Roles
{Bookstore, (Seller)}

• Name is the service’s name.
• Related to and sub-type-of are other services

from which this service inherits.
• Same–type–of is an equivalent service.
• Descriptions are the natural-language descrip-

tion of the service.
• Protocols invoke the service.
• Agent communication languages are used to

interact with this service.
• Content languages are used by messages in the

protocols.
• Ontologies are the ontologies this service uses.
• DAML–S description is the DAML–S descrip-

tion of the service.

As Figure 5 illustrates, a service is depicted either
by a short notation in which a circle with the ser-
vice’s name is attached to the agent diagram via a
solid line or by a long notation in which a service
is described as a class diagram attached to the
agent diagram via a solid line. Each compartment
in the class diagram corresponds to an AgentCities
service-type definition.

For our bookstore example, agent Smith has
multiple services in its role as Seller: search
availability, price request, book reservation, and
book order. Each is supported by a protocol of
the same name. Figure 5 depicts these services

available for agent Smith, but due to space con-
straints, we see only the book order service in the
long notation.

Protocols
A protocol represents the legal sequences of mes-
sages between agents. (A complete specification
of agent interaction protocols appears elsewhere.6)
A protocol is arranged around a frame that con-
tains the interaction’s participants along with
message sequences.

Figure 6 shows two participants from our
bookstore example: the agent role Customer and
agent Smith, which plays the role of Seller with-
in the group Bookstore. The customer orders a
book from the seller, which checks the item’s
availability (the option box). If the book is
unavailable, the seller both informs the customer
and orders the book from the wholesaler. Regard-
less of current availability, the seller sends an
invoice, which the customer pays. As soon as the
book is available, the seller informs the delivery
service to deliver the book.

Events
Whether an agent is reactive or cognitive, it reacts
to events in its environment. In our bookstore
example, events primarily affect the seller: an

68 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 5. AUML service notation. Services are described via a short notation (a lollipop on the right side of the agent
diagram) or via a long notation as a class diagram linked to the agent diagram.

Short notation

Agent identification

Ontologies

Descriptions
Service proposed by the bookstore to sell books online. Books are
ordered and delivered to customers. Some delay can arise if the book
is not available.

Protocols
Book_order

FIPA ACL/ String specification
Agent communication language(s)

Content language(s)
FIPA SL

Selling ontology

Long notation

Search availability

Price request

Book reservation

Book order

Agent identification

Search availability

Price request

Book reservation

<<service>> Book order

ordered book arrives or a book is no longer avail-
able. Figure 7 shows how actions are associated
with events and how they correspond to the agent’s
reaction. Events can also involve time — occurring
at regular intervals, for example. Designers can use
the hourglass notation, as in UML 2.0, to represent
such timing events in AUML.

Goals, Plans, and Actions
The next step in the process is to define and inte-
grate goals, plans, and actions within the agent
shell — specifically, to associate actions with ser-
vices, protocols, and events. A first attempt at
formalizing this process, by adapting the UML
2.0 activity diagram for agent goals, plans, and
actions, appears elsewhere.10 Figure 8 summa-
rizes the different notations for AUML goal dia-
gram notation.

The fundamental unit in a goal is an action,
which represents a specific task the agent must
do. The agent itself invokes actions — such as
buy an item, fill an order, ship the order — to
achieve its objectives. In Figure 8, we denote
each as a rounded rectangle with the action’s
name inside. Actions are linked via activity
edges, which are solid lines that have an open
arrowhead from the action performed to the
action to perform. If the activity edge is named,
the name appears on this line.

Pre– and postconditions can constrain a spe-
cific action’s execution; they’re prefixed with
<<Precondition>> and <<Postcondition>> and
can refer to belief, desire, and intention (BDI)
modalities. A precondition might be believe(self (a
== 10)), which means that the agent firing this
activity edge needs to believe that a equals 10. BDI
modalities can also be nested: believe a (intends b
(believe a (q == 10))) means that a believes that b’s
intention is that a believes q equals 10.

UML 2.0 activity diagrams differ from UML 1.x
activity diagrams in terms of concurrency and
synchronization: UML 2.0 activity diagrams
resemble Petri nets and allow multiple concurrent
flows. Tokens correspond to tokens in Petri nets. If
an edge needs three tokens to be traversed, three
tokens must be on the incoming end of the edge
to traverse it. In Figure 8, tokens appear in brack-
ets on the activity edge with the keyword weight;
the figure shows that three tokens must be present
to fire this edge.

We can use connectors when the activity dia-
gram becomes too complicated and has too many
activity edges. Instead of drawing an activity

edge, the developer draws a circle with the edge’s
name in it at both ends of where the activity edge
should be. Every connector with a given label
must be paired with an identical label on the same
activity diagram.

Control nodes for activities are

• initial node,
• activity final node,
• flow final node,
• decision, or merge, node, and
• fork, or join, node.

An initial node marks the start of an activity, but
a single activity can have multiple initial nodes

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 69

Agent UML Notation

Figure 7. The event notation. The event Book arrived is described
as part of this agent, which means the agent Smith can perceive
this event.

Smith

Groups, roles

Price request

Book reservation

Book orderBook order

{Bookstore, (Seller)} Search availability

Bo
ok

ar
ri

ve
d

Figure 6. Example protocol. The protocol presents the book order
between a customer and a seller, particularly the phase in which
there is some delay receiving the book (the option base).

[unavailable]

Deliver
<<blocking>> [available]

Wholesaler book order

Payment

Invoice

:Customer Smith:Seller/Bookstore

Order

Delay

sd book order

Option

(several flows would be initiated, one per initial
node — denoted with solid circles in Figure 8). An
activity final node marks the end of an activity,
but as with the initial node, one activity can have
several final nodes. An activity final node means
that all processing in the activity has stopped,
whereas a flow final node means that only a spe-
cific flow has ended. Flow final nodes do not stop
other processing.

A decision node chooses a node among sev-
eral outgoing activity edges. Constraints can
force outgoing activity edges to simplify activi-
ty edge selection; constraints also can contain
BDI modalities. If a decision node has several
incoming activity edges, we call it a merge node,
but this doesn’t change the decision node’s
semantics: it still chooses only one outgoing
activity edge.

A fork node splits a flow into multiple concur-
rent flows; it has one incoming edge and several
outgoing edges. A join node is essentially a fork
node with several incoming activity edges; it is
used to synchronize multiple flows.

A more detailed description of the other class-
es that goal diagrams consider — time manage-
ment, exception handling, action atomicity, prior-
ity, and so on — appears elsewhere.10

The Agenda
Several diagrams are already under consideration
for AUML (for goals, plans and actions, services,
and groups and roles, to name a few), but the road
to an efficient notation that meets FIPA’s require-
ments is long. Let’s look at some of the items on
the AUML agenda.

First, AUML needs formal semantics for the dif-

ferent diagrams. One of UML’s great advantages is
that it’s visual and easy to understand, particular-
ly for software engineers. One of its main draw-
backs, though, is the absence of a formal seman-
tics for defining the different classes used in the
diagrams. Consequently, it’s possible to misinter-
pret diagrams. A formal semantics helps designers
reuse diagrams and conforms tools’ appearance to
a specification.

AUML also needs to populate a set of dia-
grams. Initial work on AUML focused on interac-
tion protocols and agent design. The newer ver-
sion will provide diagrams for goals and social
structures as well.

One of AUML’s main drawbacks is the
absence of tools dedicated to it. Designers work-
ing with it use tools such as Dia, Xfig, or Visio,
but they can’t check diagram consistency with
these tools. This makes it easy to misuse the
specification.

Finally, it is necessary to challenge the AUML
notation against industrial and real-world appli-
cations to verify its completeness. Unfortunately,
this is the most difficult part because it’s hard to
find industrial applications. Nevertheless, the
AUML community is encouraging companies to
participate in its efforts to develop a strong and
useful notation.

Acknowledgments
The author thanks all the people working on Agent UML and

those who will join the Agent UML community after reading

this article.

References

1. C. Caire et al., Message: Methodology for Agent-Oriented

70 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Agent Track

Figure 8. Goals, plans, and actions. The agent goal diagram notation is based on UML 2.0 action notation.

<<Precondition>>

Condition

<<Postcondition>>

Condition

Activity edge

Named activity edge

Name

Weighted activity edge

[weight = 3]

Merge node

A A

Join node

Fork node

Activity edge

Initial node Activity final node Flow final node

Decision node

Action

Action

Action

Action Action

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 71

Agent UML Notation

Software Engineering, tech. report, Eurescom, 2001, www.

eurescom.de/~public-webspace/P900-series/P907/D1/.

2. Y. Shoham, “AGENT0: A Simple Agent Language and Its

Interpreter,” Proc. 9th Nat’l Conf. Artificial Intelligence,

AAAI Press/MIT Press, 1991, pp. 704–709.

3. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Mod-

eling Language User Guide, Addison-Wesley, 1999.

4. J. Odell, H. Van Dyke Parunak, and B. Bauer, “Extending

UML for Agents,” Proc. Agent-Oriented Information Sys-

tems Workshop, 17th Nat’l Conf. Artificial Intelligence,

G.Wagner, Y. Lesperance, and E. Yu, eds., ICue Publish-

ing, 2000.

5. B. Bauer, “Extending UML for the Specification of Interac-

tion Protocols,” submission for the 6th Call for Proposal of

FIPA and revised version of FIPA 99, 1999.

6. M.-P. Huget, J. Odell, and B. Bauer, “The AUML Approach,”

Methodologies and Software Engineering for Agent Sys-

tems, Kluwer, 2004 (to be published).

7. M.-P. Huget and J. Odell, “Representing Agent Interaction

Protocols with Agent UML,” Proc. 5th Int’l Workshop on

Agent-Oriented Software Eng., P. Giorgini, J. Müller, and

J. Odell, eds., Springer-Verlag, 2004.

8. B. Bauer, “UML Class Diagrams Revisited in the Context of

Agent-Based Systems,” Proc. Agent-Oriented Software

Eng., LNCS 2222, M. Wooldridge, P. Ciancarini, and G.

Weiss, eds., Springer-Verlag, 2001, pp. 1–8.

9. S. Cranefield and M. Pruns, “UML as an Ontology Modeling

Language,” Proc. Workshop on Intelligent Information Inte-

gration, 16th Int’l Joint Conf. Artificial Intelligence, CEUR

Publications, 1999.

10. M.-P. Huget, “Representing Goals in Multiagent Systems,”

Proc. 4th Int’l Symp. Agent Theory to Agent Implementa-

tion (AT2AI–4), P. Petta and J. Mueller, eds., Austrian Soc.

for Cybernetic Studies, 2004, pp. 588–593.

Marc–Philippe Huget is a postdoctoral fellow at Leibniz–

IMAG/MAGMA. His research interests include multiagent

system design and interaction in multiagent systems. He

received a PhD in computer science from Paris 9. He is a

member of the IEEE and the ACM. Huget is the editor of

Communication in Multi-Agent Systems (Springer-Verlag,

2003). Contact him at Marc–Philippe.Huget@imag.fr.

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Midwest/Southwest (recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassociates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421-7950
Fax: +1 415 398-4156
Email: peterd@pscottassoc.com

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Northwest/Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Southeast (recruitment)
Jana Smith
Phone: +1 404 256 3800
Fax: +1 404 255 7942
Email: jsmith@bmmatlanta.com

Japan
Sandy Brown
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sbrown@computer.org

Europe (product/recruitment)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email: impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X J U L Y / A U G U S T 2 0 0 4

Charles River Media 15

John Wiley & Sons, Inc. Cover 4

MIT Press 6

SAP Labs 9

WebSec 2004 Cover 2

Advertising PersonnelAdvertiser Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org
Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

