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Continuous Dynamic Constrained
Optimization—The Challenges
Trung Thanh Nguyen, Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract—Many real-world dynamic problems have con-
straints, and in certain cases not only the objective function
changes over time, but also the constraints. However, there is no
research in answering the question of whether current algorithms
work well on continuous dynamic constrained optimization prob-
lems (DCOPs), nor is there any benchmark problem that reflects
the common characteristics of continuous DCOPs. This paper
contributes to the task of closing this gap. We will present some
investigations on the characteristics that might make DCOPs
difficult to solve by some existing dynamic optimization (DO)
and constraint handling (CH) algorithms. We will then introduce
a set of benchmark problems with these characteristics and test
several representative DO and CH strategies on these problems.
The results confirm that DCOPs do have special characteristics
that can significantly affect algorithm performance. The results
also reveal some interesting observations where the presence
or combination of different types of dynamics and constraints
can make the problems easier to solve for certain types of
algorithms. Based on the analyses of the results, a list of potential
requirements that an algorithm should meet to solve DCOPs
effectively will be proposed.

Index Terms—Benchmark problems, constraint handling
(CH), dynamic constraints, dynamic environments, dynamic
optimization (DO), evolutionary algorithms, performance
measures.

I. Introduction

THIS PAPER aims to answer some open questions about
the characteristics, difficulties and solutions of a very

common class of problems—dynamic constrained optimiza-
tion problems (DCOPs). DCOPs are constrained optimization
problems that have two properties: 1) the objective functions,
the constraints, or both, may change over time; and 2) the
changes are taken into account in the optimization process.1 It
is believed that a majority of real-world dynamic problems
are DCOPs. However, there are few studies on continuous
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optimization problems in [1, Sec. V].

dynamic constrained optimization. Existing studies on contin-
uous dynamic optimization only focus on the unconstrained
or domain constraint dynamic cases (which in this paper both
are regarded as “unconstrained” problems). Likewise, existing
research in constraint handling only focuses on the stationary
constrained problems.

This lack of attention on DCOPs in the continuous domain
raises some important research questions: What are the essen-
tial characteristics of these types of problems? How well would
existing dynamic optimization and constraint handling strate-
gies perform in dynamic constrained environments if most
of them are designed for and tested in either unconstrained
dynamic problems or stationary constrained problems only?
Why do they work well or not? How can one evaluate if
an algorithm works well or not? And finally, what are the
requirements for a “good” algorithm that effectively solves
these types of problems?

As a large number of real-world applications are dynamic
constrained, finding the answers to the above questions is es-
sential. Such answers would help to have better understanding
about the practical issues of DCOPs and to solve this class of
problems more effectively.

This paper is organized as follows. Section II identifies the
special characteristics from real-world DCOPs and discusses
how the characteristics make this type of problem different
from unconstrained dynamic optimization problems (DOPs).
Section III reviews related literature about continuous bench-
mark problems, identifies the gaps between them and real-
world problems, and proposes a new set of DCO benchmark
problems. Sections IV and V investigate the possibility of
solving DCOPs using some representative DO/CH strategies.
Experimental analyses about the strengths and weaknesses,
and the effect of the mentioned characteristics on each strategy
will be undertaken. Based on the experimental results, a list
of requirements that algorithms should meet to solve DCOPs
effectively are proposed. Finally, Section VI concludes this
paper and points out future directions of research.

II. Characteristics of Real-World Dynamic

Constrained Problems

The presence of constraints in DCOPs from real-world ap-
plications makes them very different from the unconstrained or
domain constraint problems considered in academic research.
In real-world DCOPs, the objective function and constraint
functions can be combined in three different types: 1) both
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the objective function and the constraints are dynamic [2]–[4];
2) only the objective function is dynamic while the constraints
are static [5]–[7]; and 3) the objective function is static
and the constraints are dynamic [8]–[10]. In all three types,
the presence of infeasible areas can affect how the global
optimum moves, or appears after each change. This leads
to some special characteristics which are not found in the
unconstrained and fixed constrained cases.

First, constraint dynamics can lead to changes in the
shape/percentage/structure of the feasible/infeasible areas.
Second, objective function dynamics might cause the global
optima to switch from one disconnected feasible region to
another on problems with disconnected feasible regions, which
are very common in real-world constrained problems, espe-
cially the scheduling problems [11]–[13]. Third, in problems
with fixed objective functions and dynamic constraints, the
changing infeasible areas might expose new, better global
optima without changing the existing optima. One example is
the dynamic 0–1 Knapsack problem: significantly increasing
the capacity of the knapsack can create a new global optimum
without changing the existing optimum.

In addition to the three special characteristics above, DCOPs
might also have the common characteristics of constrained
problems such as global optima in the boundaries of feasible
regions, global optima in search boundary, and multiple dis-
connected feasible regions. These characteristics are widely
regarded as being common in real-world applications.

III. Real-Valued Benchmark to Simulate DCOPs’

Characteristics

A. Related Literature

In the continuous domain, there is no existing continuous
benchmark that fully reflects the characteristics of DCOPs
listed in Section II. Among existing continuous benchmarks,
there are only two recent studies that are related to dynamic
constraints. The first study was [14], in which two simple uni-
modal constrained problems were proposed. These problems
take the time variable t as their only time-dependant parameter
and hence the dynamic was created by the increase over
time of t. These problems have some important disadvantages
which prevent them from being used to capture/simulate the
mentioned properties of DCOPs: they only capture a simple
linear change. In addition, the two problems do not reflect
common situations like dynamic objective + fixed constraints
or fixed objective + dynamic constraints and other common
properties of DCOPs.

The second study was [15]. In that research, a dynamic
constrained benchmark problem was proposed by combining
an existing “field of cones on a zero plane” dynamic fitness
function with four dynamic norm-based constraints with the
square/diamond/sphere-like shapes (see [15, Fig. 2]). Although
the framework used to generate this benchmark problem is
highly configurable, the current single benchmark problem
generated by the framework in [15] was designed for a
different purpose and hence does not simulate the properties
mentioned in Section II. For example, the benchmark problem
might not be able to simulate common properties of DCOPs

such as optima in boundary, disconnected feasible regions, and
moving constraints exposing optima in a controllable way. In
addition, there is only one single type of benchmark problem
and hence, it might be difficult to use the problem to evaluate
the performance of algorithms under different situations.

The lack of benchmark problems for DCOPs makes it
difficult to: 1) evaluate how well existing DO algorithms would
work on DCOPs; and 2) design new algorithms specializing
in DCOPs. Given that a majority of recent real-world DOPs
are DCOPs [16], this can be considered an important gap in
DO research.

This gap motivates the authors to develop general-purpose
benchmark problems to capture the special characteristics of
DCOPs. Some initial results involving five benchmark prob-
lems were reported in an earlier study [17]. This paper extends
the framework to develop full sets of benchmark problems,
which are able to capture all characteristics mentioned in
the previous section. Two sets of benchmark problems, one
with multimodal, scalable objective functions and one with
unimodal objective functions, have been developed for this
research. In this paper, the benchmark set with unimodal ob-
jective functions (many problems in the set still have multiple
optima due to the constraints) will be discussed in detail.
Detailed descriptions of the multimodal, scalable set can be
found in a technical report [18].

B. Generating Dynamic Constrained Benchmark Problems

One useful way to create dynamic benchmark problems is to
combine existing static benchmark problems with the dynamic
rules found in dynamic constrained applications. This can be
done by applying the dynamic rules to the parameters of the
static problems, as described below.

Given a static function fP (x) with a set of parameters
P = {p1, ..., pk}, one can always generalize fP (x) to its
dynamic version fPt

(x, t) by replacing each static parameter
pi ∈ P with a time-dependent expression pi (t). The dynamic
of the dynamic problem then depends on how pi (t) varies over
time. One can use any type of dynamic rule to represent pi (t),
and hence can create any type of dynamic problem. Details
of the concept and a mathematical framework for the idea is
described in [18]. Some additional information is provided in
[19, Sec. 3].

C. Dynamic Constrained Benchmark Set

A set of 18 benchmark problems named G24 was introduced
using the new procedure described in the previous subsection.
The general form for each problem in the G24 set is as follows:

minimize f (x)
subject to gi (x) ≤ 0 gi (x) ∈ G i = 1, ..., n

where the objective function f (x) can be one of the function
forms set out in (1), each constraint gi (x) can be one of the
function forms given in (2), and G is the set of n constraint
functions for that particular benchmark problem. The detailed
descriptions of f (x) and gi (x) for each problem are described
in Tables I and II.

Equation (1) describes the general function forms for the
objective functions in the G24 set. Of these function forms,
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TABLE I

Objective Function Form of Each

Benchmark Problem

Benchmark Problem Objective Function

G24−8a and G24−8b f (x) = f (2)

All other problems f (x) = f (1)

TABLE II

Set of Constraint Function Forms for Each Problem

Benchmark Problem Set G of Constraints
G24−u, G24−uf, G24−2u, G24−8a G = {∅}
G24−6a G =

{
g(3), g(6)

}

G24−6b G =
{
g(3)
}

G24−6c G =
{
g(3), g(4)

}

G24−6d G =
{
g(5), g(6)

}

All other problems G =
{
g(1), g(2)

}

f (2) is used to design the objective function for G24−8a and
G24−8b, and f (1) is used to design the objective functions
for all other problems. f (1) is modified from a static function
proposed in [20] and f (2)is a newly designed function

f (1) = − (X1 + X2) (1)

f (2) = −3 exp

(
−

√√
(X1)2 + (X2)2

)

where Xi = Xi (xi, t) = pi (t) (xi + qi (t)), 0 ≤ x1 ≤ 3, 0 ≤
x2 ≤ 4 with pi (t) and qi (t) (i = 1, 2) as the dynamic parame-
ters, which determine how the dynamic objective function of
each benchmark problem changes over time.

Equation (2) describes the general function forms for the
constraint functions in the G24 set. Of these function forms,
g(1)and g(2)were modified from two static functions proposed
in [20] and g(3), g(4), g(5)and g(6)are newly designed functions

g(1) = −2Y 4
1 + 8Y 3

1 − 8Y 2
1 + Y2 − 2 (2)

g(2) = −4Y 4
1 + 32Y 3

1 − 88Y 2
1 + 96Y1 + Y2 − 36

g(3) = 2Y1 + 3Y2 − 9

g(4) =

{−1, if (0 ≤ Y1 ≤ 1) or (2 ≤ Y1 ≤ 3)
1, otherwise

g(5) =

{−1, if (0 ≤ Y1 ≤ 0.5) or (2 ≤ Y1 ≤ 2.5)
1, otherwise

g(6) =

⎧⎨
⎩

−1, if [(0 ≤ Y1 ≤ 1) and (2 ≤ Y2 ≤ 3)]
or (2 ≤ Y1 ≤ 3)

1, otherwise

where Yi = Yi (x, t) = ri (t) (x + si (t)), 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4
with ri (t), and si (t) (i = 1, 2) as the dynamic parameters,
which determine how the constraint functions of each bench-
mark problem change over time.

Each benchmark problem may have a different mathemat-
ical expression for pi (t), qi (t), ri (t) and si (t). Note that
although many benchmark problems share the same general
function form in (1), their individual expressions for pi (t)
and qi (t) make their actual dynamic objective functions very
different. Similarly, the individual expressions for ri (t) and

si (t) make each actual dynamic constraint function very dif-
ferent although they may share the same function form. The
individual expressions of pi (t), qi (t), ri (t), and si (t) for each
benchmark function are described in Table III.

Two guidelines were used to design the test problems:
1) problems should simulate the common properties of DCOPs
as mentioned in Section II; and 2) there should always be a
pair of problems for each characteristic. The two problems
in each pair should be almost identical except that one has a
particular characteristic (e.g., fixed constraints) and the other
does not. By comparing the performance of an algorithm
on one problem with its performance on the other problem
in the pair, it is possible to analyze whether the considered
characteristic has any effect on the tested algorithm and to
what extent that effect is significant.

Based on the two guidelines above, 18 different test prob-
lems were created (Table III). Each test problem is able to
capture one or several of the mentioned characteristics of
DCOPs, as shown in Table IV. In addition, the problems and
their relationships are carefully designed so that they can be
arranged in 21 pairs (Table V), of which each pair is a different
test case to test a single characteristic of DCOPs (the two
problems in each pair are almost identical except that one has
a special characteristic and the other does not).

IV. Challenges of Applying Current

Dynamic Optimization Strategies Directly

to Solving DCOPs

A. Analyzing the Performance of Some Common Dynamic
Optimization Strategies in Solving DCOPs

The strategies being considered are: 1) introducing diversity;
2) maintaining diversity; and 3) tracking the previous optima.
These three are among the four most commonly used strategies
(the other strategy is memory-based) to solve DOPs. The
diversity-introducing strategy was proposed based on the as-
sumption that by the time a change occurs in the environment,
an evolutionary algorithm might have already converged to a
specific area and hence would lose its ability to deal with
changes in other areas of the search space. Consequently, it
is necessary to increase the diversity level in the population,
either by increasing the mutation rate or re-initializing/re-
locating the individuals. This strategy was introduced years
ago [21] but is still extensively used [22], [23].

The diversity-introducing strategy requires that changes
must be visible to the algorithm. To avoid this disadvantage,
the diversity-maintaining strategy was introduced so that popu-
lation diversity can be maintained without explicitly detecting
changes [24]. This strategy is still the main strategy in many
recent approaches [25], [26].

The third strategy, tracking-previous-optima, is used where
the optima might only slightly change. The region surround-
ing the current optima is monitored to detect changes and
“track” the movement of these optima. Similar to the two
strategies above, the tracking strategy has also been used
for years [21] and it has always been one of the main
strategies for solving DOPs. Recently, this strategy has been
combined with the diversity maintaining/introducing strategy
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TABLE III

Dynamic Parameters for All Test Problems in the

Benchmark Set G24

Prob Parameter Settings
G24−u p1 (t) = sin

(
kπt + π

2

)
, p2 (t) = 1, qi (t) = 0

G24−1 p2 (t) = ri (t) = 1, qi (t) = si (t) = 0
p1 (t) = sin

(
kπt + π

2

)

G24−f pi (t) = ri (t) = 1, qi (t) = si (t) = 0
G24−uf pi (t) = 1, qi (t) = 1

G24−2 if (t mod 2 = 0)
{ p1(t)=sin

(
kπt
2 + π

2

)

p2(t)={p2(t−1) if t>0
p2(0)=0 if t=0

if (t mod 2 �= 0)
{ p1(t)=sin

(
kπt
2 + π

2

)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = si (t) = 0, ri (t) = 1

G24−2u if (t mod 2 = 0)
{ p1(t)=sin

(
kπt
2 + π

2

)

p2(t)={p2(t−1) if t>0
p2(0)=0 if t=0

if (t mod 2 �= 0)
{ p1(t)=sin

(
kπt
2 + π

2

)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = 0
G24−3 pi (t) = ri (t) = 1, qi (t) = s1 (t) = 0

s2 (t) = 2 + t · x2 max −x2 min
S

G24−3b p1 (t) = sin
(
kπt + π

2

)
, p2 (t) = 1

qi (t) = s1 (t) = 0, ri (t) = 1,

s2 (t) = 2 + t · x2 max −x2 min
S

G24−3f pi (t) = ri (t) = 1, qi (t) = s1 (t) = 0, s2 (t) = 2
G24−4 p2 (t) = ri (t) = 1, qi (t) = s1 (t) = 0

p1 (t) = sin
(
kπt + π

2

)
, s2 (t) = t · x2 max −x2 min

S

G24−5 if (t mod 2 = 0)
{ p1(t)=sin

(
kπt
2 + π

2

)

p2(t)={p2(t−1) if t>0
p2(0) if t=0

if (t mod 2 �= 0)
{ p1(t)=sin

(
kπt
2 + π

2

)

p2(t)=sin
(

kπ(t−1)
2 + π

2

)

qi (t) = s1 (t) = 0, ri (t) = 1,

s2 (t) = t · x2 max −x2 min
S

G24−6a/b/c/d p1 (t) = sin
(
πt + π

2

)
, p2 (t) = 1,

qi (t) = si (t) = 0, ri (t) = 1
G24−7 pi (t) = ri (t) = 1, qi (t) = s1 (t) = 0,

s2 (t) = t · x2 max −x2 min
S

G24−8a pi (t) = −1, q1 (t) = − (c1 + ra · cos (kπt))
q2 (t) = − (c2 + ra. sin (kπt))

G24−8b pi (t) = −1, q1 (t) = − (c1 + ra · cos (kπt))
q2 (t) = − (c2 + ra · sin (kπt)) , ri (t) = 1, si (t) = 0

k k determines the severity of function changes,
k = 1 ∼large, k = 0.5 ∼ medium, k = 0.25 ∼ small.

S S determines the severity of constraint changes,
S = 10 ∼large, S = 20 ∼ medium, S = 50 ∼ small.

c1, c2, ra c1 = 1.470561702, c2 = 3.442094786232,

(G24−8a/b only) ra = 0.858958496.

i i is the variable index, i = 1, 2.

Each dynamic parameter is a time-dependant rule/function which governs
the way the problems change.

to achieve better performance. Typical examples are the mul-
tipopulation/multiswarm approaches, where multiple subpop-
ulations are used to maintain diversity and each subpopula-
tion/subswarm focuses on tracking one single optimum [26],
[27].

B. Chosen Algorithms and Experimental Settings

1) Chosen Algorithms: Two commonly used algo-
rithms: triggered hyper-mutation GA (HyperM [21]) and
random-immigrant GA (RIGA [24]) were chosen to eval-
uate the performance of the three strategies mentioned
above in DCOPs. HyperM is basically a simple GA with

TABLE IV

Properties of Each Test Problem in the G24 Benchmark Set

Problem ObjFunc Constr DFR SwO bNAO OICB OISB Path
G24−u Dynamic NoC 1 No No No Yes N/A
G24−1 Dynamic Fixed 2 Yes No Yes No N/A
G24−f Fixed Fixed 2 No No Yes No N/A
G24−uf Fixed NoC 1 No No No Yes N/A
G24−2* Dynamic Fixed 2 Yes No Yes

and
No

Yes
and
No

N/A

G24−2u Dynamic NoC 1 No No No Yes N/A
G24−3 Fixed Dynamic 2-3 No Yes Yes No N/A
G24−3b Dynamic Dynamic 2-3 Yes No Yes No N/A
G24−3f Fixed Fixed 1 No No Yes No N/A
G24−4 Dynamic Dynamic 2-3 Yes No Yes No N/A
G24−5* Dynamic Dynamic 2-3 Yes No Yes

and
No

Yes
and
No

N/A

G24−6a Dynamic Fixed 2 Yes No No Yes Hard
G24−6b Dynamic NoC 1 No No No Yes N/A
G24−6c Dynamic Fixed 2 Yes No No Yes Easy
G24−6d Dynamic Fixed 2 Yes No No Yes Hard
G24−7 Fixed Dynamic 2 No No Yes No N/A
G24−8a Dynamic NoC 1 No No No No N/A
G24−8b Dynamic Fixed 2 Yes No Yes No N/A
DFR Number of disconnected feasible regions
SwO Switched global optimum between disconnected regions
bNAO Better newly appear optimum without changing existing ones
OICB Global optimum is in the constraint boundary
OISB Global optimum is in the search boundary
Path Indicate if it is easy or difficult to use mutation to travel

between feasible regions
Dynamic The function is dynamic
Fixed There is no change
NoC There is no constraint
* In some change periods, the landscape either is a plateau or

contains infinite number of optima and all optima (including
the existing optimum) lie in a line parallel to one of the axes

an adaptive mechanism to switch from a low mutation
rate (standard-mutation-rate) to a high mutation rate (hyper-
mutation-rate, to increase diversity) and vice versa de-
pending on whether or not there is a degradation of the
best solution in the population. It represents the “intro-
ducing diversity” and “tracking previous optima” strategies
in DO.

RIGA is another derivative of a basic GA. After the nor-
mal mutation step, a fraction of the population is replaced
with randomly generated individuals. This fraction is deter-
mined by a random-immigrant rate (also named replacement
rate). By continuously replacing a part of the population
with random solutions, the algorithm is able to maintain
diversity throughout the search process to cope with dy-
namics. RIGA represents the “maintaining diversity” strategy
in DO.

One reason to choose these algorithms for the test is that
their strategies are still commonly used in most current state-
of-the-art DO algorithms. Another reason is the strategies in
these algorithms are very simple and straightforward, mak-
ing it easy to test and analyze their behavior. In addition,
because these two algorithms are very well studied, using
them would help in comparing new experimental data with
existing results. Finally, because both algorithms are devel-
oped from a basic GA (actually the only difference between
HyperM/RIGA and a basic GA is the mutation strategy),
it would be easier to compare/analyze their performance.
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TABLE V

21 Test Cases (Pairs) to Be Used in This Paper

Static Problems: Unconstrained Versus Fixed Constraints
1 G24−uf (fF, noC) versus G24−f (fF, fC)
Fixed objectives versus dynamic objectives
2 G24−uf (fF, noC) versus G24−u (dF, noC)
3 G24−f (fF, fC, OICB) versus G24−1 (dF, fC, OICB)
4 G24−f (fF, fC, OICB) versus G24−2 (dF, fC, ONICB)
Dynamic objectives: Unconstrained versus fixed constraints
5 G24−u (dF, noC) versus G24−1 (dF, fC, OICB)
6 G24−2u (dF, noC) versus G24−2 (dF, fC, ONICB)
Fixed constraints versus dynamic constraints
7 G24−1 (dF, fC, OICB) versus G24−4 (dF, dC, OICB)
8 G24−2 (dF, fC, ONICB) versus G24−5 (dF, dC, ONICB)
9 G24−f (fF, fC) versus G24−7 (fF, dC, NNAO)
10 G24−3f (fF, fC) versus G24−3 (fF, dC, NAO)
No constraint versus dynamic constraints
11 G24−u (dF, noC) versus G24−4 (dF, dC, OICB)
12 G24−2u (dF, noC) versus G24−5 (dF, dC, ONICB)
13 G24−uf (fF, noC) versus G24−7 (fF, dC)
Moving constraints expose better optima versus not expose optima
14 G24−3f (fF, fC) versus G24−3 (fF, dC, NAO)
15 G24−3 (fF, dC, NAO) versus G24−3b (dF, dC, NAO)
Connected feasible regions versus disconnected feasible regions
16 G24−6b (1R) versus G24−6a (2DR, hard)
17 G24−6b (1R) versus G24−6d (2DR, hard)
18 G24−6c (2DR, easy) versus G24−6d (2DR, hard)
Optima in constraint boundary versus optima NOT in constr boundary
19 G24−1 (dF, fC, OICB) versus G24−2 (dF, fC, ONICB)
20 G24−4 (dF, dC, OICB) versus G24−5 (dF, dC, ONICB)
21 G24−8b (dF, fC, OICB) versus G24−8a (dF, noC, ONISB)
dF dynamic objective func fF fixed objective function
dC dynamic constraints fC fixed constraints
OICBoptima in constraint bound ONICB opt. not in constraint bound
OISB optima in search bound ONISB optima not in search bound
NAO better newly appear optima NNAO no better newly appear opt
2DR 2 disconn. feasible regions 1R one single feasible region
Easy easy for mutation to travel

between disconn. regions
Hard less easy to travel among

regions
noC unconstrained problem SwO switched optimum between

disconnected regions

The performance of HyperM and RIGA was also compared
with a basic GA to see if they work well on the tested
problems.2

2) Parameter Settings: Table VI shows the detailed pa-
rameter settings for HyperM, RIGA, and GA. All algorithms
use real-valued representations. The algorithms were tested on
18 benchmark problems described in Section III. To create a
fair testing environment, the algorithms were tested in a wide
range of dynamic settings (different values of population size,
severity of change, and frequency of change) with five levels:
small, medium small, medium, medium large, large.

The evolutionary parameters of all tested algorithms were
set to similar values or the best known values if possible. The
base mutation rate of the algorithms is 0.15, which is the aver-
age value of the best mutation rates commonly used for GA-
based algorithms in various existing studies on continuous DO,
which are 0.1 ([28], [29]) and 0.2 ([27], [30]). For HyperM and
RIGA, the best hyper-mutation-rate and random-immigrant-

2Note that to save space, some tables/figures in this section include not only
GA/RIGA/HyperM but also another algorithm: GA+Repair. This algorithm
will be introduced in the later sections. This section only focuses on the data
relating to GA, RIGA, and HyperM.

TABLE VI

Test Settings for All Algorithms Used in the Paper

All Pop size (pop−size) 5, 15, 25 (medium), 50, 100
algorithms Elitism Elitism and nonelitism if applicable
(exceptions Selection method Nonlinear ranking as in [33]
below) Mutation method Uniform, P = 0.15

Crossover method Arithmetic, P = 0.1
HyperM Triggered mutate Uniform, P = 0.5 as in [21]
RIGA Rand-immig. rate P = 0.3 as in [24]
GA+Repair Search pop size pop−size× (4/5)

Reference pop size pop−size× (1/5)
Replacement rate 0 (default is 0.25 as in [33])

Benchmark Number of runs 50
problem Number of changes 5/k (see below)
settings Change frequency 250, 500, 1000 (med), 2000, 4000

evaluations
ObjFunc severity k 0.25 (small), 0.5 (med), 1.0 (large)
Constr. severity S 10 (small), 20 (medium), 50 (large)

rate parameter values observed in the original papers [21],
[24] were used. The same implementations as described in
[21] and [24] were used to reproduce these two algorithms. A
crossover rate of 0.1 was chosen for all algorithms because,
according to the analysis in [31], this value was one of the
few settings where all tested algorithms perform well on this
benchmark set.

A further study of the effect of different values of the
base mutation rates, hyper-mutation rates, random-immigrant
rates and crossover rates on algorithm performance was also
carried out. Detailed experimental results and discussion for
this analysis can be found in [31], where it was found that the
overall behaviors of the algorithms are not different from those
using the default/best known settings, except for the following.

a) When the base mutation rate is very low (≤ 0.01), the
performance of GA and HyperM drop significantly.

b) Generally to work well in the tested DCOPs, algorithms
need to use high base mutation rates. The range of best
mutation rates is 0.3–0.8.

c) Algorithms like RIGA and HyperM also need
high random-immigrant/hyper-mutation rates to solve
DCOPs. The best results are usually achieved with the
rates of 0.6–0.8.

d) The suitable range of crossover rate is 0.1–1.0.

3) Constraint Handling: It is necessary to integrate ex-
isting DO algorithms with a CH mechanism to use these
algorithms for solving DCOPs. That CH mechanism should
not interfere with the original DO strategies so that it is possi-
ble to correctly evaluate whether the original DO strategies
would still be effective in solving DCOPs. To satisfy this
requirement, the penalty function approach in [32] was chosen
because it is the simplest way to apply existing unconstrained
DO algorithms directly to solving DCOPs without changing
the algorithms. Also this penalty method can be effective in
solving difficult numerical problems without requiring users
to choose any penalty factor or other parameters [32].

4) Performance Measures: For measuring the performance
of the algorithms in this particular experiment, an existing
measure: the modified offline error [27] was modified. The
measure is calculated as the average over, at every evaluation,
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Fig. 1. (a) This provides a guideline for analyzing the convergence behavior/recovery speed of an algorithm given its RR/ARR scores. These scores can be
represented as the x and y coordinations of a point on the diagonal thick line or inside the shaded area. The position of the point represents the behavior of
the corresponding algorithm. The closer the point is to the right, the faster the algorithm was in recovering and re-converging, and vice versa. In addition,
if the point lies on the thick diagonal line (where RR = ARR) like point A, the algorithm has been able to recover from the change and converged to the
new global optimum. Otherwise, if the point lies inside the shaded area, the algorithm either has converged to a local solution (e.g., point C); or has not
been converged yet (e.g., point D: recover slowly, point B: recover quickly). (b) Mapping of the RR/ARR scores of GA, RIGA, and HyperM to the RR-ARR
diagram.

the error of the best solution found since the last change of
the environment.

Because the measure above is designed for unconstrained
environments, it is necessary to modify it to evaluate algorithm
performance in constrained environments. At every genera-
tion, instead of considering the best errors/fitness values of
any solutions regardless of feasibility as implemented in the
original measure, only the best fitness values/best errors of
feasible solutions at each generation are considered. If in any
generation there is no feasible solution, the measure takes
the worst possible value that a feasible solution can have for
that particular generation. This measure is called the modified
offline error for DCOPs, or offline error for short

EMO =
1

num−of−gen

num−of−gen∑
j=1

eMO (j) (3)

where eMO (j) is the best feasible error since the last change
at the generation j.

Five new measures were also proposed to analyze why a
particular algorithm might work well on a particular problem.
The first two measures are the recovery rate (RR) and the
absolute recovery rate (ARR) to analyze the convergence
behavior of algorithms in dynamic environments. The RR
measure is used to analyze how quickly an algorithm recovers
from an environmental change and starts converging to a new
solution before the next change occurs. The new solution is
not necessarily the global optimum

RR =
1

m

m∑
i=1

∑p(i)
j=1

[
fbest (i, j) − fbest (i, 1)

]
p (i)

[
fbest (i, p (i)) − fbest (i, 1)

] (4)

where fbest (i, j) is the fitness value of the best feasible solution
since the last change found by the tested algorithm until the

jth generation of the change period i, m is the number of
changes and p (i) , i = 1 : m is the number of generations at
each change period i. The RR score would be 1 in the best
case where the algorithm is able to recover and converge to
a solution immediately after a change, and would be close to
zero in case the algorithm is unable to recover from the change
at all.3

The RR measure only indicates if the considered algorithm
converges to a solution and if it converges quickly. It does not
indicate whether the converged solution is the global optimum.
For example, RR can still be 1 if the algorithm does nothing
but keep re-evaluating the same solution. Because of that,
another measure is needed: the ARR. This measure is very
similar to the RR but is used to analyze how quick it is for
an algorithm to start converging to the global optimum before
the next change occurs

ARR =
1

m

m∑
i=1

∑p(i)
j=1

[
fbest (i, j) − fbest (i, 1)

]
p (i)

[
f ∗ (i) − fbest (i, 1)

] (5)

where fbest (i, j) , i, j, m, p(i) are the same as in (4) and f ∗ (i)
is the global optimal value of the search space at the ith
change. The ARR score would be 1 in the best case when
the algorithm is able to recover and converge to the global
optimum immediately after a change, and would be zero in
case the algorithm is unable to recover from the change at
all. Note that the score of ARR should always be less than
or equal to that of RR. In the ideal case (converged to global
optimum), ARR should be equal to RR.4

3Note that RR will never be equal to zero because there is at least one
generation where fbest (i, j) = fbest (i, p (i)).

4Note that to use the measure ARR it is necessary to know the global
optimum value at each change period.
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The RR and ARR measures can be used together to indicate
if an algorithm is able to converge to the global optimum
within the given time frame between changes and if so how
quickly it converges. The RR-ARR diagram in Fig. 1 shows
some analysis guidelines.

A third measure, percentage of selected infeasible indi-
viduals, is proposed to analyze algorithm ability to balance
exploiting feasible regions and exploring infeasible regions in
DCOPs. This measure finds the percent of infeasible individ-
uals selected for the next generation. The average (over all
tested generations) is then compared with the percentage of
infeasible areas in the search space. If the considered algorithm
is able to accept infeasible diversified individuals in the same
way as it accepts feasible diversified individuals (and hence
to maintain diversity effectively), the two percentage values
should be equal.

To analyze the behavior of algorithms using triggered-
mutation mechanisms such as HyperM, a fourth measure:
triggered-time count, which counts the number of times the
hyper-mutation-rate is triggered by the algorithm, and a fifth
measure: detected-change count, which counts the number of
triggers actually associated with a change, are also proposed.
For HyperM, triggers associated with a change are those that
are invoked by the algorithm within ν generations after a
change, where ν is the maximum number of generations (five
in this implementation) needed for HyperM to detect a drop
in performance. These two measures indicate how many times
an algorithm triggers its hyper-mutation; whether each trigger
time corresponds to a new change; and if there is any change
that goes undetected during the search process.

Note that the five measures above are all needed for our
analysis because they are used to investigate different aspects
of the algorithms. Furthermore, all of the measures used here
are specifically designed for dynamic problems. This creates
a problem for the experiments in this paper because in the
G24 benchmark set there are not only dynamic problems but
also stationary problems. To overcome this issue, in this paper
stationary problems are considered a special type of dynamic
problem which still have “changes” with the same change
frequency as other dynamic problems. However, in stationary
problems the changes do not alter the search space.

C. Experimental Results and Analyses

The full offline-error results of the tested algorithms on all
18 benchmark problems for all test scenarios are presented
in the tables in [34]. These data were further analyzed from
different perspectives to achieve a better understanding of how
existing DO strategies work in DCOPs and how each charac-
teristic of DCOPs would affect the performance of existing
DO algorithms. First, the average performance of the tested
algorithms on each major group of problems under different
parameter settings and dynamic ranges were summarized to
have an overall picture of algorithm behavior on different types
of problems (see Fig. 2). Then the effect of each problem
characteristic on each algorithm was analyzed in 21 test cases
(each case is a pair of almost identical problems, one with a
particular characteristic and one without) as shown in Table
V of Section III (see the test results in Figs. 3, 4). For

Fig. 2. Algorithm performance in groups of problems. Performance (vertical
axis in logarithmic scale) is evaluated by calculating the ratio between the base
line (worst error among all scenarios) and the error of each algorithm in each
problem to see how many times their performance is better (smaller) than the
base line. Explanations for abbreviations can be found in Table V.
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Fig. 3. Effect of 12 different problem characteristics on algorithm performance (medium case). Performance (vertical axis) is evaluated based on the ratio
between the base line error (described in Fig. 2) and algorithm errors. Each subplot represents algorithm performance (pair of adjacent bars) in a pair of
almost identical problems (one has a special characteristic and the other does not). The larger the difference between the bar heights, the greater the impact of
the corresponding DCOP characteristic on performance. Subplots’ title represents the test case numbers (in brackets) followed by an abbreviated description.
Explanations for the abbreviations are in the last rows of Table V. Pairs where the impact of a characteristic on an algorithm is not significant (according to
a t-test with significance level of 0.05) are circled and in such cases the t-test scores are also given to highlight the level of insignificance.

each particular algorithm, some further analyses were also
carried out using the five newly proposed measures mentioned
above. Details of these analyses will be described in the next
subsections. Only the summarized results are presented in
Fig. 2 with different settings (small/medium/large). For other
detailed figures and tables, the results will only be presented
in the default settings (all parameters and dynamic range are
set to medium). For detailed results in other settings, readers
are referred to [34].

A statistical t-test with a significance level of 0.05 was done
to evaluate the level of significance of the possible impacts that
each characteristic of DCOPs can have on the performance
of the tested algorithms.5 The summarized results of this
statistical test can be found in Figs. 3 and 4.

The experimental results show some interesting, and in
some cases, surprising findings.

1) Impact of Different Dynamic Ranges on Algorithm
performance: The summarized results in groups of problems
(Fig. 2) show that: 1) generally the behavior of algorithms
and their relative strengths/weaknesses in comparison with
other algorithms still remain roughly the same when the
dynamic settings change; and 2) as expected in most cases al-
gorithms’ performance decreases when the conditions become
more difficult (magnitude of change becomes larger, change
frequency becomes higher, population size becomes much
smaller). Among the variations in dynamic settings, it seems
that the variations in frequency of change affect algorithms’
performance the most, followed by variations in magnitude of

5t-test is considered robust under the conditions of this experiment [35, ch.
37].

changes. Variations in population size have the least impact
on algorithm performance.

2) Effect of Elitism on Algorithm Performance: The
summarized results in groups of problems (Fig. 2) and the
pair-wise comparisons in Figs. 3 and 4 reveal an interest-
ing effect of elitism on both unconstrained and constrained
dynamic cases: the elitism versions of GA/RIGA/HyperM
perform better than their nonelitism counterparts in most tested
problems. The reason for this effect (with evidence shown
in the next paragraph) is that elitism helps algorithms with
diversity-maintaining strategies to converge faster. This effect
is independent of the combined CH techniques.

Two measures proposed in Section IV-B4, RR and ARR,
were used to study the inefficiency of GA/RIGA/HyperM in
the nonelitism case. The scores of the algorithms on these
measures are given in Fig. 1(b). The figure shows that none
of the algorithms are close to the optimum line, meaning there
are problems/change periods where the algorithms were unable
to converge to the global optimum. In addition, for RIGA,
its elitism version is closer to the top-right corner while its
nonelitism version is closer to the bottom-left corner, meaning
that nonelitism makes RIGA converge slower/less accurately.
Finally, for GA/HyperM, their elitism versions are closer
to the global optimum while their nonelitism versions are
closer to the bottom-right corner, meaning that the nonelitism
versions of GA/HyperM are more susceptible to premature
convergence. The results hence show that the high diversity
maintained by the random-immigrant rate in RIGA and the
high mutation rate in GA/HyperM come with a tradeoff: the
convergence speed is affected. In such a situation, elitism can
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Fig. 4. Effect of the other eight different problem properties on algorithm performance (medium case). Instructions to read this figure can be found in Fig. 3.
All eight characteristics have statistically significant impacts on the algorithms, and hence there is no bar with circles.

be used to speed up the convergence process. Elite members
can guide the population to exploit the good regions faster
while still maintaining diversity.

3) Effect of Infeasible Areas on Maintaining/Introducing
Diversity: Another interesting observation is that the pres-
ence of constraints makes the performance of diversity-
maintaining/introducing strategies less effective when used in
combination with the tested penalty functions. This behavior
can be seen in Fig. 2 where the performance of all algorithms
in the unconstrained dynamic case (dF+noC) is significantly
better than their performance in all dynamic constrained cases
(dF+fC, fF+dC, dF+dC). This behavior can also be seen in the
more accurate pair-wise comparisons in Figs. 3 and 4: for each
pair of problems in which one has constraints and the other
does not, GA, RIGA and HyperM always perform worse on
the problem with constraints (see pairs 1, 5, 6, 11, 12, 13 in
Fig. 3, pair 21 in Fig. 4).

The reason for this inefficiency is the use of tested penalty
functions prevents diversity-maintaining/introducing mecha-
nisms from working effectively. In solving unconstrained
dynamic problems, all diversified individuals generated by
the diversity maintaining/introducing strategies are useful be-
cause they contribute to either: 1) detecting newly appearing
optima; or 2) finding the new place of the moving optima.
In DCOPs, however, there are two difficulties that prevent
diversified individuals that are infeasible from being useful
in existing DO strategies. One difficulty is many diversified
but infeasible individuals might not be selected for the next
generation population because they are penalized with lower
fitness values by the penalty functions. Consequently, these
diversified individuals cannot be used for maintaining diversity

TABLE VII

Average Percentage of Selected Infeasible Individuals

Over 18 Problems

Algorithms Percent of infeasible solutions
.GA-elit 23.0%
.RIGA-elit 37.6%
.HyperM-elit 26.4%
.GA-noElit 46.3%
.RIGA-noElit 49.1%
.HyperM-noElit 45.3%
Percentage of infeasible areas 60.8%

The last row shows the average percentage of infeasible areas.

unless they are re-introduced again in the next generation. To
demonstrate this drawback, the previously proposed measure
percentage of selected infeasible individuals was used. As can
be seen in Table VII, in the elitism case the percentage of
infeasible solutions in the population (23–37.6%) is much
smaller than the percentage of infeasible areas over the total
search space (60.8%). This means only a few of the diversified,
infeasible solutions are retained and hence the algorithms are
not able to maintain diversity in the infeasible regions.6

The second difficulty is that, even if a diversified but
infeasible individual is selected for the next generation, it
might no longer have its true fitness value. Consequently,
environmental changes might not be accurately detected or
tracked.

6Nonelitism algorithms are able to retain more infeasible individuals, of
which some might be diversified solutions. However, as shown in Section
IV-C2, in the nonelitism case this higher percentage of infeasible individuals
comes with a tradeoff of slower/less accurate convergence, which leads to the
generally poorer performance.
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TABLE VIII

Triggered-Time Count Scores and the Detected-Change Count Scores of HyperM in a Pair of Problems

with Moving Constraints Exposing New Optima After 11 Changes

G24−3 (NAO+fF) G24−3b (NAO+dF)
Algorithms Trigger Count Detected Change Trigger Count Detected

Count Change Count
Value stdDev Value stdDev Value stdDev Value stdDev

HyperM-noElit 188.70 8.40 1.74 0.78 199.83 5.88 11.00 0.00
HyperM-Elit 0.00 0.00 0.00 0.00 30.43 0.57 11.00 0.00

NAO: newly appearing optimum.
fF/dF: fixed/dynamic objective function.

4) Effect of Switching Global Optima (Between Discon-
nected Feasible Regions) on Strategies That Use Penalty
Functions: The results show existing DO methods become
less effective when they are used in combination with the
tested penalty functions to solve a special class of DCOPs:
problems with disconnected feasible regions where the global
optimum switches from one region to another whenever a
change occurs. In addition, the more separated the discon-
nected regions are, the more difficult it is for algorithms using
penalty functions to solve.

The reason for this difficulty is the necessity to have a
path through the infeasible areas that separate the disconnected
regions to track the moving optimum. This path might not be
available if penalty functions are used because penalties make
it unlikely infeasible individuals are accepted. Obviously the
larger the infeasible areas between disconnected regions, the
harder it is to establish the path using penalty methods.

Three test cases (pairs of almost identical problems) 16,
17, 18 in Table V were used to verify the statement above. In
all three test cases the objective functions are the same and
the global optimum switches between two locations whenever
a change occurs. However, each case represents a different
dynamic situation. Case 16 tests the situation where in one
problem of the pair (G24−6b) there is a feasible path con-
necting the two locations and in the other problem (G24−6a)
the path is infeasible, i.e., there is an infeasible area separating
two feasible regions. Case 17 is the same as case 16 except
that the infeasible area separating two feasible regions has
a different shape. Case 18 tests a different situation where
in one problem (G24−6c) the infeasible area separating the
two feasible regions is small whereas in the other problem
(G24−6d) this infeasible area is large.

The experimental results in these three test cases (pairs 16,
17, 18 in Fig. 4) confirm the hypotheses stated in the beginning
of this subsection. In cases 16 and 17, the performance of the
tested algorithms did decrease when the path between the two
regions is infeasible. In case 18, the larger the infeasible area
separating the two regions, the worse the performance of the
tested algorithms.

5) Effect of Moving Infeasible Areas on Strategies That
Track the Previous Optima: Algorithms relying on tracking
previous global optimum such as HyperM might become less
effective when the moving constraints expose new, better
optima without changing the existing optima. The reason is
HyperM cannot detect changes in such DCOPs and hence

might not be able to trigger its hyper-mutation rate. With
the currently chosen base mutation of 0.15, HyperM is still
able to produce good results because the mutation is high
enough for the algorithm to maintain diversity. However, in a
previous study [17], when a much smaller base mutation rate
was used, HyperM becomes significantly worse compared to
other algorithms in solving problems like G24−3.

To illustrate this drawback, the newly proposed mea-
sures triggered-time count and detected-change count were
used to analyze how the triggered-hypermutation mechanism
works on problem G24−3. As can be seen in Table VIII,
HyperM either was not able to trigger its hyper-mutation rate
to deal with changes (elitism case, triggered-time count=0
and detected-change count=0) or was not able to trig-
ger its hyper-mutation rate correctly when a change occurs
(nonelitism case, triggered-time count∼188.7 and detected-
change count∼1.74). It is worth noting in the nonelitism
case, most of the trigger times are caused by the selection
process because in nonelitism selection the best solution in
the population is not always selected for the next generation.

Table VIII also shows that in problem G24−3b, which is
almost identical to G24−3 except it has its existing optima
changed, HyperM was able to detect changes and hence trigger
its hyper-mutation timely whenever a change occurs. It shows
HyperM only becomes less effective where environmental
changes do not change the value of existing optima.

D. Possible Suggestions to Improve Current Dynamic
Optimization Strategies in Solving DCOPs

The experimental results suggest some directions for ad-
dressing the drawbacks listed in the previous subsections.

1) Based on the observation that elitism is useful for
diversity-maintaining strategies in solving DCOPs, it
might be useful to develop algorithms that support both
elitism and diversity maintaining mechanisms.

2) Given that methods like HyperM are not able to detect
changes because they mainly use change detectors (the
best solution in case of HyperM) in the feasible regions,
it might be useful to use change detectors in both regions
and infeasible regions.

3) Because experimental results show that tracking the
existing optima might not be effective in certain cases of
DCOPs, it might be useful to track the moving feasible
regions instead. Because after a change in DCOPs the
global optimum always either moves along with the
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feasible areas or appears in a new feasible area, an
algorithm able to track feasible areas would have higher
chance of tracking the actual global optimum.

V. Challenges of Some Constraint Handling

Strategies in Solving DCOPs

A. Difficulties in Handling Dynamics

The most obvious reason for the difficulties in applying
existing CH strategies to solving DCOPs is these strategies
are not designed to handle environmental dynamics. One might
then question whether these difficulties can be overcome by
combining existing CH strategies with existing DO strategies.

Unfortunately, as will be shown below, not all difficulties
can be resolved by combining existing CH strategies with
existing DO strategies. In addition, this combination might
also bring some new challenges due to the conflict of the
optimization goals of the two types of strategies. These are
the challenges in maintaining diversity, introducing diversity,
and detecting changes based on performance drop.

1) Impacts on Maintaining/Introducing Diversity: As al-
ready discussed, one of the important strategies in DO is
to maintain/introduce diversity in the whole search space to
detect changes and to find newly-appearing/moving optima.
However, diversity might no longer be maintained this way
when combined with some CH techniques.

In many CH techniques, the original space is specifically
transformed so algorithms only focus on certain areas instead
of the whole original space. In such cases, even if a diversity-
introducing strategy such as HyperM is used to generate
individuals in the whole search space, diversified individuals
generated in the unfocused areas might be neglected by the
algorithms and hence do not contribute to maintaining diver-
sity. Typical examples of CH strategies that adopt this search
space transformation approach are penalty methods where the
constrained search space is transformed to an unconstrained
search space with penalized fitness values. Another example
is some approaches use special representations/operators. In
these approaches, the algorithms might be restricted to search-
ing only in the feasible regions, in a transformed feasible
search space, or in the boundaries of feasible regions. Detailed
reviews/references for representative penalty approaches and
special representations/operators approaches can be found in
[36] and [37].

In some other CH techniques, individuals are selected not
exclusively based on their actual fitness values but also on
some special specifications. For example, in stochastic ranking
[38] infeasible individuals might have a better chance of
being accepted based on the given stochastic parameter. A
contrary example can be found in simple multimembered ES
[39] where infeasible solutions are less likely to be accepted
even if they have higher fitness values than the feasible
ones. Another example is in a CH multiobjective approach
[40] where individuals are ranked not entirely based on their
original fitness but also on the number of violated constraints.
In CH techniques like these, diversified individuals generated
by DO strategies might not be selected in the same way as
they were originally designed for, i.e., the number of infeasible

diversified individuals might become too large or too small.
The way a diversity maintaining strategy works might not be
the same as in the unconstrained case.

Experimental evidence for the inefficiency mentioned above
has already been shown in Section IV-C, where the diversity-
maintaining/introducing strategies become less effective when
combined with the tested penalty methods.

In [31], it was shown that the current state-of-the-art in CH
such as SRES [38], [41] and SMES [39] become much less
effective in DCOPs and could not maintain enough diversity
to deal with the dynamics in DCOPs.

2) Impacts on Change Detection: Another possible diffi-
culty of combining CH strategies with DO strategies is the use
of some existing CH techniques might make change detection
based on performance drop, a common DO technique, less
effective. As already mentioned in Section IV-B, algorithms
like HyperM assume that during the search process, if there is
a degradation in the fitness values of the best solution found in
each generation, there might be a change in the search space.
However, when DO algorithms are combined with some CH
techniques to solve DCOPs, such degradation in best fitness
values might no longer be caused by an actual change in the
search space. Instead, the degradation might be caused either
by an increase in penalty values or by the elimination of the
current good solutions from the population.

One example can be found in some CH techniques such
as dynamic penalty or adaptive penalty [42]–[44], where the
degradation of (modified) fitness values is not caused by
environmental changes but by the increase over time of the
penalty values. The consequence of this dynamic/adaptive
scheme is that if the detector solutions used by the change
detection method are infeasible or become infeasible, over
time their fitness value will decrease.7

In some other CH techniques which use ranking-based
methods [38]–[40], during the selection process the current
better solutions might be dropped in favor of other solutions,
which might have worse fitness values but are more useful for
the CH process. In these situations there might also be a drop
in the values of the best solutions at each generation.

The drop in fitness values of the detector solutions in both
cases above might be incorrectly considered by DO strategies
like HyperM to be a change in the environment and this might
consequently trigger the DO strategies to react inappropriately.

B. Difficulties in Handling Constraints (Empirical Evidence
Shown in Section V-D)

The difficulties of applying some existing CH strategies
to solving DCOPs are also caused by that their CH ability
becomes less effective. This is due to two reasons.

1) Issue of Outdated Information: In DOPs, after a change,
all existing information that an algorithm has acquired or has
been given about the problem might become outdated and

7Of course, in penalty methods, if change detections are made on the
original fitness instead of on the penalized fitness, the increase of penalty
values will not have any impact on detecting changes. However, in this case,
change detection might suffer from another problem: changes in constraint
functions will go undetected unless additional improvements are made to
detect constraint changes explicitly.
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consequently make the algorithm less effective. For exam-
ple, in algorithms using strictly feasible reference individuals
like Genocop III [33], [45], after a change some reference
individuals may become infeasible. Similarly, in some “de-
coder” methods the reference lists for ordinal representations
[e.g.. the ordered lists of cities (TSP [46])/ordered lists of
Knapsack items (KSP [47])/order lists of tasks (scheduling
[48])] might no longer be in order after a change because the
cities/items/tasks have changed their values. Another example
can be found in dynamic/adaptive penalty methods (e.g., [43],
[44]) where the penalty parameters learnt by the methods
might no longer be suitable because the balance between
feasible and infeasible solutions has changed.

2) Issue of Outdated Strategy: The CH strategies them-
selves can also be outdated when solving DCOPs. This might
occur when the CH strategies have problem-dependent param-
eters, whose values might be tailored to work best in only
one (class of) stationary environment, to solve a DCOP. In
such cases, if the parameters are fine-tuned for the problem
before change, the algorithm might only work well until a
change occurs. Typical examples are penalty methods with
pre-defined penalty factors and/or other pre-defined parameters
that control how the penalty is defined. Other examples are
some combinatorial repair methods, methods with special
operators, or decoder methods. Detailed reviews are in [37]
and [49].

Strategy-being-outdated might also occur with many adap-
tive CH strategies that are not problem-dependent because
these strategies rely on some specific assumptions that are
only true in stationary problems.

Typical examples are self-adaptive fitness formulation [50]
and stochastic ranking [38]. The general approach of these
strategies is to balance feasibility/infeasibility based on the
performance of the current population, assuming that the
population always reflects a “memory” of information about
the search space and the convergence process. This assumption
is not true in dynamic environments. When a change occurs,
the search space might change its shape and consequently the
“memory” of the population no longer reflects the property
of the new search space but only a small area where the
population currently is. This disadvantage has been observed
in [31] for the case of the state-of-the-art SRES.

Another type of CH strategies relying on outdated assump-
tions are dynamic/adaptive methods that use the running time
value (e.g., the number of generations so far) to balance
feasibility and infeasibility. CH strategies of this type [39],
[42], [43], [51], [52] assume that the population will eventually
converge to the good regions and hence they handle constraints
by increasingly rejecting more infeasible solutions when time
goes by, or by reducing the mutation step size when time
goes by, to increase the convergence speed to good regions. In
DCOPs, because after a change good feasible regions might no
longer be good or feasible, if the CH strategy still imposes its
previous balancing mechanism to increase convergence speed,
the algorithm could end up converging to the wrong place and
will not be able to track the moving optima. This disadvantage
has been experimentally confirmed in [31] for the case of the
state-of-the-art SMES.

C. Possible Suggestions to Improve Current Constraint
Handling Strategies in Solving DCOPs

The discussions in the two previous subsections show that,
to handle constraints effectively in DCOPs, a CH strategy
might need to satisfy the requirements below.

1) Make sure that the goal of CH does not conflict with
the goal of DO. Particularly:

a) allow diversified individuals to be distributed in
the whole search space;

b) do not reject diversified individuals even if they
do not contribute to CH;

c) pay special attention whenever changes are de-
tected by monitoring the fitness values of current
individuals (it is necessary to check to see if
a drop in performance is really caused by an
environmental change).

2) Make sure that the algorithm is updated whenever a
change occurs. Particularly:

a) problem knowledge needs to be updated;
b) the CH strategy might also need to be updated

whenever a change occurs.
An algorithm needs to handle both environmental dynamics

and constraints effectively to work well in DCOPs. This means
that a “good” algorithm for DCOPs needs to satisfy not only
the requirements for CH above but also the four requirements
for DO identified in Section IV-D.

D. Experimental Analyses

An experimental analysis was carried out to test the perfor-
mance of the repair method, a representative CH strategy, on
the G24 benchmark set. The purpose is to answer three ques-
tions: 1) what is the usefulness of the repair method in solving
DCOPs; 2) whether the hypothesis about the difficulties of
DCOPs toward CH strategies, as mentioned in Section V-B, is
true; and 3) if the hypothesis is true, would these difficulties
affect the performance of CH strategies (in particular the repair
method) in solving DCOPs. These results would help gain
more understanding about how to design better algorithms to
solve DCOPs.

1) Chosen Constraint Handling Technique for the Analysis:
For this analysis the repair method [33] was chosen because
it is representative, simple, easy to implement, problem-
independent and is designed specifically for the continuous
domain.

Repair-based methods, however, also have one disadvan-
tage: they may require a considerable number of feasibility
checks to find a feasible individual. As a result, repair-based
methods might not be suitable for solving problems with very
expensive constraint functions and problems with very small
feasible areas.

2) Repair Algorithms and the Method in Genocop III [33]:
a) General ideas: The idea of repairing is, if it is possible
to map (repair) an infeasible solution to a feasible solution,
then instead of searching the best feasible solution directly, it
might be possible to look for an individual that can potentially
produce the best repaired solution. The better the repaired
solution, the higher the fitness value of an individual. In certain
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cases, the feasible solution created by the repair process can
also be used to replace some of the search individuals.

Generally, a repair process can be described in three steps.

1) If a newly created individual s (can be feasible or
infeasible) needs repair, use a heuristic repair () to repair
s, mapping s to a new, feasible individual z.

2) The objective value f (z) of z is used as input to
calculate the fitness value of s, eval (s) = h (f (z)) where
h is the mapping from objective values to fitness.

3) If the repair approach is Lamarckian, replace one or
more search individuals by z.

In the repair method [33], [45] chosen for this experiment,
the repair () heuristic is as follows.

1) The population is divided into two subpopulations: a
search population S containing normally-evolving in-
dividuals, which can be fully feasible or only linearly
feasible, and a reference population R containing only
fully feasible individuals.

2) During the search process, while each individual r in R

is evaluated using their objective function as usual, each
individual s in S is considered to be repaired based on
an individual from R. Details of the repair routine can
be found in Algorithm 1.

It is important to note there are two possible variants of
deciding whether a search individual s needs to be repaired in
Genocop III (step 2 above). In the first variant [45], a search
individual s is repaired only if s is infeasible. In the second
and latest variant [33], the implementation shows that search
individuals are repaired regardless of their feasibility.

In all experiments in this paper, the second variant was
implemented. From now on, unless stated otherwise the term
repair method will be used to refer to the continuous-based
repair approach proposed in [33].

b) Feasibility/infeasibility balancing strategy and prob-
lem knowledge in the repair method: The repair method
and other repair approaches have the ability to adaptively
balance feasibility and infeasibility. This balance is achieved
by accepting both infeasible and feasible individuals, pro-
vided that they can produce good repaired solutions and
by updating the fitness values of search individuals with
those of the mapped, feasible solutions. This way the repair
method ensures that infeasible solutions are accepted and they
cannot have better fitness values than the best feasible solution
available.

The strategy above needs certain problem information,
which is provided by the reference population R and the search
population S. R is an essential source of information to direct
the algorithm toward promising feasible regions [during the
repair process (Repair routine, Algorithm 1), newly repaired
solutions are always generated in the directions toward ref-
erence individuals]. R also provides the balancing strategy
with information about the best feasible solution available (via
their fitness values) so that the strategy can make sure that no
infeasible individual can have better fitness values than this
best feasible solution.

The search population S is also an essential source of
problem information. It helps indicate which point in the

Algorithm 1 Routine Repair(Indiv s)

1) Randomly pick an individual r ∈ R

2) Generate individual z in the segment between s and r
a) a = U (0, 1)
b) z= a.s+ (1 − a) .r
c) While z is infeasible, back to step 2a
d) If a feasible z is not found after 100 trials, z = r and

eval (z) = eval (r)

3) a) Evaluate z
b) If (f (z) better than f (r)): r = z; eval (r) = f (z)
c) Update the fitness value of s: eval (s) = f (z)

4) Return the individual s

search space would lead to potentially promising feasible
regions (via repair). In the selection phase the balancing
strategy then uses this information to select those individuals
that would potentially lead to the most promising regions.

c) How can the characteristics of DCOPs affect the
repair method?: The repair method suffers from the problem
of outdated information, which in turn makes the feasibil-
ity/infeasibility balancing strategy outdated.

The first type of information might become outdated when
a change occurs is the fitness values of search individuals.
Because the fitness of a search individual is always based
on the objective value of the corresponding mapped feasible
solution, it is assumed that the search population always offers
a “memory” of good areas in the search space and directions
toward these good areas. The higher the fitness value of an
individual, the better the feasible region achieved by repairing
this individual.

In a dynamic environment, the memory, or fitness values of
search individuals, can become outdated right after a change
if the objective values of the corresponding repaired solutions
change. Particularly, the high fitness values of existing indi-
viduals might no longer lead to good repaired solutions and
vice versa. Worse, search individuals with high-but-outdated
fitness values might incorrectly bias the selection process,
which makes the search process less effective.

The second type of information that might become outdated
when a change occurs is the set of reference individuals that
are used to repair all other search individuals. The key assump-
tion that all reference individuals are feasible and are the best
in the population is only true in stationary environments. In
dynamic environments, after a change, some existing reference
individuals might no longer remain the best in the population
or might even become infeasible. These outdated reference
individuals not only violate the assumption named above but
might also wrongly bias the search and drive more individuals
away from the good regions, making the search process less
effective.

In the following experiments an analysis was made to see
if the above hypotheses are correct and how significant their
effects are.

3) Experimental Settings:
a) Tested algorithms: In this experiment, the repair

method was integrated with a basic GA. The integrated version
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is called GA+Repair and is described in Algorithm 2. This
integration makes it possible to analyze the strengths and
weaknesses of the repair strategy because the only difference
between GA and GA+Repair is the repair operator and hence
any difference in performance would be caused by the re-
pair operator.8 In addition, because all other tested strategies
are integrated with a basic GA, it is natural to integrate
the repair method with the GA9 to compare it with these
strategies.

Even though the GA+Repair is a simplified version of
Genocop III, both algorithms have very similar behaviors
when solving different groups of DCOPs. This similarity
suggests the result tested with GA+Repair can be generalized
to other approaches that use the repair method. For detailed
results of Genocop III’s performance in the G24 benchmark
set and a comparison of its performance with other exist-
ing and new algorithms, readers are referred to the study
in [31].

b) Parameter settings: The tested algorithms use the
same parameter settings as the previously tested GA, RIGA,
and HyperM except that the population now is divided into a
search population and a reference population (see Table VI),
as implemented in the original Genocop III [33].

c) Performance measures: Three different measures
were used. The first measure, which is the modified version
of the off-line error measure (see Section IV-B4), was used to
evaluate/compare the general performance of the GA+Repair.
Similar to the previous experiment, using this measure the
average performance of GA+Repair was also summarized in
each major group of problems (see results in Fig. 2) and
the effect of each problem characteristic on GA+Repair was
analyzed in 21 test cases shown in Table V of Section III (see
results in Figs. 3, 4).

The second and third measures were specifically proposed
for this experiment. The second measure, named feasible
reference individuals, was used to analyze the behavior of
the repair method when some reference individuals become
outdated due to environmental changes (see Fig. 5). The
third measure, named feasible individuals in each disconnected
region, was used to analyze the ability of repair methods to
balance feasibility and infeasibility on problems with optima
switching between disconnected feasible regions (see Fig. 6).
Details of these two measures will be described later.

4) Impact of Outdated Information/Strategy on the Perfor-
mance of the Repair Method:

a) Overall observation of performance in groups of
problems: In the group of stationary constrained problems (fF,
fC), the results in Fig. 2 show that, as expected, a special-
ized CH technique such as the repair method in GA+Repair

8It is more difficult to analyze the effect of the repair strategy in the original
Genocop III because this algorithm implements multiple CH strategies (beside
the repair operator, there are ten other specialized operators to handle linear
constraints).

9It should be noted that while Genocop III allows 25% of the repaired
individuals to replace individuals in the population (Lamarckian evolution),
in GA+Repair none of the repaired individuals is used to replace the original
individuals (Baldwinian evolution). The reason is that in [31] it was found that
Lamarckian evolution does not significantly increase/decrease the performance
of Genocop III in solving DCOPs.

Algorithm 2 GA+Repair
Note: It is assumed that the problem is maximization

1) Initialize:
a) Randomly initialize m individuals in search pop S

b) Initialize n individuals in the reference population R

i) Randomly generate points until a feasible r is found
ii) Update fitness: eval (r) = f (r) & add r to R

2) Search: For i = 1 : m

a) p1 = U (0, 1) ; p2 = U (0, 1)
b) Crossover: If (p1 < PXover)

i) Use nonlinear ranking selection to choose a pair of
parents from S

ii) Crossover an offspring s from the chosen parents
iii) Evaluate s and repair s using Repair (s)
iv) Use nonlinear ranking selection to replace one of the

worst individuals in S by s

c) Mutation: If (p2 < PMutate)

i) Use nonlinear ranking-selection to choose a parent
from S

ii) Mutate an offspring s from the chosen parent
iii) Evaluate s and repair s using Repair (s)
iv) Use nonlinear ranking selection to replace one of the

worst individuals in S by s

d) Otherwise: If (p1 ≥ PXover) and (p2 ≥ PMutate)

i) Use nonlinear ranking-selection to choose an individual
s from S

ii) If s has not been evaluated since last generation, eval-
uate s

iii) Repair s using the routine Repair (s)
iv) Using nonlinear ranking selection to replace one of the

worst individuals in S by s

3) Evolve the reference population after each 100 evaluations:
For i = 1 : n

a) Crossover: If (U (0, 1) < PXover)

i) Use nonlinear ranking-selection to choose a pair of
parents from R, and crossover an offspring r

ii) If r is feasible
A) Evaluate r and x,the better of the two parents
B) If f (r) better than f (x) then x = r and fitness value

eval (x) = f (r)

b) Mutation: If (U (0, 1) < PMutation)

i) Nonlinear ranking-selection to choose a parent x from
R, and mutate an offspring r from x

ii) If r is feasible
A) Evaluate r and x
B) If f (r) better than f (x) then x = r and fitness value

eval (x) = f (r)

4) Return to step 2

performs significantly better than methods not designed for
handling constraints like the existing DO algorithms. In sta-
tionary unconstrained group (fF, noC), also, as expected, the
repair method in GA+Repair is no longer particularly useful.
Fig. 2 shows that GA+Repair performs worse than all other
methods in dynamic, unconstrained problems (dF, noC).

In the groups of DCOPs (fF+dC, dF+fC, dF+dC), things are
different. As can be seen in Fig. 2, in DCOPs the difference be-
tween GA+Repair and GA is no longer as significant as it is in
the stationary constrained case, meaning that the performance
of GA+Repair significantly decreases. This happens in all
three cases of DCOPs where only the constraints are dynamic
(fF, dC), where only the objective functions are dynamic (dF,
fC) and where both constraints and objective functions are
dynamic (dF, dC).

Details of the impact of dynamic objective functions on
the repair method can be seen in pair-wise comparisons in
pairs 9 and 14 of Fig. 3 where GA+Repair is tested in pairs
of almost identical constrained problems except that one has
a fixed and the other has a dynamic objective function. As
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can be seen in these plots, the performance of GA+Repair
significantly decreased in case the objective function is dy-
namic. The difference in performance of GA+Repair between
the two problems of each pair is significantly larger than
that of GA and existing DO algorithms, meaning that the
presence of dynamic objective functions has a much greater
impact on the repair method than on GA and existing DO
methods.

Details of the impact of dynamic constraints on the repair
method can be seen in the pair-wise comparisons in plot i
of Fig. 3 and plot a of Fig. 4 (pairs of almost identical
problems except that one has fixed and the other has dynamic
constraints). Similar to the previous case, the results also show
that the performance of GA+Repair is significantly decreased
in case the constraints are dynamic and the presence of
dynamic constraints has a much greater impact on the repair
method than on existing DO methods.

However, although the presence of environmental dynamics
does significantly decrease the performance of GA+Repair,
in Fig. 2 it is interesting to see that the algorithm still
performs better than existing DO algorithms in DCOPs (only
that the difference becomes significantly smaller compared to
the static constrained case). This shows the repair method
has some characteristics that make it promising for solving
DCOPs.

Another interesting, and somewhat counter-intuitive obser-
vation in our experiment is the presence of constraints does
not make the problems more difficult to solve by GA+Repair.
Instead, the presence of constraints always helps GA+Repair
work better. Evidence can be found in the pair-wise compari-
son in pairs 1, 5, 6, 11, 12, 13 of Fig. 3 and in pair 21 of Fig.
4 where GA+Repair always performs better on the problem
with constraints than on the problem without constraints. The
experiment also shows that GA+Repair performs better where
there is an infeasible barrier separating two feasible regions.
Moreover, the larger the barrier, the better the performance of
GA+Repair (see pairs 17, 18 in Fig. 4).

The experimental results confirm dynamics do have a
significant effect on the performance of the repair method.
Following is a further analysis to investigate if this effect is
indeed caused by the outdated problem information (reference
individuals and search individuals) and by the outdated strat-
egy as suspected by our hypothesis.

b) Analyze the behaviors of outdated reference indi-
viduals: As mentioned earlier, outdated information might
be caused by reference individuals having their objective
values changed or even become infeasible after a change. The
previously proposed measure feasible reference individuals
was used to test if the algorithm is able to update the reference
individuals properly. If the algorithm is able to update the
reference individuals properly, it should be able to maintain
a reference population of all feasible individuals during the
search process.

The most suitable environments to test this behavior of the
repair method are DCOPs with dynamic constraints where
after each change the previous best feasible solutions are
hidden by the moving infeasible region. They are G24−4,
G24−5 (dF, dC) and G24−7 (fF, dC). As discussed earlier

(see Fig. 2), in both groups the performance of GA+Repair
decreases significantly compared to the case where the con-
straints are fixed (fF, fC). In these problems, if one or more
reference individuals do become infeasible, there should be
a drop in the total number of feasible reference individuals
and this is one of the reasons making the repair method less
effective.

The plot of feasible reference individuals of GA+Repair is
given in Fig. 5. The figure shows, in all cases the original
repair method was not able to keep all reference individuals
feasible during the search. The number of feasible reference
individuals drops to a very low level when a change occurs and
most of the time the number of feasible reference individuals
is much lower than five.

The results confirm the hypothesis that after a change, the
population of reference individuals has become outdated due
to the moving infeasible regions.

c) Analyze the behaviors of the outdated balancing strat-
egy: In Section V-D2, it was suspected that individuals being
outdated can also have a negative impact on the balancing
strategy, which balances feasibility and infeasibility of the
repair method. To test if the algorithm is still able to balance
feasibility/infeasibility properly in dynamic environments, the
proposed measure, feasible individuals in each disconnected
region, was used to monitor the number of feasible individuals
in each disconnected feasible region and the ratio of feasibil-
ity/infeasibility. The balancing mechanism should be able to
manage a good distribution of individuals so that the better
feasible regions should have more feasible individuals if it
works well in the DCOP case.

The most suitable environments to test this behavior are
DCOPs with two disconnected feasible regions where the
global optimum keeps switching from one region to another
after each change or after some consecutive changes. They are
G24−1, G24−2, G24−3b, G24−4, G24−5, G24−6a, G24−6c,
G24−6d, and G24−8b. All these problems belong to the
group SwO in Fig. 2, where the performance of existing CH
algorithms significantly decreases compared to the stationary
constrained case (fF, fC). In such SwO problems, if the
balancing mechanisms work well, at each change period the
algorithm should be able to focus most feasible individuals
on the region where the global optimum is currently in while
still maintaining the same ratio of feasibility/infeasibility for
diversity purposes.

The plot of feasible individuals in each disconnected region
for GA+Repair is given in Fig. 6. The figure shows that in
all cases except G24−3b, the repair method was not able
to focus most feasible individuals on the region where the
global optimum is currently in. Instead, the majority of feasible
individuals still remained in one single region (region 2). The
number of individuals in the other region (region 1) remained
low regardless of where the global optimum is. This is due
to the fact that, although the global optimum has switched
to region 1, many individuals in region 2 were not updated
and still have the outdated fitness values which might be even
higher than the new global optimum value. These outdated
individuals incorrectly attract a large number of individuals
to the old feasible region. These results show that, due to its
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Fig. 5. Figure shows how GA+Repair maintains feasible reference individuals in problems with moving infeasible regions. The total number of reference
individuals is five. The plot in the figures shows, among these five reference individuals, how many are actually feasible during the search process. (a) G24-4.
(b) G24-5. (c) G24-7.

Fig. 6. This figure shows how the balance strategy of GA+Repair distributes
its feasible individuals in disconnected feasible regions. The problems tested
in this figure are those with global optima switching between two discon-
nected feasible regions. (a) GA+Repair in G24-1. (b) GA+Repair in G24-3b.
(c) GA+Repair in G24-4. (d) GA+Repair in G24-5. (e) GA+Repair in G24-6a.
(f) GA+Repair in G24-8b.

outdated strategy, the algorithm was not able to follow the
switching optimum well.10

VI. Conclusion and Future Research

In this paper, we identified some special and not well-
studied characteristics of DCOPs that might cause significant
challenges to existing DO and CH strategies. Although these
characteristics are common in real-world applications, in the
continuous domain they have not been considered in most
existing DO studies and they have not been captured in
existing continuous DO benchmark problems.

A set of dynamic constrained benchmark problems for
simulating the characteristics of DCOPs have been proposed

10Note that in the G24 set, individuals being outdated might not always be
totally harmful because the changes in many problems are cyclic and hence
the outdated individuals might actually play the role of memory elements to
recall the previous good solutions. However, it is not clear how beneficial such
memory elements could be, because the experiments show that GA+Repair
still becomes less effective in the presence of environmental dynamics.

to help close this gap. To help researchers assess algorithm
performance in DCOPs, seven new measures have been pro-
posed to evaluate the performance/analyse the behaviors of
algorithms on dynamic unconstrained/constrained problems
and one existing measure has also been modified to make it
usable in DCOPs.

Using the newly proposed benchmark problems and mea-
sures, some literature reviews and detailed experimental anal-
yses have been carried out to investigate the strengths and
weaknesses of existing DO strategies (GA/RIGA/HyperM)
and CH strategies (repair methods) in solving DCOPs. The
experimental analyses reveal some interesting findings about
the ability of existing algorithms in solving DCOPs. These
findings can be categorized as follows.

First, three interesting findings about the performance of
existing DO strategies in DCOPs have been identified: 1) the
use of elitism might have a positive impact on the performance
of existing diversity-maintaining strategies and but might have
a negative impact on the performance of diversity-introducing
strategies if they are not used with diversity-maintaining
strategies; 2) the presence of infeasible areas has a negative im-
pact on the performance of diversity-introducing/maintaining
strategies; and 3) the presence of switching optima (between
disconnected regions) has a negative impact on the perfor-
mance of DO strategies if they are combined with penalty
functions.

Second, it has been found that even if CH strategies can
be combined with DO strategies, there might be two types
of difficulties in applying existing CH strategies to solving
DCOPs: 1) difficulties in handling dynamics, particularly in
maintaining diversity and detecting changes; and 2) difficulties
in handling constraints, which are caused by outdated CH
strategies and problem-knowledge.

Third, some counter-intuitive behaviors were observed: the
presence of constraints and dynamics in DCOPs might not
always make the problems harder to solve. For example,
the presence of constraints helps algorithms using the repair
method like GA+Repair work better in the tested problems.

Finally, based on the findings about the strengths and
weaknesses of some existing DO and CH strategies, a list
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of possible requirements that DO and CH algorithms should
meet to solve DCOPs effectively have been suggested. This
list of requirements can be used as a guideline to design new
algorithms to solve DCOPs in future research.

The results in this paper raise some open questions for
future research. One direction is to develop new algorithms
specialized in solving DCOPs based on our suggested list of
requirements. Another direction is to investigate the impact of
DCOPs’ characteristics on other state-of-the-art CH and DO
strategies. We are interested in investigating the performance
of other adaptive feasibility/infeasibility balancing strategies,
e.g., [38], [53] in DCOPs. We also plan to study the situations
where the presence of constraints and dynamics would make
it easier for certain classes of algorithms to solve DCOPs.

The research has some limitations to be improved in future
research: memory-based approaches have not been considered
in our analysis; the algorithms and methods used to analyze
representative DO and CH strategies are very basic to keep
the analysis at a manageable level; the analysis has been
tested only in benchmark problems with unimodal objective
functions; the types of changes are limited to linear and
sinuous/cyclic changes and there was no consideration of
hard/soft constraints. It would be interesting to extend the
analysis on the multimodal set of benchmark problems in [18]
and apply other types of changes such as random, chaotic, and
nonlinear changes.
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