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Abstract—Recently, the generalization framework in co-
evolutionary learning has been theoretically formulated and
demonstrated in the context of game-playing. Generalization
performance of a strategy (solution) is estimated using a collection
of random test strategies (test cases) by taking the average game
outcomes, with confidence bounds provided by Chebyshev’s the-
orem. Chebyshev’s bounds have the advantage that they hold for
any distribution of game outcomes. However, such a distribution-
free framework leads to unnecessarily loose confidence bounds.
In this paper, we have taken advantage of the near-Gaussian
nature of average game outcomes and provided tighter bounds
based on parametric testing. This enables us to use small samples
of test strategies to guide and improve the co-evolutionary
search. We demonstrate our approach in a series of empirical
studies involving the iterated prisoner’s dilemma (IPD) and the
more complex Othello game in a competitive co-evolutionary
learning setting. The new approach is shown to improve on the
classical co-evolutionary learning in that we obtain increasingly
higher generalization performance using relatively small samples
of test strategies. This is achieved without large performance
fluctuations typical of the classical approach. The new approach
also leads to faster co-evolutionary search where we can strictly
control the condition (sample sizes) under which the speedup is
achieved (not at the cost of weakening precision in the estimates).

Index Terms—Co-evolutionary learning, evolutionary com-
putation, generalization, iterated prisoner’s dilemma, machine
learning, Othello.

I. Introduction

CO-EVOLUTIONARY learning refers to a broad class
of population-based, stochastic search algorithms that

involves the simultaneous evolution of competing solutions
with coupled fitness [1]. The co-evolutionary search process
is characterized by the adaptation of solutions in some form
of representation involving repeated applications of variation
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and selection [2]. Co-evolutionary learning offers an attractive
alternative approach for problem solving in cases where ob-
taining an absolute quality measurement to guide the search
for solutions is difficult or not possible. One such problem
is game-playing [3]–[8]. Unlike classical machine learning
that requires an absolute quality measurement, the search
process in co-evolutionary learning can be guided by strategic
interactions between competing solutions (learners). Early
studies [9]–[11] have further argued that the co-evolutionary
search may benefit from these strategic interactions from
one generation to the next that results in an arms race of
increasingly innovative solutions.

Generalization is one of the main research issues in co-
evolutionary learning. Recently, we have formulated a theoret-
ical framework for generalization in co-evolutionary learning
[12]. Other past studies such as [13] have investigated an
approach to analyze performance in co-evolving populations
through non-local adaptation. A general framework for sta-
tistical comparison of performance of evolutionary algorithms
has been recently formulated [14]. In line with these studies,
the generalization framework offers a rigorous approach to
performance analysis of co-evolutionary learning, whether for
individual co-evolved solutions, or for the population of co-
evolved solutions in any generation.

We have demonstrated the generalization framework in
the context of game-playing. Generalization performance of
a strategy (solution) is estimated using a collection of ran-
dom test strategies (test cases) by taking the average game
outcomes, with confidence bounds provided by Chebyshev’s
theorem [15]. Chebyshev’s bounds have the advantage that
they hold for any distribution of game outcomes. However,
such a distribution-free framework leads to unnecessarily loose
confidence bounds. In this paper, we have taken advantage of
the near-Gaussian nature of average game outcomes through
the central limit theorem [16] and provided tighter bounds
based on parametric testing. Furthermore, we can strictly
control the condition (i.e., sample size under a given precision)
under which the distribution of average game outcomes (gen-
eralization performance estimates) converges to a Gaussian
through the Berry-Esseen theorem [17].

These improvements to the generalization framework now
provide the means with which we can develop a general and
principled approach to improve generalization performance in
co-evolutionary learning that can be implemented efficiently.
Ideally, if we compute the true generalization performance
of any co-evolving solution and directly use it as the fitness
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measure, co-evolutionary learning would lead to the search
for solutions with higher generalization performance. How-
ever, direct estimation of the true generalization performance
using the distribution-free framework can be computationally
expensive [12]. Our new theoretical contributions that exploit
the near-Gaussian nature of generalization estimates allow us:
1) to find out in a principled manner the required number
of test cases for robust estimations (given a controlled level
of precision) of generalization performance, and 2) to sub-
sequently use small sample of random test cases sufficient
for robust estimations to compute generalization estimates of
solutions directly as the fitness measure to guide and improve
co-evolutionary learning.

Early studies [18]–[20] have shown that the classical co-
evolutionary learning approach that uses relative fitness (i.e.,
fitness evaluation that depends on other competing solutions
in the population) does not necessarily lead to solutions with
increasingly higher generalization performance. Others have
investigated various approaches to improve performance in
co-evolutionary learning, e.g., by exploiting diversity in the
population [21]–[23], using other notions for fitness measure
such as pareto dominance [24], and using archives of test cases
[25]–[27], among others. In [28], a study has been made to
investigate how performance can be improved in a cooperative
co-evolutionary learning framework (a population member
only represents part of a complete solution) as compared
to most other studies that have considered the competitive
co-evolutionary learning framework (a population member
represents a complete solution).

Unlike these past studies, we demonstrate an approach to
improve generalization performance in a principled manner
that can be implemented as an efficient algorithm (e.g., using
small samples of test cases) that is verified in a princi-
pled manner as well. Our approach directly uses generaliza-
tion estimates as the fitness measure in a competitive co-
evolutionary learning setting. A series of empirical studies
involving the iterated prisoner’s dilemma (IPD) and the more
complex Othello game is used to demonstrate how the new
approach improves on the classical approach in that evolved
strategies with increasingly higher generalization performance
are obtained using relatively small samples of test strategies.
This is achieved without large performance fluctuations typical
of the classical approach. The new approach also leads to
faster co-evolutionary search where we can strictly control the
condition (sample sizes) under which the speedup is achieved
(not at the cost of weakening precision in the estimates). It is
faster than using the distribution-free framework (it requires
an order of magnitude smaller number of test strategies) to
achieve similarly high generalization performance.

More importantly, our approach does not depend on the
complexity of the game. For some games that are more
complex (under some measures of game complexity), more
test strategies may be required to estimate the generalization
performance of a strategy for a given level of precision.
However, this will come out automatically and in a principled
manner from our analysis. The necessary sample size for
robust estimations can then be set and subsequently, gener-
alization estimates can be computed and directly used as the

fitness measure to guide co-evolutionary search of strategies
with higher generalization performance.

We note that this paper is a first step toward understanding
and developing theoretically motivated frameworks of co-
evolutionary learning that can lead to improvements in the
generalization performance of solutions. Although our gener-
alization framework makes no assumption on the underlying
distribution of test cases, we demonstrate one application
where the underlying distribution in the generalization measure
is fixed and known a priori. Generalization estimates are
directly used as the fitness measure to improve generaliza-
tion performance in co-evolutionary learning. This has the
effect reformulating co-evolutionary learning to that of an
evolutionary learning approach, but with the advantage of a
principled and efficient methodology that has the potential of
outperforming classical co-evolutionary approach on difficult
learning problems such as games. Further studies may involve
extending the generalization framework in formulating co-
evolutionary learning systems where the population acting as
test samples can adapt to approximate a particular distribution
that solutions should generalize to.

The rest of this paper is organized as follows. Section II
presents the theoretical framework for statistical estimation
of generalization performance, and improvements made to
provide tighter bounds through the central limit and Berry-
Esseen theorems. We mention two kinds of parametric testing:
1) making statistical claims on the hypothesized performance
of a strategy, and 2) comparing performance differences of
a pair of strategies. Section III demonstrates how one can
find out and set the required number of test strategies for
robust estimation of generalization performance in a principled
manner, using the IPD game for illustration. It is shown that
a small number of test strategies is sufficient to estimate
generalization performance with good accuracy. Section IV
demonstrates how generalization estimates can be used directly
as the fitness measure to improve co-evolutionary learning.
We first illustrate the new co-evolutionary approach using the
IPD game and later consider the more complex Othello game.
Finally, Section V concludes the paper with some remarks for
future studies.

II. Statistical Estimation of Generalization

Performance in Co-Evolutionary Learning

A. Games

In co-evolutionary learning, the quality of a solution is deter-
mined relative to other competing solutions in the population
through interactions. This can be framed in the context of
game-playing, i.e., an interaction is a game played between
two strategies (solutions) [12]. We assume that there is a
potentially vast but finite set of possible strategies that can
be involved in playing the game. At each time step, a strategy
can select a move from a finite set of possible moves to play
the game. Endowing strategies with memory of their own and
opponents’ moves results in an exponential explosion in the
number of such strategies.

Consider a game and a set S of M distinct strategies,
S = {1, 2, ..., M}. Denote the game outcome of strategy i
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playing against the opponent strategy j by Gi(j). Different
definitions of Gi(j) (different notions of game outcomes) for
the generalization performance indicate different measures of
quality [12]. The win-lose function for Gi(j) is given by

GW(i, j) =

{
CWIN, if g(i, j) > g(j, i)
CLOSE, otherwise

(1)

where g(i, j) and g(j, i) are payoffs for strategies i and j at
the end of the game, respectively, and CWIN and CLOSE are
arbitrary constants with CWIN > CLOSE. We use CWIN = 1 and
CLOSE = 0 and arbitrarily choose a stricter form of GW(i, j)
(a loss is awarded to both sides in the case of a tie). As an
example that we present later, our choice of GW(i, j) is to
simplify analysis. In this case, the “all defect” strategy that
plays full defection is known to be the only one with the
maximum generalization performance when GW(i, j) is used
irrespective of how test strategies are distributed in S for the
IPD game. This is not necessarily true for other definitions,
such as the average-payoff function.

B. Estimating Generalization Performance

A priori some strategies may be favored over the others, or
all strategies can be considered with equal probability. Let the
selection of individual test strategies from S be represented by
a random variable J taking on values j ∈ S with probability
PS (j). Gi is the true generalization performance of a strategy
i and is defined as the mean performance (game outcome)
against all possible test strategies j

Gi =
M∑
j=1

PS (j) Gi(j). (2)

In other words, Gi is the mean of the random variable Gi(J)

Gi = EPS [Gi(J)].

In particular, when all strategies are equally likely to be
selected as test strategies, i.e., when PS is uniform, we have

Gi =
1

M

M∑
j=1

Gi(j). (3)

The size M of the strategy space S can be very large,
making direct estimation of Gi, i ∈ S, through (2) infeasible.
In practice, one can estimate Gi through a random sample
SN of N test strategies drawn i.i.d. from S with probability
PS . The estimated generalization performance of strategy i is
denoted by Ĝi(SN ) and given as follows:

Ĝi(SN ) =
1

N

∑
j∈SN

Gi(j). (4)

If the game outcome Gi(J) varies within a finite interval
[GMIN, GMAX] of size R, the variance of Gi(J) is upper-
bounded by σ2

MAX = (GMAX − GMIN)2/4 = R2/4. Using

Chebyshev’s theorem [15], we obtain

P(|Ĝi − Gi| ≥ ε) ≤ R2

4N · ε2
(5)

for any positive number ε > 0. Note that Chebyshev’s bounds
(5) are distribution-free, i.e., no particular form of distribution
of Gi(J) is assumed. One can make statistical claims of how
confident one is on the accuracy of an estimate given a random
test sample of a known size N using Chebyshev’s bounds [12].

C. Error Estimations for Gaussian-Distributed Generalization
Estimates

Selection of the sample SN of test strategies can be formal-
ized through a random variable SN on SN endowed with the
product measure induced by PS . Estimates of the generaliza-
tion performance of strategy i can be viewed as realizations of
the random variable Ĝi(SN ). Since game outcomes Gi(J) have
finite mean and variance, by the central limit theorem, for large
enough N, Ĝi(SN ) is Gaussian-distributed. Claims regarding
the “speed of convergence” of the (cummulative) distribution
of Ĝi(SN ) to the (cummulative) distribution of a Gaussian can
be made quantitative using the Berry-Esseen theorem [17].

First, normalize Gi(J) to zero mean

Xi(J) = Gi(J) − Gi. (6)

Denote the variance of Gi(J) [and hence the variance of
Xi(J)] by σ2

i . Since Gi(J) can take on values in a finite
domain, the third absolute moment

ρi = EPS [ |Xi(J)|3]

of Xi is finite.
Second, normalize Ĝi(SN ) to zero mean

Yi(SN ) = Ĝi(SN ) − Gi =
1

N

∑
j∈SN

Xi(j). (7)

Third, normalize Ĝi(SN ) to unit standard deviation

Zi(SN ) =
Yi(SN )

σi√
N

. (8)

The Berry-Esseen theorem states that the cummulative dis-
tribution function (CDF) Fi of Zi(SN ) converges (pointwise)
to the CDF � of the standard normal distribution N(0, 1). For
any x ∈ R

|Fi(x) − �(x)| ≤ 0.7975√
N

ρi

σ3
i

. (9)

It is noted that only information on σi and ρi is required to
make an estimate on the pointwise difference between CDFs
of Zi(SN ) and N(0, 1). In practice, since the (theoretical) mo-
ments σi and ρi are unknown, we use their empirical estimates.
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To ensure that the CDFs of Zi(SN ) and N(0, 1) do not differ
pointwise by more than ε > 0, we need at least

NCDF(ε) =
0.79752

ε2

ρ2
i

(σ2
i )3

(10)

test strategies.
Let us now assume that the generalization estimates are

Gaussian-distributed (e.g., using the analysis above, we gather
enough test points to make the means almost Gaussian dis-
tributed). Denote by zα/2 the upper α/2 point of N(0, 1), i.e.,
the area under the standard normal density for (zα/2, ∞) is α/2,
and for [−zα/2, zα/2] it is (1−α). For large strategy samples SN ,
the estimated generalization performance Ĝi(SN ) of strategy
i ∈ S has standard error of σi/

√
N. Since σi is generally

unknown, the standard error can be estimated as

σ̂i(SN )√
N

=

√∑
j∈SN

(Gi(j) − Ĝi(SN ))2

N(N − 1)
(11)

and the 100(1 − α)% error margin of Ĝi(SN ) is zα/2σi/
√

N,
or, if σi is unknown

ϒi(α, N) = zα/2

√∑
j∈SN

(Gi(j) − Ĝi(SN ))2

N(N − 1)
. (12)

Requiring that the error margin be at most δ > 0 leads to
samples of at least

Nem(δ) =
z2
α/2 σ2

i

δ2
(13)

test strategies.
In other words, to be 100(1 − α)% sure that the estimation

error |Ĝi(SN ) − Gi| will not exceed δ, we need Nem(δ) test
strategies. Stated in terms of confidence interval, a 100(1−α)%
confidence interval for the true generalization performance of
strategy i is

(Ĝi(SN ) − ϒi(α, N), Ĝi(SN ) + ϒi(α, N)). (14)

D. Statistical Testing for Comparison of Strategies

One can also make statistical claims regarding hypothesized
performance of the studied strategies. For example, one may
be only interested in strategies with true generalization per-
formance greater than some threshold G̃. In this case, we can
test whether i is a “bad” strategy by testing for Gi < G̃. The
hypothesis H1 that Gi < G̃ is substantiated at significance
level of α% (against the null hypothesis H0 that Gi = G̃) if
the test statistic

Z′
i(SN, G̃) =

Ĝi(SN ) − G̃√
∑

j∈SN
(Gi(j)−Ĝi(SN ))2

N(N−1)

(15)

falls below −zα, i.e., if Z′
i(SN, G̃) ≤ −zα. Alternatively,

the hypothesis that strategy i is an acceptable strategy, i.e.,

Gi > G̃, is accepted (against H0) at significance level of α%,
if Z′

i(SN, G̃) ≥ zα. We can also simply test for Gi �= G̃, in
which case we require |Z′

i(SN, G̃)| ≥ zα/2.
Crucially, we can compare two strategies i, j ∈ S for their

relative performance. This can be important in the evolution-
ary or co-evolutionary learning setting when constructing a
new generation of strategies. Assume that both strategies i

and j play against the same set of N test strategies SN =
{t1, t2, ..., tN}. Statistical tests regarding the relation between
the true generalization performances of i and j can be made
using paired tests. One computes a series of performance
differences on SN

D(n) = Gi(tn) − Gj(tn) n = 1, 2, ..., N.

The performance differences are then analyzed as a single
sample. At significance level of α%, strategy i appears to be
better than strategy j by more than a margin D̃ (against the
null hypothesis that i beats j exactly by the margin D̃), if
Z′′

i (SN, D̃) ≥ zα, where

Z′′
i (SN, D̃) =

D̂(SN ) − D̃√∑N
n=1(D(n)−D̂(SN ))2

N(N−1)

(16)

and

D̂(SN ) =
1

N

N∑
n=1

D(n). (17)

For simply testing whether strategy i outperforms strategy
j we set the margin to 0, i.e., D̃ = 0. Analogously, strategy
i appears to be worse than strategy j at significance level of
α%, provided Z′′

i (SN, 0) ≤ −zα.
Finally, strategies i and j appear to be different at signif-

icance level of α%, if |Z′′
i (SN, 0)| ≥ zα/2. We stress that the

comparison of strategies i, j ∈ S is done through a set of
test strategies in SN and not through a game of strategy i

playing against strategy j. Although one may want to compare
one strategy with another directly by having them competing
against each other, it should be noted that specific properties
in games such as intransitivity may lead to misleading results.

For small samples SN of test strategies, we would need to
use the t-statistic instead of the normally distributed Z-statistic
employed here. Distribution of the t-statistic is the Student’s
t-distribution with N − 1 degrees of freedom. However, for
sample sizes N ≥ 50 used in this paper, the Student’s t-
distribution can be conveniently replaced by the standard
normal distribution N(0, 1).

E. Properties of Gaussian-Distributed Generalization Esti-
mates

It is common to use instead of the true standard deviation
σi of game outcomes for strategy i its sample estimate [see
(11)]

σ̂i(SN ) =

√∑
j∈SN

(Gi(j) − Ĝi(SN ))2

N − 1
. (18)
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If we generate n i.i.d. test strategy samples Sr
N , r =

1, 2, ..., n, each of size N, then the generalization performance
estimates

Ĝi(S
r
N ) =

1

N

∑
j∈Sr

N

Gi(j)

are close to being Gaussian-distributed with mean Gi and
standard deviation σi/

√
N (for large enough N). Such gen-

eralization estimates can be used to estimate the confidence
interval for σi as follows.

The sample variance of the estimates Ĝi(Sr
N ) is

V 2
n =

∑n
r=1(Ĝi(Sr

N ) − 	i)2

n − 1
(19)

where

	i =
1

n

n∑
r=1

Ĝi(S
r
N ). (20)

The normalized sample variance of a Gaussian-distributed
Ĝi(Sr

N )

U2
n =

(n − 1) V 2
n

σ2
i

N

(21)

is known to be χ2-distributed with n− 1 degrees of freedom.1

The 100(1 − α)% confidence interval for σi/
√

N is

(
Vn

√
n − 1

χ2
α/2

, Vn

√
n − 1

χ2
1−α/2

)
(22)

where χ2
β is the value such that the area to the right of χ2

β

under the χ2 distribution with N − 1 degrees of freedom is β.
It follows that the 100(1 − α)% confidence interval for σi is

(
Vn

√
N(n − 1)

χ2
α/2

, Vn

√
N(n − 1)

χ2
1−α/2

)
(23)

which can be rewritten as

(√
N · ∑n

r=1(Ĝi(Sr
N ) − 	i)2

χ2
α/2

,

√
N · ∑n

r=1(Ĝi(Sr
N ) − 	i)2

χ2
1−α/2

)
.

(24)

F. Ramifications of Statistical Estimation of Generalization
Performance in Co-Evolutionary Learning

This framework provides a computationally feasible
approach to estimate generalization performance in co-
evolutionary learning. A small sample of test strategies may
be sufficient to estimate the generalization performance of
strategies, even though the strategy space is huge. Furthermore,
the framework has the potential application for developing

1There is a trivial inequality for the third moment [29, p. 210] that however
leads to rather broad bounds.

efficient algorithms to improve co-evolutionary search. Our
theoretical framework allows us to develop a methodology
to find the number of test strategies required for the robust
estimation of generalization performance. Subsequently, gen-
eralization estimates obtained using a small sample of test
strategies (compared to the case of direct estimation of the
true generalization) can lead to the co-evolutionary search of
strategies with increasingly higher generalization performance
since the selection of evolved strategies are based on their
estimated generalization performances.

III. Examples of Statistical Estimation of

Generalization Performance in Co-Evolutionary

Learning

We first illustrate several examples of statistical estima-
tion of generalization performance in co-evolutionary learn-
ing based on our theoretical framework in Section II. We
consider the three-choice IPD game with deterministic and
reactive, memory-one strategies since we can compute the
true generalization performance (for simplicity, we assume that
test strategies are randomly sampled from S with a uniform
distribution). We demonstrate how one can find and set the
required number of random test strategies for robust estima-
tion (given a controlled level of precision) of generalization
performance for subsequent use of generalization estimates
directly as the fitness measure in co-evolutionary learning. Our
results would show that a smaller number of test strategies than
predicted previously in [12] is sufficient for robust estimation
of generalization performance.

A. Iterated Prisoner’s Dilemma Game

In the classical, two-player IPD game, each player is given
two choices to play, cooperate or defect [30]. The game is
formulated with the predefined payoff matrix specifying the
payoff a player receives given the joint move it made with
the opponent. Both players receive R (reward) units of payoff
if both cooperate. They both receive P (punishment) units of
payoff if they both defect. However, when one player cooper-
ates while the other defects, the cooperator receives S (sucker)
units of payoff while the defector receives T (temptation)
units of payoff. The values R, S, T , and P must satisfy the
constraints: T > R > P > S and R > (S + T )/2. Any set of
values can be used as long as they satisfy the IPD constraints
(we use T = 5, R = 4, P = 1, and S = 0). The game is played
when both players choose between the two alternative choices
over a series of moves (repeated interactions).

The classical IPD game has been extended to more com-
plex versions, e.g., the IPD with multiple, discrete levels
of cooperation [31]–[35]. The n-choice IPD game can be
formulated using payoffs obtained through the following linear
interpolation:

pA = 2.5 − 0.5cA + 2cB − 1 ≤ cA, cB ≤ 1 (25)

where pA is the payoff to player A, given that cA and cB

are the cooperation levels of the choices that players A and
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Fig. 1. Payoff matrix for the two-player three-choice IPD game [12]. Each
element of the matrix gives the payoff for player A.

B make, respectively. The payoff matrix for the three-choice
IPD game is given in Fig. 1 [12].

The payoff matrix for any n-choice IPD game must satisfy
the following conditions [32]:

1) for cA < c′
A and constant cB: pA(cA, cB) > pA(c′

A, cB);
2) for cA ≤ c′

A and cB < c′
B: pA(cA, cB) < pA(c′

A, c′
B);

3) for cA < c′
A and cB < c′

B: pA(c′
A, c′

B) >

(1/2)(pA(cA, c′
B) + pA(c′

A, cB)).

These conditions are analogous to those for the classical
IPDs: 1) defection always pays more; 2) mutual cooperation
has a higher payoff than mutual defection; and 3) alternating
between cooperation and defection pays less in comparison to
just playing cooperation.

B. What is the Required Number of Test Strategies?

We would like to find out and set the required number N of
random test strategies drawn i.i.d. from S for robust estimation
of generalization performance for a game. Instead of making
some assumptions about the complexity of a game and the
impact on the required number of random test strategies, we
demonstrate a principled approach based on our theoretical
framework in Section II. Our approach exploits the near-
Gaussian nature of generalization estimates and finds out the
rate at which the distribution of generalization estimates con-
verges to a Gaussian as the number of random test strategies
to compute generalization estimates grows.

We illustrate our approach for the three-choice IPD game.
We first collect a sample of 50 base strategies i, which we
obtain by randomly sampling from S with uniform distribu-
tion. We also collect 1000 independent samples SN to compute
1000 estimates Ĝi(SN ). Each random sample SN consists of N

test strategies drawn i.i.d. from S with uniform distribution.
For each base strategy i, we directly estimate the true

generalization performance Gi from (2) and normalize Gi(J)
by taking Xi(J) = Gi(J)−Gi. We can then compute estimates
of the variance and the third absolute moment of Xi(J) with
respect to SN , i.e., for each strategy i, we have a 1000-sample
estimate of σ̂2

i and another 1000-sample estimate of ρ̂i.
From the Berry-Esseen theorem (10) [17], we can compute

for each base strategy i the deviation from the Gaussian

ε =
0.7975 · ρ̂i√

N · σ̂3
i

(26)

given different sample sizes of SN . By systematically
computing the error ε for SN with N = {50, 100, 200,

300, 400, 500, 1000, 2000, 3000, 4000, 5000, 10 000, 50 000},
we can observe how fast the distribution of generalization
estimates is converging to a Gaussian.

Since we do not know the true value of ε, we take a
pessimistic estimate of ε. Both 1000-sample estimates of
σ̂2

i and ρ̂i are first rank-ordered in an ascending order. A
pessimistic estimate of ε would be to take a smaller value
(2.5%-tile) of σ̂2

i and a larger value (97.5%-tile) of ρ̂i.
Although we can directly compute the quantile intervals

for σ̂2
i from the χ2-distribution, we have loose bounds for ρ̂i

(based on the inequality from [29, p. 210]), which would result
in unnecessarily larger values in our pessimistic estimate of ε.
Our comparison of quantiles from a 1000-sample estimate of
σ̂2

i between empirical estimates and estimates obtained directly
from the χ2-distribution (24) indicate an absolute difference
around 0.03 when N = 50 (which is the smallest sample size
we consider) and is smaller for larger values of N on average.
Given the small absolute difference and that we are already
computing pessimistic estimates of ε, we will use quantiles for
σ̂2

i and ρ̂i obtained empirically for subsequent experiments.2

Fig. 2 plots the results for the 50 strategies i showing
ε against N. Table I lists out ε for different Ns for ten
strategies i. Naturally, increasing the sample size N leads to
decreasing values of ε. However, there is a tradeoff between
more robust estimation of generalization performance and
increasing computational cost. Fig. 2 shows that ε decreases
rapidly when N increases from 50 to 1000, but starts to level
off from around N = 1000 onward. Table I suggests that at
N = 2000, SN would provide a sufficiently robust estimate
of generalization performance for a reasonable computational
cost since one would need a five-fold increase of N to 10 000
to reduce ε by half.3 Furthermore, since for non-pathological
strategies,4 σ̂2

i and ρ̂i in (26) are finite moments bounded away
from 0, for larger N, ε is dominated by the term N−1/2. In
our experiments, this implies that the tradeoff between more
robust estimations of generalization and computational cost is
roughly the same for most of the strategies.

Leaving the previous analysis aside for a moment and
assuming that estimates Ĝi(SN ) for a base strategy i are
Gaussian-distributed, from (13), we obtain the error δ

δ =
zα/2 σ̂i√

N
. (27)

We compute the pessimistic estimate of δ, taking 97.5%-
tile of σ̂2

i from the rank-ordered 1000-sample estimates. Our
results for δ also indicate a tradeoff between more robust
estimation and increasing computational cost, and suggest that
SN at N = 2000 would provide a sufficiently robust estimate
of generalization performance for a reasonable computational

2The non-parametric quantile estimation is performed in the usual manner
on ordered samples. Uniform approximation of the true distribution function
by an empirical distribution function based on sample values is guaranteed,
e.g., by the Glivenko-Cantelli theorem [29], [36].

3Note that because we take a pessimistic estimate of ε, it is possible that the
computed value of ε is greater than the real one, especially for small sample
sizes (e.g., strategy #7 at N = 50).

4By pathological strategies we mean strategies with very little variation
of game outcomes when playing against a wide variety of opponent test
strategies.
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TABLE I

Pessimistic Estimates of ε From (26) for Ten Strategies i

N # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
50 0.153908 0.12059 0.277445 0.791636 0.125334 0.40297 1.095542 0.132867 0.11612 0.233136
100 0.09876 0.083803 0.155298 0.357576 0.08611 0.227821 0.452723 0.090216 0.081356 0.138341
200 0.066866 0.058456 0.097296 0.200709 0.059497 0.136423 0.240982 0.06164 0.057204 0.086697
300 0.053277 0.047474 0.073737 0.141732 0.048203 0.099911 0.170278 0.049558 0.046587 0.067476
400 0.045463 0.041004 0.063622 0.114299 0.041509 0.082325 0.135654 0.042775 0.040304 0.057132
500 0.040469 0.036562 0.054709 0.100387 0.036949 0.071225 0.11657 0.037963 0.036012 0.049744
1000 0.027898 0.025662 0.036199 0.06219 0.025904 0.045869 0.072467 0.026473 0.025397 0.033765
2000 0.019337 0.018072 0.024639 0.039612 0.018206 0.031049 0.046544 0.018536 0.017922 0.023025
3000 0.015663 0.014728 0.019851 0.031357 0.014826 0.024533 0.036414 0.015082 0.014621 0.018436
4000 0.013501 0.012742 0.016939 0.02645 0.012814 0.020883 0.030649 0.013013 0.012655 0.015841
5000 0.012039 0.011384 0.015053 0.023489 0.011444 0.018533 0.026889 0.011622 0.011315 0.014013

10 000 0.008441 0.008033 0.010422 0.015988 0.008074 0.012733 0.018249 0.008178 0.007994 0.009747
50 000 0.003740 0.003583 0.004536 0.006792 0.003597 0.005481 0.007667 0.003634 0.003571 0.004266

The results show a tradeoff between more robust estimation of generalization performance and increasing computational cost. Increasing the sample size N

leads to decreasing error ε but soon levels off around N = 1000 onward.

Fig. 2. Pessimistic estimate of ε as a function of sample size N of test
strategies for 50 random base strategies i.

TABLE II

Statistics of {|ε − δ|}i for 50 Strategies i

N Mean Std. Dev.
50 0.199785 0.359618
100 0.093783 0.168228
200 0.043777 0.068606
300 0.030180 0.046173
400 0.024052 0.036315
500 0.020268 0.030288
1000 0.011935 0.016976
2000 0.007458 0.010326
3000 0.005749 0.007831
4000 0.004822 0.006521
5000 0.004219 0.005665
10 000 0.002825 0.003728
50 000 0.001173 0.001510

expense. The results in Table II show that the absolute dif-
ference between ε and δ becomes smaller for larger sample
sizes (e.g., at N > 1000 the absolute difference is less than
0.01).

We also illustrate how two strategies can be compared with
respect to their generalization performances through a test
of statistical significance based on the normally distributed
Z-statistic. For example, Table III shows numerical results
for the p-values obtained from Z-tests directly using (16)

to find out whether one strategy outperforms another with
respect to a sample of random test strategies of size N. In
this case, since the two strategies actually differ substantially
in performance, a small sample size of test strategies would
be sufficient to test for its statistical significance (at around
N = 400, the p-values are smaller than the significance
level of 0.05). Our experiments with other pairs of strategies
with smaller performance differences indicate the need for
a larger sample size of test strategies to test for statistical
significance.

We have illustrated examples of statistical estimation of
generalization performance in co-evolutionary learning. Our
studies have indicated that the number of test strategies that is
required for robust estimation (given a controlled level of pre-
cision) of generalization performance is smaller than predicted
earlier using the distribution-free framework (Chebyshev’s)
[12]. This has an obvious impact in the use of generalization
estimates as a fitness measure in co-evolutionary learning since
estimations have to be repeated throughout the evolutionary
process. Although we use the IPD game as an example,
our theoretical framework presented in Section II can be
applied to other more complex problems or scenarios. The
information we need to find and set the required number
of test strategies for robust estimation only involves the
second (variance) and third order moments, which can be
estimated as well. As an example that we present in the
next section, we illustrate how the framework can be applied
in the co-evolutionary learning of the more complex Othello
game.

IV. Using the Notion of Statistical Estimation of

Generalization Performance as Fitness Measure

in Co-Evolutionary Learning

We will investigate the notion of directly using generaliza-
tion estimates as a form of fitness measure in co-evolutionary
learning. Ideally, we would like to make a direct estimation on
the true generalization performance of the evolved strategy. In
this case, co-evolutionary learning would lead to the search of
strategies with increasingly higher generalization performance
since the selection of evolved strategies are based on their
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TABLE III

Computed p-Values of Z-Tests to Determine Whether a Strategy i Outperforms a Strategy j

N # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10
50 1.37 × 10−01 9.68 × 10−02 4.08 × 10−03 1.63 × 10−02 4.09 × 10−02 9.68 × 10−02 6.64 × 10−01 8.63 × 10−01 5.82 × 10−01 4.17 × 10−02

100 1.31 × 10−01 9.60 × 10−02 4.55 × 10−03 5.62 × 10−03 1.02 × 10−02 1.36 × 10−01 3.62 × 10−01 5.67 × 10−01 2.69 × 10−01 2.99 × 10−02

200 2.89 × 10−02 9.55 × 10−02 5.68 × 10−05 2.93 × 10−04 7.72 × 10−03 1.57 × 10−04 3.93 × 10−02 1.39 × 10−01 4.77 × 10−03 1.31 × 10−04

300 5.41 × 10−03 3.39 × 10−02 5.05 × 10−05 3.52 × 10−05 2.24 × 10−03 1.45 × 10−06 6.05 × 10−03 6.74 × 10−02 4.40 × 10−04 6.43 × 10−06

400 1.05 × 10−03 3.60 × 10−03 2.93 × 10−08 3.50 × 10−06 8.18 × 10−06 8.22 × 10−08 1.26 × 10−03 7.10 × 10−03 2.12 × 10−05 1.69 × 10−06

500 5.51 × 10−04 5.05 × 10−04 5.01 × 10−08 3.19 × 10−10 8.59 × 10−07 1.61 × 10−07 4.48 × 10−04 3.42 × 10−03 1.14 × 10−05 8.14 × 10−07

1000 9.94 × 10−09 2.72 × 10−08 1.89 × 10−15 2.13 × 10−12 1.11 × 10−13 4.59 × 10−10 3.79 × 10−09 4.77 × 10−09 7.07 × 10−09 3.37 × 10−11

2000 0 2.22 × 10−16 0 0 1.11 × 10−16 0 0 0 0 0

The table lists the results for ten independent samples of test strategies of size N. Note that the true generalization performances of strategies i and j are known and are 0.4198
and 0.3066, respectively.

generalization performances.5 However, such direct estima-
tions can be computationally expensive. Instead, we investigate
the use of relatively small samples of test strategies to guide
and improve the co-evolutionary search following our earlier
studies on the number of test strategies required for robust
estimation. We first study this new approach of directly using
generalization estimates as the fitness measure for the co-
evolutionary learning of the IPD game before applying it to
the more complex game of Othello.

A. Co-Evolutionary Learning of IPD

1) Strategy Representation: Various strategy representa-
tions for the co-evolutionary learning of IPD have been studied
in the past, e.g., the look-up table with bit-string encoding
[3], finite state machines [37], [38], and neural networks [32],
[35], [39], [40]. The study in [41] has further investigated
other forms of representations such as cellular representation
for finite state machines and Markov chains among others, and
their impact on the evolution of cooperation. We use the direct
look-up table strategy representation [32] that directly repre-
sents IPD strategy behaviors through a one-to-one mapping
between the genotype space (strategy representation) and the
phenotype space (behaviors). The main advantage of using this
representation is that the search space given by the strategy
representation and the strategy space is the same (assuming
a uniform strategy distribution in S), which simplifies and
allows direct investigation on the co-evolutionary search for
strategies with higher generalization performance [12].

For a deterministic and reactive, memory-one n-choice IPD
strategy, the direct look-up table representation takes the form
of mij, i, j = 1, 2, ..., n table elements that specify the choice to
be made given the inputs of i (player’s own previous choice)
and j (opponent’s previous choice). The first move mfm is
specified independently rather than using pre-game inputs (two
for memory-one strategies). mij and mfm can take any of the
n values (choices) used to produce the payoffs in the payoff
matrix through a linear interpolation. Fig. 3 illustrates the
direct look-up table representation for the three-choice IPD
strategy [32] where each table element can take +1, 0, or −1.

Mutation is used to generate an offspring from a parent
strategy when using the direct look-up table for strategy

5In the same way, the selection process in the pareto co-evolution [24]
is based on the pareto-dominance relationship although establishing such a
relationship requires competing solutions to interact (solve) a sample of test
cases.

Fig. 3. Direct look-up table representation for the deterministic and reactive
memory-one IPD strategy that considers three choices (also includes mfm for
the first move, which is not shown in the figure).

representation [32]. Mutation replaces the original choice of an
element in the direct look-up table with one of the remaining
n − 1 possible choices with an equal probability of 1/(n − 1).
Each element (mij and mfm) has a fixed probability pm of
being replaced. The mutation can provide sufficient variations
on strategy behaviors directly with the use of the direct look-
up table representation (even for the more complex IPD game
with more choices) [32].

2) Co-Evolutionary Learning Procedure: The following
describes the classical co-evolutionary learning procedure [12],
[32].

1) Generation step, t = 1. Initialize |POP|/2 parent strate-
gies i = 1, 2, ..., |POP|/2 randomly.

2) Generate |POP|/2 offspring strategies i = |POP|/2 +
1, |POP|/2 + 2, ..., |POP| from |POP|/2 parent strategies
through a mutation operator with pm = 0.05.

3) All pairs of strategies in the population POP compete,
including the pair where a strategy plays itself (round-
robin tournament). For |POP| strategies, every strategy
competes a total of |POP| games. The fitness of a
strategy i is 1

|POP|
∑

j∈POP Gi(j).
4) Select the best |POP|/2 strategies based on fitness.

Increment generation step, t ← t + 1.
5) Steps 2–4 are repeated until termination criterion (a fixed

number of generation) is met.

All IPD games involve a fixed game length of 150 iterations.
A fixed and sufficiently long duration for the evolutionary
process (t = 300) is used. As in [12], we observe how the
generalization performance of co-evolutionary learning (we
measure the generalization performance of the top performing
evolved strategy) changes during the evolutionary process. All
experiments are repeated in 30 independent runs to allow for
statistical analysis.
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The classical co-evolutionary learning (CCL) is used as a
baseline for comparison with the improved co-evolutionary
learning (ICL) that directly uses generalization performance
estimates as the fitness measure. We first study a simple im-
plementation of this co-evolutionary learning approach where
the estimate Ĝi(SN ) is directly used as the fitness of the
evolved strategy i. The procedure for this new approach
is similar to the baseline with the exception of Step 3).
This is to allow a more direct comparison. We investigate
the approach with |POPICL| = 20 and SN with different
sample sizes N = {50, 500, 1000, 2000, 10 000, 50 000}. The
sample SN is generated anew every generation. We use a
sample size of N = 50 000 to provide a “ground truth” estimate
close to the true generalization performance (based on the
distribution-free framework) with which to compare results
for cases where much smaller samples are used. For a more
direct comparison, the baseline CCL uses |POPCCL| = 50 since
experiments using generalization estimates directly as fitness
in ICL starts with SN = 50.

B. Results and Discussion

Fig. 4 shows results for our experiments. Each graph plots
the true generalization performance Gi of the top performing
strategy of the population throughout the evolutionary process
for all 30 independent runs. In particular, Fig. 4(a) shows that
when co-evolutionary learning uses a fitness measure based
on relative performance between competing strategies in the
population, the search process can exhibit large fluctuations
in the generalization performance of strategies throughout co-
evolution. This is consistent with observations from previous
studies such as [21], [22], and [32], where it has been shown
that fluctuations in the generalization performance during co-
evolution are due to overspecialization of the population to a
specific strategy that is replaced by other strategies that can
exploit it. Results from our baseline experiment show that the
use of relative fitness measure does not necessarily lead to the
co-evolutionary learning of strategies with increasingly higher
generalization performance.

However, for all ICL experiments where estimates Ĝi(SN )
are directly used as the fitness measure, no evolutionary
run is observed to exhibit large fluctuations in generalization
performance (Fig. 4). This is in contrast to the case of
CCL where runs exhibit large fluctuations during co-evolution
[Fig. 4(a)]. Starting with the case of a small sample of size
50, the search process of ICL-N50 (SN , N = 50) exhibits only
small fluctuations in the generalization performance during co-
evolution. These fluctuations are a result of sampling errors
from using a small sample of test strategies to estimate Ĝi(SN ),
which can affect the ranking of strategies i in the co-evolving
population for selection.

Results from Fig. 4 suggest that when generalization esti-
mates are directly used as the fitness measure, co-evolutionary
learning converges to higher generalization performance. For
example, when a sample of 500 test strategies is used to
estimate Ĝi(SN ), more evolutionary runs converge to higher
generalization performance without fluctuations compared to
the case when 50 test strategies are used. However, we do not
observe significant differences at the end of the evolutionary

TABLE IV

Summary of Results for Different Co-Evolutionary Learning

Approaches for the Three-Choice IPD Taken at the Final

Generation

Experiment Mean ± Std Err Max Min t-test
CCL 0.873 ± 0.023 0.901 0.553

ICL-N50 0.900 ± 0.005 0.914 0.889 −2.382†

ICL-N500 0.909 ± 0.003 0.914 0.889 −3.057†

ICL-N1000 0.908 ± 0.004 0.914 0.889 −2.892†

ICL-N2000 0.910 ± 0.003 0.914 0.889 −3.141†

ICL-N10000 0.909 ± 0.004 0.914 0.889 −2.974†

ICL-N50000 0.909 ± 0.004 0.914 0.889 −2.974†

For each approach, the mean and standard error at 95% confidence interval
over 30 runs are calculated. “Max” and “Min” give the maximum and
minimum Gi over 30 runs. The t-tests compare CCL with ICLs.
† The t value with 29 degrees of freedom is statistically significant at a 0.05
level of significance using a two-tailed test.

runs for ICLs when the sample size is increased further,
i.e., between ICL-N2000 and ICL-N50000 (Fig. 4). Closer
inspection on evolved strategies reveals that they play nearly
“all defect” or are actually “all defect” strategies. This obser-
vation is expected since “all defect” strategy has the maximum
generalization performance for the game outcome defined by
(1).

We have also collected various statistics on Gi measure-
ments of CCL and ICLs using different sample sizes in
Table IV. The table shows that starting from a small sample
of 50 test strategies, the increase in the generalization perfor-
mance of ICL is statistically significant in comparison to the
case of CCL. The generalization performance of ICL appears
to have settled with no significant increase when sample size
N is increased from 500 to 50 000 (which is the sample
size based on the distribution-free framework and close in
number to all possible strategies for the three-choice IPD).
The estimates Ĝi(SN ) appear to be robust at small sample
sizes of SN to guide and improve co-evolutionary search to
obtain strategies with high generalization performance. The
co-evolutionary learning is also much faster since significantly
smaller sample sizes (around an order of magnitude smaller
in number of test strategies) are sufficient to achieve similarly
high generalization performance.

At this point, we have compared only the generalization
performances of the co-evolutionary learning that directly
uses Ĝi(SN ) with the classical co-evolutionary learning that
uses relative fitness measure. However, it is of interest to
investigate the co-evolutionary learning that uses a fitness
measure consisting of a mixture of the two fitness values
to determine the impact on generalization performance. We
consider the simple implementation of a weighted sum of
fitness measures

fitnessi = (η) ·
⎛
⎝ 1

N

∑
j∈SN

Gi(j)

⎞
⎠ +(1 − η)·

(
1

|POP|
∑

k∈POP

Gi(k)

)

(28)

where higher η values give more weight to the contribution of
estimates Ĝi(SN ) for the selection of evolved strategies. We
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Fig. 4. Comparison of CCL and different ICLs for the three-choice IPD game. (a) CCL. (b) ICL-N50. (c) ICL-N500. (d) ICL-N2000. (e) ICL-N10000.
(f) ICL-N50000. Shown are plots of the true generalization performance Gi of the top performing strategy of the population throughout the evolutionary
process for all 30 independent runs.

investigate this approach where the estimate Ĝi(SN ) is com-
puted with N = 10 000 test strategies (to ensure a reasonable
tradeoff between accuracy and computational expense) and η

at 0.25 (MCL25-N10000), 0.50 (MCL50-N10000), and 0.75
(MCL75-N10000).

Results show that co-evolutionary learning is able to search
for strategies with high generalization performance (Fig. 5).
However, the inclusion of relative fitness leads to fluctuations
in the generalization performance of co-evolutionary learning.
The fluctuations are smaller and localized around a high
generalization performance when the contribution of relative
fitness is reduced [Fig. 5(b)]. Our results suggest that the

co-evolutionary search of strategies with high generalization
performance is due to the estimate Ĝi(SN ) that contributes
to the fitness measure. There is no positive impact to the
generalization performance of co-evolutionary learning by
including relative fitness.

C. Co-Evolutionary Learning of Othello

In this section, we demonstrate our new approach to more
complex problems. As an example, we will show that ICL also
improves on co-evolutionary learning for the more complex
game of Othello. We can achieve similarly high generalization
performance using estimates requiring an order of magnitude
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Fig. 5. Different MCL-N10000s for the three-choice IPD game. (a) MCL25-N10000 (η = 0.25). (b) MCL75-N10000 (η = 0.75). Shown are plots of the true
generalization performance Gi of the top performing strategy of the population throughout the evolutionary process for all 30 independent runs.

smaller number of test strategies than the case of a distribution-
free framework. We do not necessarily need larger samples
of test strategies when applying the new approach to more
complex games. Instead, we can find out in advance the
required number of test strategies for robust estimation before
applying ICL to the game of Othello.

1) Othello: Othello is a deterministic, perfect information,
zero-sum board game played by two players (black and white)
that alternatively place their (same colored) pieces on an eight-
by-eight board. The game starts with each player having two
pieces already on the board as shown in Fig. 6. In Othello,
the black player starts the game by making the first move.
A legal move is one where the new piece is placed adjacent
horizontally, vertically, or diagonally to an opponent’s existing
piece [e.g., Fig. 6(b)] such that at least one of opponent’s
pieces lies between the player’s new piece and existing pieces
[e.g., Fig. 6(c)]. The move is completed when the opponent’s
surrounded pieces are flipped over to become the player’s
pieces [e.g., Fig. 6(d)]. A player that could not make a legal
move forfeits and passes the move to the opponent. The game
ends when all the squares of the board are filled with pieces,
or when neither player is able to make a legal move [7].

2) Strategy Representation: Among the strategy represen-
tations that have been studied for the co-evolutionary learning
of Othello strategies (in the form of a board evaluation
function) are weighted piece counters [42] and neural networks
[7], [43]. We consider the simple strategy representation of a
weighted piece counter in the following empirical study. This
is to allow a more direct investigation of the impact of fitness
evaluation in the co-evolutionary search of Othello strategies
with higher generalization performance.

A weighted piece counter (WPC) representing the board
evaluation function of an Othello game strategy can take the
form of a vector of 64 weights, indexed as wrc, r = 1, ..., 8, c =
1, ..., 8, where r and c represent the position indexes for rows
and columns of an eight-by-eight Othello board, respectively.
Let the Othello board state be the vector of 64 pieces, indexed
as xrc, r = 1, ..., 8, c = 1, ..., 8, where r and c represent the
position indexes for rows and columns. xrc takes the value of
+1, −1, or 0 for black piece, white piece, and empty piece,
respectively [42].

Fig. 6. Figure illustrates basic Othello moves. (a) Positions of respective
players’ pieces at the start of the game. (b) Possible legal moves (which
are indicated by black, crossed circles) at a later point of the game. (c) Black
player selecting a legal move. (d) Black move is completed where surrounded
white pieces are flipped over to become black pieces [7].

The WPC would take the Othello board state as input, and
output a value that gives the worth of the board state. This
value is computed as

WPC(x) =
8∑

r=1

8∑
c=1

wrc · xrc (29)

where the more positive value of WPC(x) would indicate
WPCs interpretation that the board state x is more favorable
if WPC is a black player. The more negative value of WPC(x)
would indicate WPCs interpretation that the board state x is
more favorable if WPC is a white player [42].

We consider a simple mutation operator, where the WPC
weight of the offspring w′

rc can be obtained by adding a small
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random value to the corresponding WPC weight of the parent
wrc

w′
rc = wrc + k ∗ Frc r = 1, ..., 8 c = 1, ..., 8 (30)

where k is a scaling constant (k = 0.1) and Frc is a real number
randomly drawn from [−1, 1] with a uniform distribution
and resampled for every combination of r and c (total of
64 weights). For the experiments, we consider the space
of Othello strategies given by the WPC representation with
wrc ∈ [−10, 10]. The simple mutation-operator can provide
sufficient variation to the Othello game strategy represented in
the form of a WPC evaluation function. We note that choices
for various parameters are not optimized. The main emphasis
of our study is to investigate the impact of generalization
performance estimates used as fitness measure in improving
the generalization performance of co-evolutionary learning.

3) Measuring Generalization Performance on Othello
Strategies: Unlike the IPD game that is symmetric, the Othello
game is not necessarily symmetric, i.e., the black and white
players may not have the same sets of available strategies
[23]. In this case, we consider two estimates of generalization
performance. We estimate the generalization performance of
a black WPC through Othello game-plays against a random
test sample of white WPCs. Conversely, we estimate the
generalization performance of a white WPC through Othello
game-plays against a random test sample of black WPCs.
A random test sample of Othello WPC is obtained through
random sampling of wrc from [−10, 10] having a uniform
distribution and resampled for every combination of r and c.
We use a random sample of 50 000 test WPCs (opposite
color) to directly estimate the generalization performance of
evolved WPC since we cannot compute the true generalization
performance.

4) Co-Evolutionary Learning Procedure: Given the ap-
proach we use to measure the generalization performance of
evolved Othello WPC, we repeat all experiment settings twice:
one for black WPC and one for white WPC. For example, the
CCL of black WPC is described as follows.

1) Generation step, t = 1. Initialize |POP|/2 parent strate-
gies i = 1, 2, ..., |POP|/2 randomly. For a WPCi, wi

rc is
real number randomly sampled from [−0.2, 0.2] having
a uniform distribution and resampled for every combi-
nation of r and c.

2) Generate |POP|/2 offspring strategies i = |POP|/2 +
1, |POP|/2 + 2, ..., |POP| from |POP|/2 parent strategies
through a mutation operator given by (30).

3) All pairs of strategies in the population POP compete,
including the pair where a strategy plays itself (round-
robin tournament). For |POP| strategies, every strategy
competes a total of |POP| games. The fitness of a black
WPC strategy i is 1

|POP|
∑

j∈POP Gi(j), where Gi(j) is
the game outcome to i for an Othello game played by i

(black) and j (white).
4) Select the best |POP|/2 strategies based on fitness.

Increment generation step, t ← t + 1.
5) Steps 2–4 are repeated until termination criterion (i.e.,

a fixed number of generation) is met.

For the co-evolutionary learning of Othello, we consider
a shorter evolutionary duration of 200 generations compared
to the co-evolutionary learning of IPD. This is due to the
increase in computational expense in a single Othello game
compared to a single IPD game. All experiments are repeated
in 30 independent runs to allow for statistical analysis.

ICLs with |POPICL| = 20 and different sample sizes of
N = {50, 500, 1000, 5000, 10 000, 50 000} to estimate Ĝi(SN )
are considered while CCL with |POPCCL| = 50 is used as
a baseline for more direct comparison. The sample size of
N = 50 000 is to provide a “ground truth” estimate close to
the true generalization performance with which to compare
results for cases where much smaller samples are used. Note
that different samples of SN are used to estimate Ĝi(SN ) as
the fitness measure in ICL and to estimate the generalization
performance of ICL for analysis.

5) Results and Discussion: Fig. 7 shows results for our
experiments. Each graph plots the estimated generalization
performance Ĝi(SN ) (N = 50 000) of the top performing
strategy of the population throughout the evolutionary process
for all 30 independent runs. As with the CCL of the simpler
IPD game [Fig. 4(a)], results for the CCL of black and white
WPCs indicate a search process with large fluctuations in
the generalization performance of strategies throughout co-
evolution [Fig. 7(a) and (b)]. Our results suggest that co-
evolutionary learning does not necessarily lead to Othello
WPC strategies with increasingly higher generalization per-
formance when a relative fitness measure is used.

When estimates Ĝi(SN ) are directly used as the fitness
measure in co-evolutionary learning, fluctuations in the gener-
alization performance are reduced and that the co-evolutionary
search converges to higher generalization performance com-
pared to the case of CCL for the Othello game (Fig. 7). We
observe that ICL can search WPCs with higher generalization
performance although small fluctuations can be seen during
co-evolution when estimates Ĝi(SN ) are computed using a
small sample of 50 test strategies. Further increase in sample
size leads to further improvements in generalization perfor-
mance of ICL, e.g., when N = 500 [Fig. 7(c) and (d)].

There is a point where we observe that a significant increase
in the sample size does not bring about a significant increase
in generalization performance of ICL. For example, results
for ICL-N5000 is similar to that of ICL-N50000 [Fig. 7(e)
and (f)]. This is consistent with results from experiments to
find the required number of test strategies for robust estimation
of generalization performance (Fig. 8). The figure suggests a
tradeoff at N = 5000 for SN to provide sufficiently robust es-
timation for a reasonable computation cost since substantially
increasing N to 50 000 would not lead to a significant decrease
in the error ε for the Othello game.

Tables V and VI compare the generalization performance
of CCL with ICLs at the end of the generational runs for
black and white WPCs, respectively. They show that there is
a positive and significant impact on the generalization per-
formance in co-evolutionary learning when estimates Ĝi(SN )
are directly used as the fitness measure. The means over 30
runs are higher while the standard errors at 95% confidence
interval are lower when comparing results between ICLs and
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Fig. 7. Comparison of CCL and different ICLs for the Othello game. (a) CCL black WPC. (b) CCL white WPC. (c) ICL-N500 black WPC. (d) ICL-N500
white WPC. (e) ICL-N50000 black WPC. (f) ICL-N50000 white WPC. Shown are plots of the estimated generalization performance Ĝi(SN ) (with N = 50 000)
of the top performing strategy of the population throughout the evolutionary process for all 30 independent runs.

CCL. In addition, results of controlled experiments for co-
evolutionary learning with the fitness measure being a mixture
of the estimate Ĝi(SN ) and relative fitness (28) indicate that
when the contribution of the relative fitness is reduced while
that of the estimate Ĝi(SN ) is increased, higher generaliza-
tion performance can be obtained with smaller fluctuations
throughout co-evolution. These results further support our
previous observation from Fig. 7 that co-evolution converges
to higher generalization performance without large fluctuations
as a result of directly using the generalization estimate Ĝi(SN )
as the fitness measure.

Our empirical studies indicate that the use of generalization
estimates directly as the fitness measure can have a positive

and significant impact on the generalization performance of
co-evolutionary learning for both the IPD and Othello games.
The new approach (ICL) can obtain strategies with higher gen-
eralization performance without large performance fluctuations
and is faster compared to the case when a distribution-free
framework is used, requiring an order of magnitude smaller
number of test strategies to achieve similarly high general-
ization performance. More importantly, it is not necessary to
use larger samples of test strategies when applying ICL to
more complex games. One can observe the similarity in the
rate at which the error ε decreases for increasing sample size
N for both the IPD and Othello games (Figs. 2 and 8), and
subsequently the similarity of the impact of using Ĝi(SN ) on
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Fig. 8. Pessimistic estimate of ε as a function of sample size N of test strategies for 50 random base strategies i for the Othello game. (a) Black WPC.
(b) White WPC.

TABLE V

Summary of Results for Different Co-Evolutionary Learning

Approaches for Black Othello WPC Taken at the Final

Generation

Experiment Mean ± Std Err Max Min t-test
CCL 0.745 ± 0.018 0.836 0.643

ICL-N50 0.822 ± 0.008 0.896 0.828 −7.827†

ICL-N500 0.875 ± 0.005 0.913 0.880 −13.773†

ICL-N1000 0.890 ± 0.004 0.914 0.868 −16.352†

ICL-N5000 0.899 ± 0.003 0.913 0.878 −16.065†

ICL-N10000 0.900 ± 0.004 0.915 0.867 −15.550†

ICL-N50000 0.906 ± 0.003 0.920 0.887 −17.816†

For each approach, the mean and standard error at 95% confidence interval
over 30 runs are calculated. “Max” and “Min” give the maximum and
minimum Gi over 30 runs. The t-tests compare CCL with ICLs.
† The t value with 29 degrees of freedom is statistically significant at a 0.05
level of significance using a two-tailed test.

TABLE VI

Summary of Results for Different Co-Evolutionary Learning

Approaches for White Othello WPC Taken at the Final

Generation

Experiment Mean ± Std Err Max Min t-test
CCL 0.758 ± 0.017 0.848 0.664

ICL-N50 0.818 ± 0.007 0.851 0.771 −6.620†

ICL-N500 0.860 ± 0.006 0.883 0.818 −10.302†

ICL-N1000 0.873 ± 0.005 0.901 0.833 −12.944†

ICL-N5000 0.886 ± 0.006 0.906 0.842 −12.655†

ICL-N10000 0.890 ± 0.004 0.909 0.868 −15.112†

ICL-N50000 0.893 ± 0.005 0.911 0.853 −13.987†

For each approach, the mean and standard error at 95% confidence interval
over 30 runs are calculated. “Max” and “Min” give the maximum and
minimum Gi over 30 runs. The t-tests compare CCL with ICLs.
† The t value with 29 degrees of freedom is statistically significant at a 0.05
level of significance using a two-tailed test.

the generalization performance of ICL (Figs. 4 and 7). We
stress that one can use our approach to find and set the required
number of test strategies for robust estimation in a principled
manner before applying ICL to a new game.

We do note that there are many issues related to the design
of co-evolutionary learning systems for high performance. For
example, design issues can be problem-specific and involve
representation, variation and selection operators [4], [7] as
well as more sophisticated development of systems involving

incorporation of domain knowledge [44] that have the potential
to provide superior solutions compared to other learning
approaches [8]. We only address the issue of selection (gen-
eralization estimates used to guide co-evolutionary search) in
a principled manner that also can be implemented practically.
Although fine-tuning parameters such as mutation rate and
population size can have an impact on our numerical results,
our general observations would hold. In addition, various
selection and variation approaches can have different impact
on generalization performance in co-evolutionary learning for
different real-world problems (and games in particular). Here,
it is of interests to use common tools for rigorous quantitative
analysis such as generalization measures we have formulated
in [12]. As an example, we have previously studied both
generalization estimates using unbiased sample of random
test strategies (obtained through uniform sampling of S) and
biased sample of random test strategies that are superior in
game-play and more likely to be encountered in a competitive
setting (obtained through a multiple partial enumerate search).
We have also recently started a preliminary investigation on
the impact of diversity on the generalization performance of
co-evolutionary learning [45].

V. Conclusion

We have addressed the issue of loose confidence bounds
associated with the distribution-free (Chebyshev’s) framework
we have formulated earlier for the estimation of generalization
performance in co-evolutionary learning and demonstrated in
the context of game-playing. Although Chebyshev’s bounds
hold for any distribution of game outcomes, they have high
computational requirements, i.e., a large sample of random test
strategies is needed to estimate the generalization performance
of a strategy as average game outcomes against test strategies.
In this paper, we take advantage of the near-Gaussian nature
of average game outcomes (generalization performance esti-
mates) through the central limit theorem and provide tighter
bounds based on parametric testing. Furthermore, we can
strictly control the condition (sample size under a given preci-
sion) under which the distribution of average game outcomes
converges to a Gaussian through the Berry-Esseen theorem.
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These improvements to our generalization framework pro-
vide the means with which we develop a general and princi-
pled approach to improve generalization performance in co-
evolutionary learning that can be implemented as an efficient
algorithm. Ideally, co-evolutionary learning using the true
generalization performance directly as the fitness measure
would be able search for solutions with higher generalization
performance. However, direct estimation of the true gener-
alization performance using the distribution-free framework
can be computationally expensive. Our new theoretical con-
tributions that exploit the near-Gaussian nature of generaliza-
tion estimates provide the means with which we can now;
1) find out in a principled manner the required number of test
cases for robust estimations of generalization performance, and
2) subsequently use the small sample of random test cases to
compute generalization estimates of solutions directly as the
fitness measure to guide and improve co-evolutionary learning.

We have demonstrated our approach on the co-evolutionary
learning of the IPD and the more complex Othello game.
Our new approach is shown to improve on the classical ap-
proach in that we can obtain increasingly higher generalization
performance using relatively small samples of test strategies
and without large performance fluctuations typical of the
classical approach. Our new approach also leads to faster co-
evolutionary search where we can strictly control the condition
(sample sizes) under which the speedup is achieved (not at
the cost of weakening precision in the estimates). It is much
faster compared to the distribution-free framework approach
as it requires an order of magnitude smaller number of test
strategies to achieve similarly high generalization performance
for both the IPD and Othello game. Note that our approach
does not depend on the complexity of the game. That is, no
assumption needs to be made about the complexity of the game
and how it may have an impact on the required number of test
strategies for robust estimations of generalization performance.

This paper is a first step toward understanding and devel-
oping theoretically motivated frameworks of co-evolutionary
learning that can lead to improvements in the generalization
performance of solutions. There are other research issues relat-
ing to generalization performance in co-evolutionary learning
that need to be addressed. Although our generalization frame-
work makes no assumption on the underlying distribution
of test cases (PS ), we have demonstrated one application
where PS in the generalization measure is fixed and known
a priori. Generalization estimates are directly used as the
fitness measure to improve generalization performance of co-
evolutionary learning (in effect, reformulating the approach as
evolutionary learning) in this paper. There are problems where
such an assumption has to be relaxed and it is of interests to
us for future studies to formulate naturally and precisely co-
evolutionary learning systems where the population acting as
test samples can adapt to approximate a particular distribution
that solutions should generalize to.
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[37] D. B. Fogel, “The evolution of intelligent decision making in gaming,”

Cybernet. Syst.: An Int. J., vol. 22, no. 2, pp. 223–236, 1991.
[38] D. Ashlock and E.-Y. Kim, “Fingerprinting: Visualization and automatic

analysis of prisoner’s dilemma strategies,” IEEE Trans. Evol. Comput.,
vol. 12, no. 5, pp. 647–659, Oct. 2008.

[39] P. G. Harrald and D. B. Fogel, “Evolving continuous behaviors in the
iterated prisoner’s dilemma,” Biosystems, vol. 37, nos. 1–2, pp. 135–145,
1996.

[40] N. Franken and A. P. Engelbrecht, “Particle swarm optimization ap-
proaches to coevolve strategies for the iterated prisoner’s dilemma,”
IEEE Trans. Evol. Comput., vol. 9, no. 6, pp. 562–579, Dec. 2005.

[41] D. Ashlock, E.-Y. Kim, and N. Leahy, “Understanding representational
sensitivity in the iterated prisoner’s dilemma with fingerprints,” IEEE
Trans. Syst., Man, Cybernet. C: Applicat. Rev., vol. 36, no. 4, pp. 464–
475, Jul. 2006.

[42] S. Lucas and T. P. Runarsson, “Temporal difference learning vs. co-
evolution for acquiring Othello position evaluation,” in Proc. IEEE
Symp. CIG, 2006, pp. 52–59.

[43] K. J. Kim, H. Choi, and S. B. Cho, “Hybrid of evolution and reinforce-
ment learning for Othello players,” in Proc. IEEE Symp. CIG, 2007, pp.
203–209.

[44] K.-J. Kim and S.-B. Cho, “Systematically incorporating domain-specific
knowledge into evolutionary speciated checkers players,” IEEE Trans.
Evol. Comput., vol. 9, no. 6, pp. 615–627, Dec. 2005.
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