
251

Book Reviews

Evolutionary Algorithms for VLSI CAD— R. Drechsler. (Boston,
MA: Kluwer, 1998, ISBN 0-7923-8168-8, 183 pp., $97.50)Reviewed
by Jason D. Lohn.

One of the major challenges in the field of integrated circuit
design is coping with difficult combinatorial optimization problems.
Simply finding the minimum length of wire needed to connect a
block of transistors is NP-hard. When factoring in a handful of
other simultaneous optimization dimensions such as connections to
other blocks of components and area minimization, it is easy to
see the difficulty facing circuit designers. Since many of the prob-
lems encountered do not have polynomial-time solutions, very large
scale integration (VLSI) algorithm designers experiment with various
optimization techniques such as integer linear programming and
simulated annealing. Optimization methods for VLSI computer-aided
design (CAD) incorporating evolutionary search began appearing in
research articles in the late 1980’s. As the first body of work devoted
exclusively to evolutionary algorithms (EA’s) in VLSI CAD, this
monograph attempts to fill a noticeable void in the literature.

The book is divided into two parts. Part I “Basic Principles”
provides an overview of the book and discusses the underlying
principles of EA’s and algorithm performance issues. The treatment
of EA’s here is cursory at best and concentrates mainly on the classic
genetic algorithm. An overview of some aspects of VLSI CAD is also
included; however, only the latter phase of the circuit design process
is covered, and analog integrated circuit design is not touched upon.

The second part entitled “Practice” comprises roughly three-
quarters of the book and deals with tools and applications. A software
tool called the Genetic Algorithm Managing Environment (GAME) is
described in one chapter. It provides a flexible environment in which
an algorithm designer can easily interface EA’s to VLSI CAD tools
to facilitate experimentation and production runs. One of the author’s
themes is that problem-specific knowledge is necessary for EA’s to
be competitive with other optimization approaches. Support for this
argument is provided by the numerous case studies examined in a
lengthy chapter concerning applications of EA’s to logic synthesis,
mapping, and testing. In logic synthesis, one wishes to implement
a Boolean function in hardware while satisfying certain constraints
(e.g., power, delay area). A category of logic realization called Fixed
Polarity Reed Muller expressions is described. Such expressions are
difficult to minimize and an approach is described that uses a hybrid
EA (one that incorporates problem-specific heuristics). For large
Boolean functions, it is shown that the EA presented can achieve
smaller expressions as compared to standard tools, although the EA
required more computer time.

The section on mapping includes EA applications in partitioning,
floorplanning, and placement and routing problems. Partitioning
consists of mapping blocks of circuit components to two-dimensional

Manuscript received April 18, 1999.
The reviewer is with Caelum Research Corp., Moffett Field, CA 94035-

1000 USA (e-mail: Jlohn@ptolemy.arc.nasa.gov).
Publisher Item Identifier S 1089-778X(99)07200-8.

regions on the surface of a chip. Floorplanning then determines the
shape (aspect ratio) and position of the blocks within each region.
If the aspect ratios are fixed, this activity is called placement. The
problem of routing interconnections is tackled next: unused regions
between blocks are divided into rectangular areas and the optimization
algorithm must find pathways to interconnect the blocks. In each of
these tasks, numerous physical design rules must be obeyed for the
circuit to be fabricated properly. VLSI circuit testing using EA’s
is covered last and deals with automatic test pattern generation to
detect defects that may enter during chip fabrication. Each of these
subtopics represents very difficult optimization problems, and results
using EA’s are presented and compared to other algorithms.

Overall, this book will be useful to VLSI algorithm designers who
are familiar with EA’s and wish to learn more about applications
and recent experimental results. With its large bibliography it could
be used as a good entry point into the literature. It might also
serve those EA practitioners who are interested in learning about
the hard optimization problems encountered in the VLSI domain
and the hybrid EA techniques employed to solve them. On the
downside, one gets the sense that it is mainly collection of the author’s
previous publications and therefore does not cover EA’s in VLSI
CAD in a comprehensive manner. Also, the text is riddled with
awkward English prose, redundant sentences, and a large number
of grammatical and spelling mistakes. A more thorough treatment
of EA’s would likely benefit VLSI circuit designers since they
presumably know little about EA’s and stand to benefit the most
from applying these techniques. Likewise, more background on VLSI
design would be helpful for application-oriented EA researchers
looking into this domain. In the end VLSI designers care most
about the quality of the solutions their algorithms produce and the
resources required to produce them. This book will certainly raise
their awareness of EA techniques and may help them to find higher
quality solutions more effectively.

Genetic Programming III: Darwinian Invention and Problem
Solving—J. R. Koza, F. H Bennett III, D. Andre, and M. A. Keane,
Eds. (San Francisco, CA: Morgan Kaufmann, 1999)Reviewed by
Adrian Stoica.

The fundamental idea of applying evolutionary principles to auto-
matically create computer programs can be traced back to Turing
[1]–[2], who identified the “genetical or evolutionary search” as
a means of creating an intelligent machine. Genetic programming
(GP) is a domain-independent method relying on genetic breeding of
populations of computer programs to automatically create a computer
program from high-level requirements. This book is the third in a
special series dedicated to GP. The first book [3] introduced the basic

Manuscript received June 12, 1999.
The reviewer is with the Jet Propulsion Laboratory, Pasadena, CA 91109

USA.
Publisher Item Identifier S 1089-778X(99)07079-4.

1089–778X/99$10.00 1999 IEEE

252 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 3, SEPTEMBER 1999

principles of GP, and the second book [4] focused on subroutines
(automatically defined functions) and scalability of GP. This third
book brings further evidence that GP possesses a characteristic set of
attributes of system for automatically creating computer programs.

The book is organized in ten parts: Introduction, Background on
Genetic Programming and Evolutionary Computation, Architecture
Altering Operations, Genetic Programming Problem Solver (GPPS),
Automated Synthesis of Analog Electrical Circuits, Evolvable Hard-
ware, Automatic Discovery of Cellular Automata Rules, Discovery
of Motifs and Programmatic Motifs for Molecular Biology, Paral-
lelization and Implementation Issues and finally the Conclusion. The
book is accompanied by a 50-min videotape [5].

The book starts by presenting capabilities list of 16 attributes
reasonably expected to be possessed by a system for automatically
creating computer programs. These attributes are: 1) it starts with
“what needs to be done;” 2) tells us “how to do it,” 3) produces
a computer program, 4) automatic determination of program size, 5)
code reuse, 6) parameter reuse, 7) internal storage, 8) iterations, loops,
and recursions, 9) self-organization of hierarchies, 10) automatic
determination of program architecture, 11) wide range of program-
ming constructs, 12) well-defined, 13) program independent, 14) wide
applicability, 15) scalability, 16) competitive with human-produced
results. The main point of the book is that GP unconditionally
possesses 13 out of 16 attributes of a system for automatically
creating computer programs and that GP at least partly satisfies the
remaining three attributes. Some of the above-mentioned attributes
have received justification in prior work on GP and are not detailed
explicitly, except in the concluding chapter where the evidence for
each individual attribute is reviewed.

The creative aspect of GP is given special consideration, in
particular its capability to produce solutions competitive with human-
produced solutions to important, real-world problems. A solution is
considered competitive if it satisfies a set of criteria, for example,
whether it is patentable or publishable in a peer-reviewed journal
independently of the fact that it was automatically created. Fourteen
instances in which GP determines competitive solutions are presented
in the book, ten of which relate to previous patents. Nine of these re-
sults that rediscover patented solutions are in the area of analog circuit
design, which is a particularly challenging field for human designers.

Automated design of electrical circuits is in fact the very core
of the book, with half of the over 1100 pages being dedicated to
it. The extensive treatment of the subject makes the book likely to
be the most comprehensive writing on evolutionary circuit design
of electrical circuits. Not only the final result of experiments are
presented, but also the intermediary steps, discussion of efforts,
and the reasoning behind the experiments leading progressively
to the final result are given. The natural drawback of having a
continuity in argumentation across several chapters is that it requires
reading the chapters in the order they appear, otherwise the reader
would miss part of the reasoning that determined choices for the
starting conditions, fitness evaluation, etc. Although from the GP
perspective the parts dedicated to automated circuit synthesis and
evolvable hardware are intended to demonstrate the depth of GP with
architecture-altering operations, I think that the material provided
could have very well been organized as a monograph in the field
of evolution of electronic circuits. The only missing thing from this
different perspective is gathering the lessons learned and conclusions
over the whole set of experiments.

One characteristic of the technique used in the work described in
this book is the use of an embryonic circuit, which is placed in a test
fixture and further grown. This is different than most other approaches
to evolvable hardware and fits well with the context of genetic
programming. Genetic programming, as opposed to evolutionary

programming and evolution strategies, considers an important role
for the crossover operator, and a special chapter of the book is
dedicated to analyzing this role. The results of GP experiments with,
and without, crossover indicate that crossover indeed accelerates
convergence to the desired solution. In a common framework for
both crossover and mutation, mutation is seen as a crossover with
the statistical equivalent of a randomly chosen parent from the first
generation, and in this context it appears more useful to have the
crossover with a fitness-selected parent from the current generation.

Very interesting issues are related to the possibility of using GP
as an invention machine, to discover novel solutions to problems,
or to find ways around patented solutions (e.g., by rewarding those
topologies that differ from patented circuit topologies). The examples
in the book demonstrate this possibility of automatically discovering
patentable electronic circuits. Subcircuits—part of the resulting cir-
cuits—may also be patentable, but their identification may be more
involved. An example of such a subcircuit selected as useful by
evolution in several experiments is the combination of two transistors
known to the electronic engineers as the Darlington pair. One should
note, however, that this is only a part of the circuit and we have
no direct information about its functionality—only the fitness of the
overall circuit is evaluated during evolution. For example, assume
that we do not know about the Darlington pair, and the combination
appears while trying to obtain a patentable solution for a squaring
circuit. In this case we would not know necessarily that it is useful
to isolate the two transistors and associate them with a specific
functionality (amplification) for which we would patent. Of course,
such emerging subcircuits could be analyzed in isolation to see what
their function is, and maybe even prove to be patentable solutions, but
not to the problem we were trying to obtain a patent in the first place.

The evolvable hardware part is discussed solely in the context
of field-programmable gate arrays (FPGA’s), which are looked at
as devices that can accelerate the computationally burdensome fit-
ness evaluation task of evolutionary algorithms. I believe this is
probably because the field started with FPGA’s, they are the most
widely used reconfigurable devices today, and the experiment in
the book is performed on an FPGA. Evolvable hardware, however,
is not limited to FPGA’s, and evolution on other devices (such
as field programmable analog arrays [6], [7] and programmable
analog application specific integrated circuits (ASIC’s) [8], [9])
has been demonstrated. Moreover, considering the arguments made
earlier in the book for evolving analog circuits, evolution on flexible
reconfigurable analog devices would appear to be very useful.

Some aspects that made the reconfigurable devices in the Xilinx
XC6200 series suitable for evolvable hardware are highlighted. One
should note that the reconfigurable devices market is moving at a
very fast pace. In the short time since the writing of the chapter
several changes occurred, including the fact that the Xilinx XC6200
series was discontinued. On the bright side, however, what appeared
as unique characteristics of the XC6216 chip are now either matched
by other chips, or the issues preventing evolution on other devices
can be avoided. For example, the vulnerability of most FPGA’s to
damages caused by certain configurations can be avoided by software
techniques producing only legal circuit configurations, as recently
shown in [10]. The experiment on the Xilinx chip shows the use
of the hardware in accelerating evolution. One should remark that
the fitness evaluation is performed completely on the chip (in other
approaches one measures the hardware response, whereas the actual
fitness is calculated in software).

The number of evaluations used for most experiments in the book
is large compared to other reported work, most runs being done with a
population of 640 000 individuals for tens or hundreds of generations
and required tens of hours for a run in the parallel implementation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 3, NO. 3, SEPTEMBER 1999 253

(the time is primarily consumed by the SPICE simulator). The authors
point out that today’s computing power for equivalent platforms is
already almost an order of magnitude higher than what it was at
the time when the experiments were first run, and are expected to
reduce to about 3 min by the year 2010. This would definitely make
experiments of the complexity described in the book more accessible,
however, designing more complex circuits may still remain hard,
as SPICE does not scale well (time for SPICE simulators increases
nonlinearly as a function of the number of nodes in the netlist, in an
approximately subquadratic to quadratic way).

The book ends with the “Conclusion” chapter that states the main
arguments justifying how GP possesses all the 16 attributes of a
system for automatically creating computer programs. Most of these
attributes are completely possessed by the GP, while for “wide
applicability” there is considerable evidence, for “scalability” there is
some evidence and for competitiveness with human-produced results
there is moderate evidence (in the form of the 14 instances claimed
by the authors).

This book, which is very clear and detailed overall, is accessible to
a broad audience of computer scientists and engineers. The appealing
subject of the book, the extremely interesting experiments described
within, and the elegant reasoning make it a very attractive reading,
while the importance of the points demonstrated in the book make
it a fundamental reference material for evolutionary computation, as
well as for automated design.

REFERENCES

[1] A. M. Turing, “Intelligent machines,” inMechanical Intelligence: Col-
lected Works of A. M. Turing, D. C. Ince, Ed. Amsterdam, The
Netherlands: North Holland, 1992, pp. 107–128.

[2] , “Computing machinery and intelligence,”Mind, vol. 59, no. 236,
pp. 433–460, 1950.

[3] J. R. Koza,Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[4] , Genetic Programming II: Automated Discovery of Reusable Pro-
grams. Cambridge, MA: MIT Press, 1994.

[5] J. R. Koza, F. H Bennett III, D. Andre, M. A. Keane, and S. Brave,
Genetic Programming III Videotape: Human-Competitive Machine In-
telligence. San Francisco, CA: Morgan Kaufmann, 1999.

[6] S. J. Flockton and K. Sheehan, “Intrinsic circuit evolution using pro-
grammable analog arrays,” inEvolvable Systems: From Biology to
Hardware, M. Sipper, D. Mange, and A. Perez-Uribe, Eds. (Lecture
Notes on Computer Science, vol. 1478). New York: Springer, 1998,
pp. 144–153.

[7] R. S. Zebulum, M. A. Pacheco, and M. Vellasco, “Analog circuits
evolution in extrinsic and intrinsic modes,” inEvolvable Systems: From
Biology to Hardware, M. Sipper, D. Mange, and A. Perez-Uribe, Eds.
(Lecture Notes on Computer Science, vol. 1478). New York: Springer,
1998, pp. 154–166.

[8] M. Murakawa, S. Yoshizawa, T. Adachi, S. Suzuki, K. Takasuda, M.
Iwata, and T. Higuchi, “Analogue EHW chip for intermediate frequency
filters,” in Evolvable Systems: From Biology to Hardware, M. Sipper, D.
Mange, and A. Perez-Uribe, Eds. (Lecture Notes on Computer Science,
vol. 1478). New York: Springer, 1998, pp. 134–143.

[9] A. Stoica, A. Fukunaga, K. Hayworth, and C. Salazar-Lazaro, “Evolv-
able hardware for space applications,” inEvolvable Systems: From
Biology to Hardware, M. Sipper, D. Mange, and A. Perez-Uribe, Eds.
(Lecture Notes on Computer Science, vol. 1478). New York: Springer,
1998, pp. 166–173.

[10] A. Stoica “Toward evolvable hardware chips: Experiments with a
programmable transistor array,” inProc. 7th Int. Conf. Microelectronics
for Neural Networks, Evolutionary and Fuzzy Systems, Granada, Spain,
Apr. 7–9, 1999, pp. 156–162.

[11] D. Levi and S. A. Guccione, “Genetic FPGA: Evolving stable circuits
on mainsteam FPGA devices,” inProc. 1st NASA/DOD Workshop on
Evolvable Hardware, A. Stoica, D. Keymeulen, and J. Lohn, Eds. Los
Alamitos, CA: IEEE Comput. Soc. Press, 1999, pp. 12–17.

