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An Extreme Function Theory for Novelty Detection

David A. Clifton, Lei Clifton, Samuel Hugueny, David Wong, and Lionel Tarassenko

Abstract—We introduce an extreme function theory as a novel
method by which probabilistic novelty detection may be per-
formed with functions, where the functions are represented by
time-series of (potentially multivariate) discrete observations. We
set the method within the framework of Gaussian processes (GP),
which offers a convenient means of constructing a distribution
over functions. Whereas conventional novelty detection methods
aim to identify individually extreme data points, with respect to a
model of normality constructed using examples of “normal” data
points, the proposed method aims to identify extreme functions,
with respect to a model of normality constructed using examples
of “normal” functions, where those functions are represented
by time-series of observations. The method is illustrated using
synthetic data, physiological data acquired from a large clinical
trial, and a benchmark time-series dataset.

Index Terms—Functional analysis, Gaussian processes, signal
processing algorithms.

I. INTRODUCTION

OVELTY detection [1] is a fundamental task in anomaly

detection, outlier detection, and one-class classification,
in which we wish to identify if newly-observed data are in some
sense “novel” with respect to previously-observed examples.
Novelty detection can be viewed as a hypothesis test, in which
we wish to determine if a previously-unseen test dataset has the
same characteristics as a training set of “normal” data.

Definition I.1: Let a “training” dataset X = {x;},—=1 . be
a collection of n examples of “normality”. For the case of non-
timeseries data, let the it" example x; be a g-dimensional point
x; € R?.

Definition 1.2: Let a test set X* = {x}};—1.. »~, where each
of the n* test examples x; is defined as for the training data in
definition I.1.

In novelty detection, we wish to test the null hypothesis Hy
that the test set X* has the same characteristics as the training
set X, preferably in some probabilistic sense. A model of nor-
mality M is typically constructed from the training set X, and
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Hy is tested by comparing the test set X* to the model M.
The majority of novelty detection work in the literature uses
point-wise novelty detection, in which MM defines a decision
boundary in the data space R?. Individual test points x; are then
compared to the “normal” region of data space F oy C R? de-
fined by the decision boundary, and Hy, is deemed to hold (and

x; is classified as being “normal”) if x; € F 4. One of the
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most widely used of such methods is discriminant and based
on the support vector machine [2], [3], in which novelty de-
tection takes place in the high-dimensional reproducing kernel
Hilbert space (RKHS) corresponding to some kernel function.
Here, test points x; are classified independently from one an-
other, by being compared to a decision boundary in the RKHS.
Generalizations of this point-wise approach to novelty detec-
tion have been proposed in, for example, the states within a
hidden Markov model [4], the output of a Kalman filter [5],
or the states of a factorial switched Kalman filter [6]. More
recently, one-class classifiers using Gaussian processes (GPs)
have been proposed [7]-[10] that take a similarly point-wise ap-
proach to novelty detection, constructing a function f to use as
the model of normality MM and dividing data space R? into re-
gions with high support f(x) — 1 and low support f(x) — 0
depending on whether those regions are close to those occupied
by “normal” training data X, or not, respectively. Change-point
detection has been implemented within a GP framework to iden-
tify and rectify sensor failures [11].

This paper aims to tackle the case of timeseries novelty de-
tection, as typically occurs in the analysis of data acquired from
critical systems such as jet engines and human patients. In such
applications, the test data are a potentially multivariate time-
series that we wish to classify as being either normal or ab-
normal; i.e., the question may be framed “is this timeseries of
human vital signs indicative of a normal patient or a deterio-
rating patient?” Conventional point-wise novelty detection is
appropriate when instances of independent objects are to be
classified; e.g., the classification of different mammograms as
being “normal” or “abnormal” [12]. However, when the test data
represent a timeseries, the i.i.d. assumption typically does not
hold, and adopting a point-wise, sample-by-sample approach to
classification can result in large numbers of misclassifications,
because we are making large numbers of assumedly indepen-
dent decisions (perhaps at the sampling rate of the data). Instead,
we suggest that a single decision can be taken, testing an entire
timeseries, which represents a test function. We will thus adopt
a function-wise approach to novelty detection, where the func-
tions are represented by timeseries of discrete observations.

The GP framework offers a convenient, non-parametric
method of defining a probability distribution over a Lebesque
space of functions £, 2 (X, i) where X is Borel-measurable
(often RY or discretizations thereof) and where 4 is a valid
probability measure, such as a multivariate Gaussian density
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over a (potentially infinite) number of random variables (rvs).
This paper describes a principled, probabilistic approach to
functional novelty detection by considering extreme functions.

II. BACKGROUND AND NOTATION

Our work is related to that of functional data analysis (FDA),
which is an active branch of research concerning inference
where “the data are functions” [13]. Reviews of FDA [14]-[16]
identify two main approaches: (i) regularization-based methods,
in which functions are resampled (interpolated) such that obser-
vations occur on a regular sampling grid, and (ii) filtering-based
methods, in which functions are expanded onto a finite-dimen-
sional function basis after smoothing has been applied. The
latter is the current focus of most research in FDA, where
popular tasks include using the basis coefficients for clustering
[17], principal component analysis, and linear discriminant
analysis [13], [18], often set within a GP regression framework.
However, while multiclass classification has been performed
using the latter, there is little focus on novelty detection. The
closest existing work to tackling the problem considered in this
paper is an F'-test for functional data [19], which compares two
functions, analogous to the standard F'-test between two sets
of data points.

Similarly, timeseries classification has been identified as a
topic within anomaly detection [20], where many of the ap-
proaches are shared with those in the field of novelty detection
(and where the latter is most often presented as a branch of ma-
chine learning).

In common with the majority of FDA work, and in keeping
with the GP literature, we will first consider univariate time-
series (generalizing later to multivariate timeseries). Keeping to
the notation of the functional and timeseries literature, we must
redefine the notation from definitions 1.1 and 1.2, which were
conventional notation for the i.i.d. case, giving:

Definition II.1: Let a training set of # = 1...n examples
of functional data (e.g., timeseries) be {x;,y;}. Let the i'!" ex-
ample (e.g., timeseries object) be a sequencey; ; of j = 1...n;
observations occurring at locations x; ;. For the case of uni-
variate timeseries, the r.v. y € R and the index set of the r.v. y
is time.

Note that, in general, there is no requirement that each of the
n examples in a collection of functional data should be of the
same length, and so the length of the i*" example is denoted
by n;. Furthermore, in the general case, there is no requirement
that the » examples should consist of observations occurring at
the same locations; for timeseries, this means that each example
could be observed at different times.

We first consider the case of univariate GP regression to set
notation, and initially define a single GP over one of the ¢ =
1...7n sequences of observations y;. We follow the standard
treatment of [21].

Let a GP prior be defined over a latent variable
f(x)  ~  GP(up(x),k(x,x')), using, for example,
a squared-exponential (SE) covariance function
k(x,x') = oafexp (=l x = x" ||*/20}), where || - ||
is the #5-norm, where 012 and O'j% are the length-scale in the
z-direction and the variance of f, respectively, and where
the mean function 4 7(x) = 0. The j = 1...n; observations
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for this i*" timeseries are related to the latent variables via
yi; = f(xij) +e, withe ~ /V(O,ai), ory; =f = f(x;),
dropping the j subscripts for the i*" timeseries object, as in
[21].

Following the novelty detection approach, in which a model
of normality M is constructed from “normal” training exam-
ples, we will assume the set of training timeseries {x;, y; } com-
prises “normal” timeseries. We now wish to construct a model
M from this training set, where M is a GP that describes the
dynamics of the whole collection of “normal” examples. For
instance, each example timeseries in the training set could be
a timeseries of vital-sign observations taken from a “normal”
patient, as will be considered in Section VII. The hyperparam-
eters of the GP used to represent M could be determined in a
number of ways; this paper maximizes the joint likelihood of all
timeseries in the training set p ({x;,y:}) = [1;—, p(y:|x:)[21],
an example of which will be demonstrated in Section VII. More
complex examples of model construction considered in FDA in-
clude constructing a mixture of GPs [22].

Assuming the presence of a GP model M, we next focus on
determining how can we formulate a hypothesis test Hj to clas-
sify a test timeseries (x*, y*) as being “normal” (i.e., generated
from M to some probability «) or otherwise “abnormal”.

III. ASSIGNING PROBABILITIES TO FUNCTIONS

The formulation of our hypothesis test requires a mapping
from functions to probabilities, P : f — [0 1]. A common
approach used to assign a sequence of test observations y to
one of many clusters in FDA [13] is to consider the marginal
likelihood given the set of inputs x to the function f:

) = / p(yI£. %) plE|) df (1)

in which we have marginalized over the function values
f, using the GP distribution! over functions p(f|x) ~
N (ug(x), k(x,x)), and where the likelihood p(y|f,x) ~
N(f,0.1). The log marginal likelihood can be found in closed
form as a marginalized Gaussian,

1 oo 1 n
log p(y|x) = 7§yT(K+O'§I) 1yfglog |K+O’§I|7§10g2ﬂ'
)

where K = k(x,x). However, the resulting quantities are
probability densities, not probabilities, and therefore scale with
the dimensionality » of the input (i.e., the number of data in
the timeseries). Fig. 1 shows log marginal likelihoods for 500
sample functions drawn from an example GP model M with
a random positive semi-definite covariance matrix K, where
we have evaluated the sample functions at both n = 50 and
n = 100 points in x. It may be seen that doubling the dimen-
sionality of the vector of function values s causes a scaling of
the log marginal likelihoods. Therefore, while likelihoods may
be useful for some tasks (e.g., maximum likelihood approaches
to parameter fitting for some fixed value of n), they are not

1In keeping with the literature, we use the term distributions to refer to prob-
ability density functions (pdfs), which we will denote with lower-case letters
f.g,p € RT, and which we will make distinct from distribution functions
(dfs), which we will denote with upper-case letters F. G, P € [0 1].
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Fig. 1. Histograms of densities (marginal likelihoods) for 500 sample functions
generated randomly from a GP model M with random K, evaluated at n =

50 and » = 100 points in x, shown in red (rightmost) and blue (leftmost),
respectively.

suitable for comparing functions of arbitrary n, nor for direct
probabilistic inference, because they are not probabilities.

Instead, we consider that the GP used as a model M may
be used to determine the predicted values of observations y* at
times x* using the GP regression framework [21]:

p(y*|x, y.x") = /p(y*If*)p(f*Ix,y,X*)df* 3)

p(f*|x,y,x*) = /p(f*\x,f,x*)p(f x,y)df @)
In keeping with our function-wise philosophy, we will consider
the joint distribution over all (x*, y*) and the model, to evaluate
the whole test function in a single classification decision, which
is the joint posterior distribution over all functions, conditioned
on the model,

p(E* |, £,x7) ~ N (p", K7) )

where the mean function and covariance matrix are, respec-
tively,

w' =E [p(f*|x, f,x")] = k(x™, x) [lc(x, x)+ 051] ! y
K* = Ek(x",x") — k(x*,x) [k:()gx) + 051] - k(x, x¥)

The hypothesis test Hy could initially be framed by considering
the chance of obtaining the test function (x*,y*) from the GP
model M. The GP offers the convenience that the joint distri-
bution over the test data (5) is multivariate Gaussian, and so
we could formulate Hy by determining the probability of ob-
serving an n-dimensional vector from the n-dimensional mul-
tivariate Gaussian distribution. For low n (such as n = 1 or
2), standard results from extreme value theory may be applied
[23]. However, this is not straightforward for multivariate Gaus-
sians of increasingly large dimensionality, as occurs in our case
with n — oc with functional data represented by timeseries,
and standard results cannot be used [24]. Instead, we consider
forming a distribution over the densities allowed by the GP
model M.

IV. A DISTRIBUTION OVER FUNCTION DENSITIES

For some dimensionality n, the GP distribution over func-
tions is multivariate Gaussian by definition, and a test function
f* may be evaluated to give a density z using the GP:

Definition IV.1: Let probability density z be given by a pdf,
z = fn(f*), where f,, = p(f*|x,f,x*) ~ N (s, K), given by
(5).

We emphasize that the notation f,,(f*) refers to the multi-
variate Gaussian distribution f,,, defined over the latent function
f* = f(x"), drawing careful distinction between f,, (the mul-
tivariate Gaussian defined by the GP), £* (the vector of output
values from the latent function), and f (the latent function).

We note that the largest likelihood obtained from f,, occurs
at the mode, and has value sup{f,} = C,, L where C,, =
(27)"/2|K|'/2. Therefore, densities take the range z € [0 C,, ].
Then,

Definition IV.2: Let a df G,(z) be defined over densities z €
[0 C, 1], according to

Gu(z) = /R fulE9) df* (©)

where the region of integration R = {f* | f,,(f*) € [0 z]}.

This is an integration over all those points in R™ that result in
a density 2’ = p(f*|x, f, x*) which is lower than the density z.
Thus, G, (z) is the probability that a sample function generated
from the GP will be “more extreme” (i.e., have lower density =
w.r.t. the GP) than our test function £*. It is important to note
that G, (z) is effectively a df over level sets on the output of
multivariate Gaussian f,,. That is, it is a distribution function
defined over probability densities.

The integration in (6) can be evaluated in closed form by
casting f,,(f*) into an equivalent function over Mahalanobis ra-
dius r with respect to K, such that

2= (8 pp(0) K (E —pup(x) =DoD  (7)

where D = (f* — ps(x)) L, in which L is the Cholesky de-
composition of K, and where o denotes the Hadamard (ele-
mentwise) matrix product. The integration may be performed in
polar form, taking advantage of the radial symmetry of our mul-
tivariate Gaussian distribution over functions (5), which simpli-
fies our expression for G, (z)

() = / o ./91...6,7_1 /'jﬂ

where 7q is the Mahalanobis radius on our multivariate Gaussian
distribution over functions that gives density z, via

o= It = Ot esp (= 373) 0= V2 TR0
©)

and where the latter is obtained by rearranging the former.
This explicitly shows that G,,(z) is the tail mass associated
with the level set defined by z on our multivariate Gaussian
p(f*|x,f,x*), and is therefore the probability of observing a
sample function generated from the GP of greater Mahalanobis
radius than r¢, and hence the probability of observing a sample
function with a lower probability density z’ than z. Integration
over all of the angles {#; ...#,,_1} in the radial integration (8)
yields

fn(’l‘) d91 e d9n71 dr (8)

Gn(z):Qn|K|1/2/ (ro)™ 2 dr (10)
70



CLIFTON et al.: EXTREME FUNCTION THEORY FOR NOVELTY DETECTION

0.5

Fig. 2. (a) Df G,.(2) over densities = = f,(f*) = p(f*|x.f,x*) and re-
sulting empirical df for densities of 10 sample functions generated randomly
from a GP, shown by red line and blue dots, respectively. Densities have been
normalized by dividing through by sup{f..};i.e., using zC,, . (b) Sample func-
tions drawn from a GP, M, colored by G, ( z). “Abnormal” functions are shown
by dark lines. A 95% confidence region (2 standard deviations) around the mean
function is shown by the shaded gray background.

where Q,, = (27)™2/T'(n/2) is the total solid angle of the hy-
persphere in n dimensions, and where I'(-) is the Gamma func-
tion. As n — oc, the densities z — 0, and so it will be conve-
nient to express G, (w), where w = log z. It will also be conve-
nient to use the Cholesky decomposition |[K|*/? = [}, L; ; as
n — 00. After iterative integration-by-parts (see the appendix),

log Gop(w) =w + log Hy(w)

log Goptr(w)=w + log Ha(w)
+ log [1 +exp(log Hs(w)—log Hg('w)—w)]

12)

(11)

where the functions 1y, f15, and H3 are given in the appendix.
Fig. 2(a) shows that the predicted df G,,(2) over a range of den-
sities using (11) is a close estimate of the empirical df obtained
by generating 10% sample functions randomly from an example
GP, with n = 100. It may be seen that as densities z — 0, the
df G,.(2) — 0 as required: for a given density z, the proba-
bility that a sample function generated randomly from the GP
will have a lower density (i.e., be more extreme) decreases as
z — 0. Conversely, as the density tends towards its maximum
value, at the mode of the Gaussian distribution over function
space, z — sup{f,} = C,1, the probability G ,(z) of ob-
serving a more extreme function tends to 1.

Finally, we may use the df G,,(z) to assign probabilities to
each function that we wish to examine, given some GP model
M.

Definition IV.3: Let a test of the null hypothesis Hy be de-
fined as the comparison of G,,(2) to some threshold probability
« € [0 1], where the null hypothesis holds if G,,(z) > « (thus
classifying the data as being “normal”). The null hypothesis is
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rejected (and the test function is deemed “abnormal’) when the
corresponding G, (z) < .

For example, &« = 0.05 would result in a hypothesis test in
which functions are deemed “abnormal” if they could have been
generated from the GP model M with a probability below sig-
nificance level v = 0.05.

Fig. 2(b) shows an example in which ten sample functions
have been drawn from an example GP model M, and which
are therefore all “normal”, and where two other functions have
been shown for comparison (black lines). Each of the sample
functions f* has been colored according to G,,(z), given z =
Ja(f*) = p(f*|x,f,x*). Those functions that lie close to the
mean function take higher values of G,,(z), while those that
stray away from the mean function take lower values. Impor-
tantly, we note that the ten “normal” sample functions (for which
the null hypothesis Hy should not be rejected) take values of
G.(z) > 0.15, and so a hypothesis test (e.g., with &« = 0.05)
would typically not reject Hy. The two functions shown by
black lines, however, have G,,(z) < 10~2. Therefore, H, for
these two functions would be rejected by a hypothesis test with
a = 0.05, and the functions shown by black lines would be
deemed to be “abnormal”.

V. EXTREME FUNCTION DISTRIBUTIONS

Extreme value theory is a branch of statistics that considers
the distribution of extrema (such as the minimum or maximum
value observed in a set of data) in low-dimensional spaces. The
majority of the literature [25], [26] is concerned with univariate
data; some extensions into R? or R? have been described using
copulae to estimate the dependence between rvs. These are, by
definition, point-wise approaches, in which the single most ex-
treme point in a set of data is considered. This point-wise ap-
proach has been extended to higher-dimensional work in [24]
and [27]. We will now consider the extension of this method to
our functional application, and show how it can be used in con-
junction with G,,(z) to provide identification of extreme func-
tions, characterized by n discrete observations with n — oo,
using extreme function distributions.

Fig. 3(a) shows functions sampled randomly from the GP
model M considered previously, where each is the most ex-
treme of a set of m sample functions, for increasing m, and
where “most extreme” is defined as being that function with the
lowest density z = f,(f*) = p(f*|x,f,x*), as given by the
n-dimensional multivariate Gaussian distribution in (5). With
increasing m., as shown by the colors in Fig. 3(a), the most ex-
treme function observed in a set of 7 randomly-generated func-
tions becomes increasingly more extreme, moving away from
the mean function. This follows the intuition that, as we draw
more data from the underlying distribution, we would expect
the extremum of those data to be “more extreme” as we draw
more and more data [24]. However, all of the functions gener-
ated from M are all “normal” functions, in that they have been
generated from our GP that represents M, and so we would like
the null hypothesis Hy not to be rejected. That is, they may be
extreme, but they are not “abnormal” — they are extreme only
because we have observed many realizations from the GP.

If we treat these functions as before, and assign probabilities
to them using (7,,(z), we obtain the results shown in Fig. 3(b),
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Fig. 3. Extreme functions generated by observing m = 10*,102,...,10°

functions from a GP and selecting that with the lowest probability G..(z); (a)
colored according to m (b) colored according to &G, (). Plots (c) and (d) show
extreme function distributions G< (y) and F2(r), respectively defined over
densities ¥ and Mahalanobis radii r, giving predictions (blue lines) and results
obtained by randomly generating 10° extreme functions (red dots). Distribu-
tions are shown for m = 100, with dimensionality n = 5,10,153,...,55,60
from right to left in (c), and from left to right in (d).

in which most of the functions are assigned very low probabili-
ties, G, (z) < 1072 and hence Hyy would be incorrectly rejected
for the majority of the functions shown. However, we can adapt
extreme value theory to our functional case by considering the
extremes in probability density z. Given the df GG,,(=), which
is itself univariate in densities z, we note that the most extreme
sample of a set of observations from G,,(z) will have a den-
sity the distribution of which asymptotically converges to the
Weibull df for minima [26],

(13)

This is because the Fisher-Tippett theorem [28], on which ex-
treme value theory is based, may be used to show that all non-de-
generate functions? are in the domain of attraction of the gen-
eralized extreme value (GEV) distribution in their extrema, and
that the limiting form of the GEV for our case, in which prob-
ability densities are truncated over the domain z € [0 C,, '], is
the Weibull.

The Weibull has scale and shape parameters c,,, and «,,,, re-
spectively, for some value of 7, which may be estimated [24] as
being ¢,,, = G Y™ and = mocy, Gn(€m ), in which Gtm
is the 1/m quantile on G, (), which may found to arbitrary ac-
curacy because we can use log G, (w) in closed form (11) using
w = log z. Also, g,,(z) is the pdf associated with the df G.,(z),
and is straightforwardly the integrand in (10),

gn(2) = Qu(ro) "2 ] Lus (14)
i=1

Thus, using this non-standard extension of extreme value
theory over a probability density, we have obtained a df G¢ (2)
that allow us to determine the location in density space z for the
densities of extreme functions, given some number of observed
functions m. This is shown in Fig. 3(c) for m = 100, with
increasing dimensionality n, where it may be seen that these
dfs G%(z) closely match the densities of extreme functions
observed from random sampling of the GP.

Definition V.1: Define an extreme function distribution as
being F2(r) over Mahalanobis radii » on the multivariate
Gaussian posterior distribution f,,(f*) = p(f*|x,f,x*) using

—2log(2C,,) from (9). E%(r) is the probability that, if a
set of m functions is observed from M, then the most extreme
function of that set will have Mahalanobis radius (with respect
to M) less than r.

Therefore, F%(r) is the probability that a test function (which
has Mahalanobis radius » w.r.t. M) is “abnormal”, given a
model of normality M.

The extreme function distribution for our example M is
shown in Fig. 3(d), again showing close agreement with the
results of random sampling of functions from the GP. As
required, the probability of abnormality F75(r) increases with
r. Increasing the value of m (i.e., generating more functions
from M) results in the support of F2(r) shifting further up
the r-axis, as expected: if we observe more functions from
M, then we are more likely to observe functions with larger
Mahalanobis radius 7 (i.e, be more “extreme”), with respect to

M.

VI. HYPOTHESIS TESTING WITH EXTREME FUNCTIONS

Finally, we may return to our extreme functions previously
shown in Fig. 3(b) and, instead of assigning them probabilities
w.r.t. G, (z), we assign probabilities for each using the extreme
function distributions for the appropriate number of functions
observed in each case, m.

Definition VI.1: Let a hypothesis test be defined as the
test comparing the extreme value distribution F%(r) to some

2Non-degenerate functions are those that do not assign all probability mass
to a single point in their domain. The multivariate Gaussian defined by the GP
is therefore non-degenerate, as is the df defined over its densities, G, ().
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Fig. 4. (a) Extreme functions previously shown in Fig. 3, with probabilities
now assigned using extreme function distribution 1 — F'¢(r) given the appro-
priate value of m for each, and (b) using 1 — F¢(r) with m = 100, including
two other functions shown by dark lines.

threshold probability o € [0 1], rejecting the null hypothesis
Hy (and thus classifying functions as “abnormal”) for which
1-Ff(r) < a.

Fig. 4(a) shows the result of using the hypothesis test from
definition VI.1, in which it may be seen that each extreme func-
tion now takes probabilities 1 — F¢(r) > 0.15, and that the
null hypothesis Ho will no longer be rejected if 1 — F7(r) < a
is used (with, for example, &« = 0.05). Therefore, the sample
functions will be classified as being “normal” functions w.r.t to
our GP, M, as we would hope, because they were all generated
from M and are thus “normal”. We have therefore successfully
identified extreme-but-normal functions that have arisen due to
the fact that we have observed multiple functions.

Our original example in Fig. 2(b), which included two addi-
tional functions shown by dark lines, may now be revisited in
light of our extreme function distributions. Setting 7 = 100 and
assigning probabilities to each function in the example using the
resulting extreme function distribution 1 — F¢(r) gives the re-
sult shown in Fig. 4(b). Here it may be seen that the ten sample
functions randomly generated from the posterior GP (shown by
yellow lines) are now assigned probabilities 1 — F¢(r) = 1, in-
dicating their obvious “normality” with respect to the GP model
M. However, one of the two functions shown by dark lines has
been assigned 1 — F2(r) = 0.16, which would cause a hy-
pothesis test based on, for example, 1 — F%(r) < a = 0.05
to accept Hy and classify the function as being “normal”. This
classification is correct in this instance, because the function
was generated from the GP model M, and is the most extreme
function (i.e., that with the lowest likelihood z) from a set of
m = 100 sample functions generated from p(f*|x, f, x*).

The other function shown by a dark line is assigned a very
low probability, 1 — F¢(r) < 10~%, and is therefore classified
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“abnormal” by a hypothesis test based on 1 — F(r) < o =
0.05. This is correct in this instance, because it was drawn from
a GP with o, = 0.25, whereas the other functions were drawn
from an otherwise-identical GP with ¢, = 1.

We have demonstrated that the proposed extension of extreme
value theory to the problem considered in this paper can cor-
rectly separate functions that are extreme-but-normal (i.e., gen-
erated by a model of normality, but with a low probability) from
those that are actually abnormal (i.e., those not generated by the
model).

VII. ILLUSTRATION WITH PATIENT VITAL-SIGN DATA

We now illustrate the use of the method with data representing
patient vital-sign trajectories following upper gastro-intestinal
cancer surgery, where the patients are subsequently nursed in a
“step-down” recovery ward. This dataset comprises 154 exam-
ples of “normal” patient timeseries, in which the patients were
discharged home after a variable length-of-stay in the hospital,
and 17 examples of “abnormal” patient timeseries, in which the
patients either died or were admitted under emergency condi-
tions to the intensive care unit (ICU). Patients in this latter cate-
gory are associated with highly increased risks of mortality and
morbidity, and so the automatic determination of physiological
deterioration from timeseries of acquired data is an important
task — made more so by the fact that vital-sign observations are
taken every four hours at best [29].

Our study [30] was undertaken at the Cancer Hospital, within
the Oxford University Hospitals NHS Trust, and was granted
ethical approval by the local ethics committee.

A. Data

Fig. 5(a) shows a subset of the normal data, illustrating
15 time-series of variabilities in respiratory rate (RR) from
the “most normal” patients3, in which the differences, over a
24-hour period, between the maximum and minimum RR (as
observed by the nurses) are shown for the first 24 days after
admission to the recovery ward. It may be seen that these time-
series typically take high values immediately after discharge
from surgery, which then reduce as the patient recovers on the
ward.

For comparison, timeseries from a selection of five patients
from the abnormal dataset are shown in Fig. 5(b). It may be
seen that these example abnormal timeseries can take highly
extreme values (such as that shown in orange, which reaches
ARR = 30); however, many examples of abnormality (such
as the four shown in purple, red, light blue, and green) occupy
the same range of values on the vertical axis as do the normal
patients.

The dataset of 154 normal patients has a median length-of-
stay of 9 days (IQR 5 days), while the dataset of 17 abnormal
patients has a median length-of-stay of 5 days (IQR 4 days).
There is significant overlap between the length-of-stays in each
set, and both sets contain timeseries for all lengths-of-stay up to
24 days. The majority of the datasets exhibited incomplete data
within their record.

3defined to be those closest to the median length-of-stay for normal patients
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Fig. 5. Normal and abnormal patient data shown in (a) and (b), respectively,
with the EFT GP model A1 shown by its mean function (in blue) and 95%
confidence region (shaded pink). (a) “Normal” vital-sign trajectories. (b) ICU
readmission trajectories.
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Fig. 6. (a) Normal data, corresponding to the centroid of the normal data, in
the upper subplot, with the same timeseries having data removed shown in the
lower subplot. Missing data are circled in red in the upper subplot. (b) DTW
match of the original timeseries to the version containing missing data, where
color shows DTW distance.

B. Method

We compared five methods for performing novelty detection:
(i) the popular one-class SVM formulation of [3]; (ii) the re-
cently-proposed one-class GP classifier of [10]; (iii) a k-nearest
neighbors (k-NN) approach using the Euclidean distance
metric; (iv) a £-NN approach using a dynamic time-warping
(DTW) distance [31]; and (v) our GP-based extreme function

TABLE 1
MEAN (AND 1 S.D.) CLASSIFICATION ERRORS FOR PATIENT VITAL-SIGN
DATA OVER N = 50 EXPERIMENTS, SHOWING FALSE-POSITIVE RATE
(FPR = FP/38) AND FALSE-NEGATIVE RATE (FNR = FN/9).

OC-SVM OC-GP kNN kNN-DTW
FPR 0.21 (0.08) 0.21 (0.12) 0.28 (0.12) 0.15 (0.07)
FNR 0.23 (0.07) 0.22 (0.10) 0.31 (0.09) 0.19 (0.08)

EFT
0.16 (0.05)
0.13 (0.08)

theory. We note that (i) and (ii) are point-wise approaches to
novelty detection, and the Gaussian kernel was used as the
default choice in each; the former is distance-based, in the
RKHS of its kernel, while the latter is probabilistic. Methods
(ii1) and (iv) are distance-based methods, often used as bench-
marks in the anomaly detection and novelty detection literature
[201, [32], [33]. We denote the methods (i)-(v) from above as
OC-SVM, OC-GP, kNN, kNN-DTW, and EFT, respectively.

Ten-fold cross-validation was used to set model parameters
for each method, using a training set that comprised 75% of the
available normal data (116 of 154 examples, selected randomly)
and 50% of the available abnormal data (8 of the 17 examples,
selected randomly). Model parameters were selected in each
method to minimize the classification error*. The remaining
38 normal examples and 9 abnormal examples were “held
out” and used as test data. The entire experiment (random
selection of training data, followed by ten-fold cross-validation
to set model parameters) was repeated N = 50 times for
each classifier. Each method was trained using feature vectors
comprising data up to 24 days. For those methods that require
fully-specified input vectors (OC-SVM, OC-GP, £NN), the
data were padded with zeros where data were missing, after
zero-mean, unit-variance normalization was applied (such that
the missing data appear “normal”, at the mean of the training
set). The kNN-DTW and EFT methods allow non-probabilistic
and probabilistic handling of missing data, using DTW and
marginalization, respectively.

C. Results

Results from each of the N = 50 experiments, reported on
the “held out” test data in each case, are shown in Table I. It
may be seen that the best-performing techniques are those that
can adequately cope with the missing data, the KANN-DTW and
the proposed EFT-based method. While both of the latter ex-
hibit lower FPR than the other methods, the proposed method
has greater success at classifying abnormal data, with a lower
FNR across all experiments. An example of DTW is shown in
Fig. 6(a), which shows one of the normal examples with data
removed for the purposes of illustration. Fig. 6(b) demonstrates
that the DTW method accurately aligns the original copy of the
normal timeseries with that containing missing data. However,
the results shown in Table I indicate that the principled treat-
ment of missing data from the proposed method (achieved via
straightforward marginalization of the Gaussian process [21])
results in better sensitivity to “abnormal” data, with a lower
FNR.

4Classification error is defined to be false negatives (FN) + false positive
(FP). The former is an erroneous classification of an abnormal example as being
“normal”, while the latter is erroneous classification of a normal example as
being “abnormal”.
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Fig. 7. Randomly selected examples from the “normal” and ‘“abnormal”
classes in (a) and (b), respectively.

VIII. ILLUSTRATION WITH BENCHMARK DATASET

The PAMAP2 benchmark dataset [34], [35] was used from
the UCI Machine Learning Repository [36], which comprises
activity data from heart-rate and inertial measurement units,
connected to subjects who are asked to perform a protocol of
12 activities: lying, sitting, standing, ironing clothes, using a
vacuum cleaner, walking normally, “Nordic” walking, running,
cycling, ascending stairs, descending stairs, and using a skip-
ping rope. Data were acquired for a total of 27,000 seconds, re-
sulting in over 3.8 x 10° labeled data.

This dataset is multivariate, where we have investigated time-
series of the following features: heart-rate (at approximately 9
Hz) and average spectral power (per 5 s window of data) for
each of the three axes of a patient-worn accelerometer (at ap-
proximately 100 Hz), following [35].

The methodology from Section VII was repeated, where the
“normal” class was taken to comprise all timeseries examples
of ascending and descending stairs, and where all other activi-
ties were taken as being “abnormal” for the purposes of this in-
vestigation. Fig. 7 shows randomly-selected examples of both
the “normal” and “abnormal” classes, where it may be seen that
the former (ascending and descending stairs) exhibits partic-
ular dynamics that a novelty detector could learn, whereas the
latter seems more inconsistent (as expected, given that these are
random examples of other types of activity).

While this benchmark dataset does not suffer from the
incompleteness of data evident in the dataset considered in
Section VII, the length of each timeseries can vary. The mul-
tivariate nature of the dataset is straightforwardly used by
methods (i)-(iv). For the proposed EFT-based method, we
adopt the usual GP approach [21] of providing the kernel
function k(x, x) with multivariate inputs.

Table II presents the results of V = 50 experiments, in which
it may be seen that most methods have performed less well
using this benchmark dataset compared with the patient-based
analysis in Section VII. The OC-GP and ANN methods are
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TABLE II
MEAN (AND 1 S.D.) CLASSIFICATION ERRORS FOR UCI BENCHMARK
DATA OVER N = 50 EXPERIMENTS.

OC-SVM OC-GP kNN kKNN-DTW
FPR 0.18 (0.06) 0.22 (0.07) 0.31 (0.10) 0.18 (0.08)
FNR 0.27 (0.09) 0.27 (0.10) 0.33 (0.10) 0.21 (0.11)

EFT
0.18 (0.07)
0.19 (0.06)

(®)

Fig. 8. Examples of ANN-DTW resulting in misclassifications in which (a)
two “normal” examples are matched only for the latter half of the timeseries;
(b) “abnormal” and “normal” timeseries are closely matched due to the warping
effect introduced by DTW.

the least able to separate “normal” from “abnormal” classes
in this instance, while the OC-SVM has achieved a low FPR.
The ANN-DTW method performs similarly to the proposed
EFT-based method, although the latter achieves a lower FNR
(i.e., it is more sensitive to “abnormal” data), and has generally
less variable performance (standard deviation of FNR 0.06
compared with 0.11 for the kNN-DTW).

Again, the DTW procedure can occasionally perform unde-
sirable warping, such that “normal” data are sometimes associ-
ated with larger DTW distances to “normality” than some “ab-
normal” timeseries. This effect is shown in Fig. 8, in which an
“abnormal” timeseries in (b) matches the centroid of “normal”
data more closely than the example “normal” timeseries shown
in (a), with a DTW distance for the “abnormal” case in (b) being
0.67 x the DTW distance for the “normal” case in (a). Again, the
GP-based method straightforwardly marginalises over shorter
timeseries to perform a classification using only the relevant
input domain of the model M.

IX. DISCUSSION

We have extended extreme value theory such that we may
take a function-wise approach to novelty detection, following
the FDA method in which functions are initially represented
by timeseries of discrete observations. While much of previous
work in novelty detection has concentrated on pointwise ap-
proaches (which are by far the most commonly described in the
literature), these reach the limit of their usefulness in the assess-
ment of timeseries.

GPs offer a natural probabilistic framework in which to define
distributions over a function space, and we have used the GP re-
gression case to illustrate our method due to the convenience of



36 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 1, FEBRUARY 2013

working with the Gaussian distribution, which has allowed us to
find extreme function distributions in closed-form. We note that
while the df of densities G,,(z) tends asymptotically towards a
parametric distribution (the Weibull, in this case), the whole ap-
proach is non-parametric, due to the GP distribution over func-
tion space [21].

Results reported in this paper suggest that the proposed
method provides slightly better performance than dis-
tance-based methods employing dynamic time-warping, while
offering the advantages of a principled probabilistic inference
framework. While DTW copes well with small quantities of
missing data, or with timeseries that differ in length by a small
amount, it is less robust when coping with noisy, incomplete
timeseries that are often encountered in practice, such as in
physiological patient monitoring. By contrast, the proposed
method copes well with missing data, using straightforward
marginalization of the GP, afforded by its consistency property,
in which any subset of the rvs over which the GP is defined
also has a joint distribution which is multivariate Gaussian.

A natural extension for this work would be to non-Gaussian
processes, in which the distribution over functions is not con-
strained to be Gaussian; e.g., a Beta process or a generalized
Pareto process. However, the GP framework is sufficiently flex-
ible to allow a wide-range of functional forms, as illustrated
throughout this paper.

There is further scope for estimation of the Weibull param-
eters within the Bayesian GP framework, which would require
an approach using approximate inference, such as via sampling
or deterministic (variational) methods.

APPENDIX
log G/, (w) IN CLOSED FORM

From (10), we apply iterative integration-by-parts and use
w = log z to obtain cases for n even and odd, respectively,

—k-1

Glap(w) = exp(w ZA [72 log[C,, exp(w)]r (15)
—k—1/2

Glopr1(w)=exp(w Z A7p+1 [ = 2log[C,, exp(w)}p
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where erfc(-) is the complementary Gaussian error function.
These reduce to (11), in which
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