
Face to Face

Different Perspectives

IEC 61499 Function Block Model:
Facts and Fallacies

by Kleanthis Thramboulidis

C
ontrol and automation systems in factory

automation are developed using the proce-

dural and device-centric paradigms. The

always-increasing complexity of systems in this

domain, as well as the need for agility, flexible plug-

and-play, extensibility, and evolution, imposes the

need for new paradigms to effectively address

today’s requirements. The function block (FB) model,

introduced by the IEC 61499 standard [1], is an

attempt to open the industrial systems market and

exploit current software engineering practices and

the application-centric paradigm in this domain. The

IEC 61499 standard is also an attempt to address

requirements such as interoperability, portability,

distribution, agility, run-time reconfigurability, higher

availability, and reliability. It is supposed to 1) facili-

tate the exchange of design information between

designers and fabrication houses and 2) allow the

designers to integrate competing vendors’ tools and

reduce the risk of relying on proprietary languages

and data formats. However, even though the stan-

dard has been officially accepted by 2005, it is not yet

adopted by the industry [2]–[4], and its status in the

academic research community is questionable.

In this article, the current status of the standard is

described, and its drafting process as well as its vali-

dation prior to implementation is commented. Facts

and fallacies are presented and properly discussed to

IEC 61499 Architecture for Distributed
Automation: The ‘‘Glass Half Full’’ View

by Alois Zoitl and Valeriy Vyatkin

C
ontrol software is the main element in today’s

industrial automation system for providing

correct and safe operation of the automation

process. Furthermore, requirements such as flexibil-

ity, adaptability, or robustness, envisaged in the

visionary study from the Iacocca Institute [1], largely

increase the complexity of the control software to

the extent where the existing design methods fail.

Therefore, new means of developing the control soft-

ware are necessary. With the new family of standards

for distributed automation systems, called IEC 61499

[2]–[4], the IEC tried to proactively anticipate and ful-

fill these new and upcoming demands. The standard

has been available since 2005 and has attracted

substantial research attention, resulting in many

publications (see surveys in [5] and [6]) and several

reference implementations [7]. However, its indus-

trial adoption is rather low. The main reasons for the

slow adoption are unresolved semantic issues [8],

lack of clear application and development guidelines,

and missing industrial-grade implementation plat-

forms [6].

The standard is hard to read and contains some

ambiguities. Furthermore, only limited tutorial infor-

mation on IEC 61499 is available. Just two books

explaining the ideas of IEC 61499 were published to

date: [9] and [10]. However, the first of these two is a

little outdated as it considers the first draft version

Digital Object Identifier 10.1109/MIE.2009.934789Digital Object Identifier 10.1109/MIE.2009.934788

T
he ‘‘Face to Face’’ department is

a welcome new addition to the

magazine where critical discus-

sion of a topic is encouraged. In this de-

partment, two different viewpoints are

offered regarding the International Elec-

trotechnical Commission (IEC) 61499

standard. The first viewpoint (in blue)

by Kleanthis Thramboulidis discusses

the facts and fallacies of the IEC 61499

function block model. The second view-

point (in orange) by Alois Zoitl and

Valeriy Vyatkin summarizes the meth-

odologies necessary for industrial auto-

mation in an IEC 61499 architecture.

1932-4529/09/$26.00&2009IEEE DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 7

alleviate the confusion about the semantics of the IEC

61499 FB model, which is one of the most important

reasons that the industry has not yet accepted the

standard. The objective is to contribute to the direc-

tion of revealing some unsubstantiated claims that

have been created around the IEC 61499 FB model

and trigger a discussion in the community of this

domain to critically ask itself ‘‘is the research and

work we are doing going into the right direction?’’

The IEC 61499 FB Model
The IEC 61499 FB was defined as an extension of the IEC

1131 FB to address today’s challenges in industrial auto-

mation systems development. It is defined as a design

level construct to encapsulate industrial algorithms and

the data that these algorithms operate on. The FB type

consists of a head and body, as shown in Figure 1, where

the graphical representation of the PID_SIMPLE FB type

is given. The head, which is used to capture the dynam-

ics, accepts event inputs (EIs) and generates event out-

puts (EOs). The body, which is used to capture the

functionality in terms of algorithms, accepts data inputs

and generates data outputs. The FB is more than an

object, as defined by the object technology, since it

explicitly defines the way to capture its dynamic behav-

ior. A specific kind of statechart, which is called execu-

tion control chart (ECC), is used to specify the dynamic

behavior of its instances. Figure 2 presents the ECC of

the PID_SIMPLE FB type. When in a state, the FB

instance executes the associated EC actions. For each

EC action, the algorithm is executed and its associated

EC event is issued. The transitions that are leaving the

current state are examined next.

An application is defined as a network of inter-

connected FB instances that accept inputs from the

mechanical system through sensors and generate

outputs that are sent to the mechanical system

through actuators.

Even though many articles have been published on

this subject over the last few years, the number of

actual implementations, even prototypes, is very

of the standard. This led to many misconceptions of

the standard’s ideas and contradicting conclusions

of the researchers on the role and place of the

standard in future industrial automation. For this

reason, the majority of control device vendors and

users (e.g., control engineers) still cannot appreciate

the advantages of using IEC 61499.

This article attempts to bring some insight into

the concepts and models of IEC 61499 by discussing

and analyzing common misconceptions. We focus on

two issues: modeling of distribution and architecture-

centric design, which have not received substantial

attention of researchers so far. Our analysis points

out future research directions for increasing the

adoption rate of IEC 61499.

Background and Current
State of IEC 61499
For the last 20 years, the standardization and research

efforts related to control software of industrial auto-

mation were focused on two main points: 1) improve

the software quality and reliability and 2) reduce the

development time of industrial automation control

applications by reusing developed control software

elements across different automation projects and

also across control devices of different vendors. The

latter issue is commonly referred to as vendor inde-

pendence. The IEC 61499 was developed to meet these

requirements. However, in this task, it has to compete

with the well-established predecessor standard IEC

61131-3 [11], which has brought some relevant solu-

tions or at least improved the situation of the users.

Unification and Modularization with IEC 61131-3

One of the main goals driving the IEC 61131-3 devel-

opment was to unify the programming concepts of

industrial control applications. At the time when the

IEC 61131-3 development started, a great variety of

different programming languages and concepts had

been used in industry. The IEC reduced this variety

down to five programming languages, some of which

are textual and some graphical. Furthermore, it

defined a common way of handling inputs and out-

puts, data types, and control programs. Currently,

nearly every control vendor supports the standard,

at least partially. Therefore, engineers knowing IEC

61131-3 can now switch easier between devices of

different control system vendors. However, because

of vendor-specific extensions or only partial support

of IEC 61131-3, direct reuse of developed control

software elements is not really possible.

For structuring control applications, the function

block (FB) concept has been introduced. Similar to

integrated circuits in electrical circuit design, an FB

encapsulates a certain functionality and can be

INIT
REQ

INITO
CNF

PV
SP
KP
KI
KD
DT

PID_SIMPLE

OUT
ERROR

Internal Variables

FB BodyInitAlg
PIDAlg

Algorithms

Data
Outputs

EVENT
EVENT

EVENT
EVENT

BOOL
REAL

REAL
REAL
REAL
REAL
REAL

INT

Event
Outputs

FB Head

ECC
Event
Inputs

Data
Inputs

FIGURE 1–Graphical representation of the FB type.

8 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

limited. There is no mature reference implementation

to demonstrate the applicability and advantages of the

specification. Several prototypes or under-develop-

ment integrated development environments (IDEs)

exist to support the development process. The FB

Development Kit (FBDK) (www.holobloc.com), the

CORFU/Archimedes (http://seg.ece.upatras.gr), and

the Framework for Distributed Automation and Con-

trol (4DIAC) (www.fordiac.org/) are currently the most

well known in the community. There are also several

prototype run-time environments such as function

block run time (FBRT) (www.holobloc.com), Archi-

medes RTSJ-AXE [5], Archimedes RTAI-AXE [6],

FORTE (http://sourceforge.net/projects/fordiac), and

JAKOBI [7]. A small number of example applications

have been developed to demonstrate the applicability

of the specification [8], [9].

The Standardization Process of IEC 61499

The great influence of the IEC 1131 FB model [10] on

the IEC 61499 standard can be easily identified. Even

though the specification attempts to exploit current

software engineering practices, it has many disadvan-

tages regarding its theoretical basis in exploiting cur-

rent software-engineering concepts and technologies,

such as object orientation and component-based

development. This is probably one of the most impor-

tant reasons for the many ambiguities that exist in the

specification. What Egyedi [11] argues with regard to

the standards development process and specification,

namely that ‘‘although the immediate problem usually

lies in the way standards are implemented, the under-

lying causes are mostly flaws in the scope of standardi-

zation, in the standards process or in the specification

itself,’’ also applies to the IEC 61499 standard. Looking

at the preparation stages for standards as defined

from IEC [12], there is no concept-evaluation stage in

connected to other FBs via its data inputs and out-

puts [see Figure 1(a)]. In IEC 61131-3, an FB can con-

tain just one algorithm, which may be written in any

of the IEC 61131-3 programming languages. Because

of this limitation, the FB concept of IEC 61131-3 can

be seen as a procedural programming approach,

where the FBs are the procedures, with FB inputs as

parameters and their outputs as result. However, we

must not neglect that an FB encapsulates not only

one algorithm but also data, and that, it can maintain

its state between invocations. These are the features

of object-oriented programming languages that are

more sophisticated in facilitating reuse. However,

IEC 61131-3 does not support such object-oriented

features as inheritance and interface concept.

The encapsulation of application parts in FBs

helps to modularize control applications and foster

the reuse of application parts. However, the IEC

61131-3 has two main drawbacks hindering the reuse.

First, it allows global data. Global data acts as a hid-

den interface between the FBs and makes seemingly

separated FBs tightly connected. This leads to rigid

program structures, where parts may not behave the

same without the remaining application part, and

changes done locally in some application’s parts may

have unforeseen global consequences. The second

drawback is that the application developer has no

explicit control on the execution order of the FBs in

an application. In an IEC 61331-3 control system, the

execution order is derived from the connections

between FBs, according to the rules defined in IEC

61131-3 [11, pp. 249ff.]. These rules leave some room

START

REQ

1 INIT

INITOInitAlg

PIDAlg CNF

REQ
1

EC State EC Action

EC Transition

Algorithms Events

INIT

FIGURE 2– The ECC is used to define the dynamics of the
FB type’s instances.

FB_Type

Algorithm

Internal
Data/State

IN_1

IN_n

OUT_1

OUT_k

Data

Data

Data

Data

FB_Type

Data

OUT_1Data

Event

Data

OUT_k

EO_m

EO_1

Event

Event

Event

EI_1

EI_l

IN_1

IN_nData
Internal

Data/State

AlgorithmsAlgorithmsAlgorithms

(a)

(b)

FIGURE 1– The graphical representation of the FB concept
in (a) IEC 61131-3 and (b) IEC 61499.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 9

the form of a reference implementation before the

acceptance of the standard. The FBRT, the first proto-

type implementation, could not be considered as a

reference implementation by the time the standard

was adopted, since it violates a lot of semantics

defined by the specification. Moreover, other imple-

mentations were not utilized to revisit and resolve

ambiguities in the standard.

Another problem lies in the way the standard

defines the execution semantics of the FB model. IEC

61499 is an example of what is claimed in [11], namely

that many standardizing organizations neglect standard

implementation issues because this is argued to be a

matter best left to the market. This is why the author in

[11] recommends standard organizations to shift their

emphasis from standard development to a more

systematic inclusion of implementation concerns, both

at the technical level of standard committees and at the

policy level of standard organizations.

The Current Status and the Paradigm Shift
If we look at the current status regarding the adop-

tion of IEC 61499 FB model, we can see both a prom-

ising and a disappointing view. The academic view

seems to be the promising view, while the disap-

pointing view is the industry’s view.

Many researchers from universities and research

institutes are working to exploit IEC 61499 in indus-

trial automation. Even though this research has

resulted in several prototypes or under-develop-

ment IDEs and run-time environments, the number

and complexity of the example applications pre-

sented to demonstrate the applicability of the speci-

fication are not sufficient to demonstrate the

maturity of the new technology. The great number

of publications is not definitely an advantage, since

many contradicting statements on the FB model

impede a clear understanding of the technology and

its advantages. It is difficult even for members of the

IEC 61499 community to discriminate between facts

and fallacies, between facts and myths.

On the other hand, the industry’s view is a disap-

pointing view. Even though the standard was offi-

cially accepted in 2005, there is no indication that

the industry is going to adopt the standard. Only

recently, ICS Triplex (http://www.icstriplex.com)

announced that ISaGRAF provides support for the

IEC 61499 FB model. An impressive demonstration

has been established and presented at the 12th IEEE

Conference on Emerging Technologies and Factory

Automation (ETFA) 2007. Two applications, a train

simulation and an orchestra, were used to demon-

strate the features of the new technology [13].

From our experience over the last few years in

this domain, we can state that there is a tendency

for interpretation; therefore, the same application

may work differently on different control devices.

Component-Oriented Design with IEC 61499

The mentioned weaknesses of IEC 61131-3 partially

stem from the fact that the standard is now more

than 15 years old, so its concepts are not the state of

the art in software engineering anymore. However,

new software engineering trends cannot be taken

directly into the industrial control systems domain.

There are many specific requirements of the automa-

tion developers, and a typical control engineer has

only limited knowledge in computer science and soft-

ware development. The IEC took this into account

for the development of the IEC 61499 architecture,

which should support such new features of next-gen-

eration industrial automation systems distribution

and reconfiguration [1].

To leverage the existing know-how, the IEC 61499

architecture builds on top of the IEC 61131-3 defini-

tions. The main element of the architecture is the

FB, but this concept has been extended in several

ways to incorporate new developments from the

domain of software engineering [Figure 1(b)]. The

most eye-catching extension is the event interface.

An FB in the IEC 61499 remains passive until trig-

gered by an input event. On event, the FB executes

and produces output events and data. On the one

hand, the event interface complicates the design

when compared with IEC 61131, adding new connec-

tions between FBs. However, the event interface in

IEC 61499 allows for explicit specification of the FBs’

execution sequence. This gives the developer a new

level of flexibility not possible in IEC 61131-3.

Another potential problem created by event-trig-

gered execution of the FBs in IEC 61499 is the specifica-

tion and implementation of behavior under real-time

constraints. However, recent research results also

overcome this limitation (see [12] for an overview on

execution methods for IEC 61499 applications comply-

ing with real-time constraints).

There are a few other extensions of the FB con-

cept in IEC 61499 toward object orientation and

component orientation. First, the FBs may contain

several algorithms similar to the methods encapsu-

lated by an object. However, in contrast to an

object, the algorithms inside an FB are neither visi-

ble nor directly accessible from the outside. Fur-

thermore, there is no global data in IEC 61499. This

greatly enhances the reusability of FBs as there are

no implicit dependencies between application

parts; therefore, removal or addition of an FB influ-

ences only the connected FBs. Internal variables of

an FB are also completely hidden. There are no

means to access or change an FB’s internal variable

10 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

for the industry to reject the IEC 61499 standard sim-

ply because 1) there is no mature reference imple-

mentation to demonstrate the applicability and the

advantages of the new technology and 2) its learning

curve is perceived as being very steep.

As far as the second reason is concerned, the most

important challenge is to allow the industrial engineer

to easily change the way of thinking during the system’s

development process. This change of thinking, known

as a paradigm shift, is required because industrial engi-

neers are familiar with 1) the device-centric and proce-

dural-based paradigms that are adopted by current

practices in industrial systems development and 2) the

IEC 1131 standard that is widely used in the industry.

It is clear that the FB model is not only a new

technology in the domain. It promotes the application-

centric approach and partially adopts the object-

oriented (OO) one. It is not just a packaging mecha-

nism for procedural programming, and this is why a

change in mental model in the practitioners, i.e., a

paradigm shift, is required [14]. This means that a spe-

cific strategy should be defined to make this paradigm

shift easier for industrial engineers. This paradigm

shift is more difficult than the one confronted by the

software community regarding the transition from the

procedural to the OO paradigm [15], because it should

also be accompanied by a shift from the device-centric

paradigm to the application-centric one.

Facts and Fallacies
A great number of articles on the IEC 61499 FB model

with many contradicting assumptions and statements

make the adoption of the standard a difficult task. In this

section, we present the facts and fallacies in this domain

and discuss open issues. We discuss incorrect specifica-

tions of the standard as well as unsubstantiated claims

on the way that the IEC 61499 FB model has to be imple-

mented. The main objective is to trigger a major revision

of the standard that is greatly required for it to be seri-

ously considered by the industry. The main challenges

discussed in this section are 1) requirements elicitation;

2) programming in the large; 3) location transparency in

design space; and 4) run-time environments.

Requirements Elicitation

Unsubstantiated Claim 1: The FB Network

Can Be the First Application Model in the

Development Process

The standard defines the FB type as a basic design-

level construct; it does not refer to requirements speci-

fication and its evolution to design models. Moreover,

it is widely considered in the IEC 61499 community

that the FB network (FBN) can be the first specification

of the application in the development process.

as it was possible in IEC 61131-3 with the access

path mechanism.

Taking these properties into account, an FB in

IEC 61499 is an independent software entity that can

be implemented, tested, and used independently of

other FBs. Therefore, IEC 61499 much better sup-

ports the development and reuse of tested compo-

nents (i.e., FBs), which will lead to a better quality of

industrial automation software.

Current Industrial Adoption of IEC 61499

IEC 61499 potentially brings many benefits for develop-

ing industrial automation systems. These were proven

in numerous case studies conducted in academia and

research institutes worldwide (see the review in [6]

and [7]). However, the current adoption of IEC 61499

in the industry is still very limited. One of the first

industrial automation engineering tools supporting

IEC 61499 was ISaGRAF [13], a product of ICS Triplex

(currently, a part of Rockwell Automation). Since Ver-

sion 5 was released in 2005, this IEC 61131-3 product

has been enhanced with the support of many of the

IEC 61499 elements. It is now possible to develop dis-

tributed control applications in IEC 61499 together

with the application parts in IEC 61131-3. However, not

all concepts of IEC 61499 have been implemented.

Thus, the communication between the application

parts is achieved through network variables instead of

service interface FBs (SIFB). The appearance of FBs in

ISaGRAF follows IEC 61499, but their internals look a

bit differently. For example, the execution control

chart of a basic FB is defined by means of the IEC

61131-3 sequential function chart language. The event-

driven IEC 61499 FBs are executed on top of a cyclic-

scanned and time-triggered IEC 61131-3 run-time sys-

tem. Despite the mentioned limitations, capabilities of

ISaGRAF have been demonstrated in distributed sys-

tems consisting of up to 70 controllers [14]. Several

pilot systems in research organizations have been

implemented using the IEC 61499 feature of ISaGRAF,

but no real industrial deployment was reported so far

to the best of the authors’ knowledge.

Another example of an industrial-scale IEC 61499

development is the Austrian company nxtControl

that has developed an integrated supervisory control

and data acquisition and distributed control ap-

proach based on IEC 61499 [15]. They provide an

industrial-grade engineering environment that sup-

ports the design of control applications and visualiza-

tion together in one tool. This approach has great

advantages in productivity and reuse of both control

and visualization components. The nxtControl engi-

neering tool provides several features that have been

long expected from IEC 61499, for example, debugging

and online-monitoring infrastructure, allowing to

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 11

According to this, the development process is consid-

ered as an integration process of already-existing FB

types. Even though already-existing FB types can be

used as a starting point, a lot of other FB types are

required to capture the specific application’s logic,

and the control engineer has no guidance to this direc-

tion. The hybrid approach [16] that integrates the Uni-

fied Modeling Language (UML) notation with the FB

model proposes a solution to this problem. However,

more work has to be done for the better exploitation

of currently used industry diagrams for the specifica-

tion of the mechanical part of the plant [17]. Examples

of these diagrams are the process and instrumentation

diagrams (PI&Ds) and the procedure function chart

(PFC) of the International Society of Automation (ISA)

SP88. The IEC 62424 [18] describes how process-con-

trol engineering requirements such as requirements

for process control equipment and functionality

required by the control application may be captured

by the P&ID. This extended P&ID may be used as a

source of requirements to help the control engineer in

the construction of the FB design model. It may also be

used in safety analysis, and in general, it may be used

as the basis for the coordination of the different disci-

plines involved in the development process.

Programming in the Large

Unsubstantiated Claim 2: The FB Is a Component

The size and complexity of the embedded software in

industrial systems are increasing rapidly. At the same

time, more quality properties such as portability,

extensibility, predictability, flexibility, reliability, and

security have to be guaranteed by these applications.

Developing systems that achieve these characteris-

tics is hard following the programming in the small

paradigm. As the size and complexity increases, the

design and specification of the overall system struc-

ture becomes more significant than the choice of

algorithms and data structures. By concentrating on

the structure of industrial system, it will be possible

to overcome shortcomings in current engineering

practices. A well-organized structure of the industrial

system will reduce the complexity; it will provide a

better understanding of how the system works, and it

will also allow the analysis of the system’s properties

without implementing it. A solid software architec-

ture will reduce the complexity and will thus lead to a

better understanding of how the system works. So,

the following questions need to be answered:

1) Can the IEC 61499 be considered as a notation to

define the architecture of the system?

2) Can the IEC 61499 be considered as a higher level

of abstraction compared with the one provided

by the IEC 1131 FB model?

debug single FBs as well as fully distributed applica-

tions. Another feature is the automatic generation of

the communication during the distribution process

of the application. This greatly reduces the engineer-

ing effort when distributed control applications are

designed. nxtControl has already applied its technol-

ogy to eight projects in the domain of building auto-

mation. The largest project has been a training center

building with 19 control devices, controlling about

2,500 inputs and outputs (I/Os) (such as heating, ven-

tilation, air conditioning, and lighting) with IEC 61499.

Several other companies are currently investigat-

ing how and when to move to or integrate IEC 61499 in

their product lines. One reason for the moderate

adoption pace is the switching effort, which when

compared with the advantages of IEC 61499 over the

established IEC 61131-3 may seem to be only marginal.

There is a lack of comprehensive case studies com-

paring the overall benefits and drawbacks of both

technologies.

Possibly, IEC 61499 may be beneficial only in some

domains of industrial automation applications, and

this requires further investigation and case studies.

However, we see some exciting features of IEC 61499

that will help to achieve higher quality control appli-

cations and therefore deserve a closer look. In the

following, we will point out some of the features that

have not got the attention they deserve.

Platform-Independent Application Design
The design of distributed control systems is obviously

more complex than of the traditional centralized ones.

To cope with that complexity, IEC 61499 offers a mod-

ern platform-independent approach to system design,

similar to the model-driven architecture (MDA) [16]

used in the development of complex software and

embedded systems. MDA consists of three main mod-

els allowing to develop applications in a generic

model-driven way. These models are the platform-

independent model (PIM) for modeling the applica-

tion; the platform-definition model (PDM) for modeling

the target system (i.e., devices and the communication

infrastructure); and the platform-specific model (PSM)

that contains the assignment of the PIM elements to

the devices and platform-specific configurations and

adaptations. The PSM is used to automatically gener-

ate the target-specific code that will be executed in the

devices. The MDA approach has greatly improved the

flexibility and efficiency of the development process of

embedded systems [17] on account of reusing ele-

ments of the solutions, described in high-level lan-

guages. The same solution can be easily implemented

on a variety of targets, ranging from the code running

on a standard hardware to fully customized hardware,

implementing the same function.

12 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

There is currently a trend in the IEC 61499

community to consider the FB type as a component.

For example, in [19], the authors referring to the

component model of IEC 61499 claim that the FB

possesses the required characteristics of a software

component. In [20] and [21], the authors consider

the IEC 61499 as a high-level architecture. In [21], the

FB type is characterized as a component with event

and data interfaces. It is also stated that the concept

is analogous to the ideas of component, such as soft-

ware component from software engineering. In [22],

the FB is characterized as a high-level concept and

also as a component with a state machine inside.

The authors base this statement on the argument

that the FB type is not relying on a particular pro-

gramming language, operating systems, etc. How-

ever, by adopting this argument, we can also conclude

that the process construct of the well-known data flow

diagram (DFD) notation is a component, since it is not

relying on a particular programming language and

operating system.

To better understand the semantics of FB nota-

tion, a mapping of the FB type concept to the well

known in real-time system development DFD nota-

tion is given in Figure 3. From this mapping, it is clear

that the interface definition of the new construct is

too low level at least as far as the data representa-

tion is concerned. The concept of data flow is not

adopted in the FB model. Instead, a detailed repre-

sentation of the constituent parts of the data flow is

represented, cluttering the design diagram with too

much detail. A detailed discussion on this mapping

can be found in [23].

If we consider the current use of FB construct, we

can see that it is mainly used, as for example in [21]

and [24], to represent simple processes or functions.

This approach is also adopted for the construction of

the basic library of FBDK. The example given in [21]

that uses the FB to represent the operation that calcu-

lates the expression X2� Y2 is misleading for the

objectives of the FB model, since it uses a construct

defined for object representation to represent a

The design process promoted by IEC 61499 is sub-

divided into two steps. In the first step, the functional-

ity of the whole system is defined using a PIM called

application model [2, pp. 21ff]. This may require a

detailed specification of each function as a composi-

tion of simpler functions. The application model is

fully executable; however, it is free from particulars

of hardware and communication protocols.

In the second step, details of a particular hardware

configuration are taken into account in the form of a

PDM called system model [2, pp. 18f]. The functional-

ity is said to be mapped to that hardware, resulting in

a PSM called distribution model [2, p. 26].

We can expect similar benefits from IEC 61499 for

industrial automation that MDA brought to software

engineering and embedded system development. In

the following subsections, we will illustrate on a sim-

ple example the application-development process of

IEC 61499.

The Application Model

In IEC 61499, the PIM of control applications is done

by instantiating and interconnecting FBs. A simpli-

fied example of such a control application is shown

in Figure 2(b). The application implements a closed-

loop control. The FB SENSOR provides sensor data,

and this data is taken by the FB control, which per-

forms the control algorithm, whose output is passed

to the actuator represented by an FB actuator.

This example shows a further difference to IEC

61131-3: I/Os are not directly addressed in the appli-

cation. Instead, interface to the I/Os is implemented

in the form of FBs. This helps to isolate dependen-

cies on particular I/O names and addresses, keeping

the core function free of such dependencies.

Algorithms
Inter. varsP1.1

P1.2

P1.3CP1

Ds1-1

Ds1-2

P1

ECC1

FB1

FIGURE 3–Mapping the FB construct to the DFD notation
constructs.

Device 1

Sensor
DATA_1

DATA_2

IND

PARAM
Control

OUT

CNFREQ

IN_1

IN_2

Platform-
Specific

Parameters

0.37

PUBLISH

REQ

DATA

COM_PARAM

Platform-Specific
Parameters

Process Interface

Device n

SUBSCRIBE
COM_PARAM

IND

DATA

Process Interface

Actuator

REQ

IN
PARAM_1
PARAM_2

Platform-
Specific

Parameters

Process

Platform-Independent Application Model

Sensor

DATA_1

DATA_2

IND

PARAM
Control

OUT

CNFREQ

IN_1

IN_2

Actuator

REQ

IN

PARAM_1
PARAM_2

Network Interface

Platform-Specific
Application Part

Network Interface

Platform-Specific
Application Part

Platform-Specific
Parameters

Network InfrastructureMapping

(b)

(a)

FIGURE 2–Overview on the (a) platform-independent
application model of IEC 61499 and (b) its relation to the
control devices in a distributed control system.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 13

function. This example can also be used as a repre-

sentative of the level of detail that the IEC 61499 intro-

duces in specification. This is clear if we compare this

FB or the one that encapsulates more than one opera-

tions on X and Y, which is consistent with the OO

approach, with the method signature of the operation

that implements the calculation OUT ¼ X2 �Y2, and

the method X2minusY2() of one of the provided inter-

faces of the corresponding UML component, as

shown in Figure 4. It should be emphasized that both

the EIs and EOs and data of the X2Y2 ST FB type are

the equivalent of the specification of just one method

of a provided interface of a component. Moreover,

the FBs that implement operations, as mentioned

earlier, cannot be considered as components in a

component-based development. It should be noted

that it is not the graphical representation that makes

a design-level construct component but its proper-

ties. This is why the ‘‘process’’ construct of the DFD

notation is not a component.

The interface of a component has to define the

operations provided. Instead, the interface definition

of FB types is usually defined in a way that does not

include any semantic information. For example, the

graphical interface of the X2Y2 ST FB type, with

input-event REQ, data inputs X and Y, output-event

CNF, and output-data OUT, provides no information

on the operation represented. This is also valid for

the FB that encapsulates more than one operation on

X and Y. Moreover, the name REQ that is used to

identify the algorithm has no information on the

The direct access to the readings of peripheral

controller I/O modules is implemented by a special

type of FB called SIFBs [2, pp. 43–54]. A library of SIFBs

can be specific for a particular device hardware, but

there are many possibilities to organize I/O access in

a generic way, for example, using a generic input FB,

with parameters specifying type and address. As an

option, such a generic FB can also implement simu-

lated I/Os that are set/observed from screen. In early

design stages, an application can be developed and

tested using such generic I/Os.

The SIFB concept of IEC 61499 has often been

criticized for its platform dependency. In our view,

such a critique is based on the incorrect assumption

of using SIFBs with fixed addresses of I/Os at the

early design stages.

The System Model

To execute an application on a distributed network of

control devices, it is necessary to take into account

the particulars of the platforms composing the sys-

tem. In IEC 61499, this can be done in the system

model. Properties of control devices are described in

IEC 61499 by the device model [2, pp. 19f]. They con-

tain a network interface for communicating with

other devices, a process interface for interacting with

the controlled process, and a library of FBs provided

in the device (e.g., special SIFBs for I/O access). A

device can contain resources [2, pp. 20f] that provide

an execution environment for applications. Resour-

ces can be regarded as independent execution con-

tainers for FB applications. They may provide

specific functionality (e.g., special computation hard-

ware), but may also be used just for subdivision of

the device into smaller independent logical entities.

The communication infrastructure of a particular

system is modeled with so-called segments and links [2,

pp. 18f]. A segment describes a network segment of a

certain type [e.g., control area network (CAN)] to which

several devices are connected with links. One device

can be connected to more than one segment (e.g.,

bridging or routing devices). This allows to freely model

the hierarchical structure of the network topologies

typically used in industrial automation.

In our example from Figure 2, we use just two

devices: one connected to the sensor and the other

to the actuator of our control loop. We also have just

one network segment connecting the two devices

with each other.

An open issue of IEC 61499’s system model is that the

descriptions of devices and segments are very generic.

No specific parameters or methods are provided to

describe the needed communication or device parame-

ters. Communication parameters would be needed, for

example, to allow the tools for checking the available

REQ CNF

X

Y

X2Y2_ST

OUT

EVENTEVENT

REAL
REAL

REAL

Math

X2minusY2(X : void, Y : void) : double

<<component>>
Math

…
X2minusY2()

….

<<interface>>
SquareOper

(a)

(b)

(c)

FIGURE 4– IEC 61499 FB type versus class and component.
The (a) FB, (b) class, and (c) component.

14 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

specific algorithm. The example given in [21] that

implements X2� Y2 as a network of FBs further con-

firms our arguments.

The FB type is also used by ISaGRAF, the first

commercial implementation of IEC 61499, to repre-

sent a process that was traditionally represented by

an IEC 1131 FB. However, for a commercial tool, this

can be considered as an intermediate step to simplify

for the industry the paradigm shift from the proce-

dural IEC 1131 to the object-based IEC 61499 para-

digm. The shift from the purely procedural IEC 1131

to the object-based IEC 61499 will be very cumber-

some if such an intermediate level is not provided,

since industrial engineers are not familiar with the

concepts of object and component. This can be com-

pared to the paradigm shift from the procedural to

the OO paradigm in the software domain, where Cþþ
allowed an intermediate-level shift. As a first step,

many programmers used the Cþþ language to pro-

gram in a procedural way following a smooth shift

from the procedural paradigm to the OO one.

According to Szyperski [25], [26], a software

component has to be, among other characteristics, a

unit of deployment and thus has to be an executable

deliverable for a (virtual) machine, so no human

intervention will be required for its use. It also has to

be a unit of versioning and replacement, and thus, it

should remain invariant in the place of installation as

it gets installed onto possibly many systems. Accord-

ing to [27], the design issues in the architecture level

involve an overall association of system capability

with components, where components are modules,

and interconnections among modules are handled in

a variety of ways. At the architecture level, the com-

ponents are programs, modules, or systems. Accord-

ing to [28], components in UML 1.4 have interfaces,

they are used to capture in diagrams the overall

topology of the application, and they are mapped to

hardware as architectural units. In UML 2.0, compo-

nents extend classes with additional features such as

1) the ability to own more types of elements than

classes can; for example, packages, constraints, use

cases, and artifacts and 2) deployment specifications

that define the execution parameters of a component

deployed to a node [28]. According to [29], a compo-

nent defines its behavior in terms of provided and

required interfaces.

Taking into account the current use of FB and the

aforementioned definitions of component, it is clear

that the FB cannot be considered as a component

for programming in the large. It is a construct that

supports programming in the small, and thus FB

libraries, as the one defined in FBDK, favor reuse in

the small. Another construct is required for the FB

model to be able to effectively support programming

and used bandwidth. For device types, the main short-

coming is in the description of the communication and

process interface. There is an extension toward specific

ports that would be needed to know which networks a

device supports or which I/O a device provides.

The Distribution Model

The final phase of the application-development

process in IEC 61499 is the distribution of control

application to the control devices. In this step, the

application’s FBs will be mapped to the control devi-

ces where they will be executed on. In our example,

the SENSOR and the CONTROL FB are mapped to

Device 1, and the ACTUATOR FB is mapped to Device

n. This mapping is not just a logical link in the models;

instead, a copy of the mapped application parts is cre-

ated. The reason for this is that device-specific

changes may have to be done. Such changes are the

specification of device-specific parameters to the FBs.

In our example, we have to define the device-specific

parameters for the SENSOR and the ACTUATOR FB so

that they know which I/Os they have to provide.

As a result of distribution, some FBs, connected to

each other in the application via event and data con-

nections, may reside in different devices. Such connec-

tions, going across device boundaries, need to be

implemented by inserting communication SIFBs [2, pp.

47f]. In our example, these are the PUBLISH and SUB-

SCRIBE FBs added in the device-specific applications.

In more complex applications distributed across many

devices, the generation of communication FBs can be

rather burdening. However, provided with the informa-

tion from the application and system model, the design

tool could automatically insert these FBs and provide

suggestions for suitable communication parameters.

The nxtControl Studio tool is the first to provide an

implementation of this feature, which proved its effi-

ciency in the development of highly distributed sys-

tems. ISaGRAF inserts communication functions

implicitly, making them hidden from the user.

In our sample application, the mapping was done

by copying the application parts to the device repre-

sentations forming the PSMs together. For simplicity,

we assumed that the generic SIFBs used in the appli-

cation model are provided by the control device. In a

general case, the application will just specify with a

generic SIFB that it needs, say, a digital input. When

this generic wish is mapped to the device, the spe-

cific SIFB providing the digital input on this device

has to be inserted manually or by a tool.

Architecture-Centric
Development with IEC 61499
Architecture-centric development is currently the

dominating approach in the design of complex

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 15

in the large and allow the definition of system’s

architecture in such a way as to influence its effi-

ciency, adaptability, and reusability of its software

components. Such an extension should allow the

definition of an abstraction of the system under

development to suppress all these details of its ele-

ments that do not affect how they use, are used by,

relate to, or interact with other elements of the sys-

tem. It should allow the definition of the structures

of the system, which should comprise 1) the soft-

ware elements of the system (components), 2) the

externally visible properties of those elements

(interfaces), and 3) the relationships among them

(ports and connectors). The UML component dia-

gram [30] can be used to address programming in

the large. In this case, the way to realize UML compo-

nent diagrams with FB design diagrams should be

defined. Architectural description languages may

also be used.

Location Transparency

Unsubstantiated Claim 3: The IEC 61499 FB

Model Is a Platform-Independent Model

The advantages of the platform-independent model

(PIM) in the system’s development process are well

known [31]. A PIM should describe the software sys-

tem, which supports a part or the whole of the indus-

trial process system, in a highly abstract way that is

independent of any implementation technology. It

should model the system from the perspective of

how it best supports the industrial process, without

taking into account the configuration and type of

technology on which the application will be imple-

mented. The platform-specific model (PSM) will later

describe in detail how the PIM will be implemented

on a specific platform or technology.

The IEC 61499 introduces the service interface FB

(SIFB) to be used in the FBN to implement event and

data transfer over the network. The use of SIFB in the

design diagram complicates the FBN diagram, com-

pletely destroys location transparency, and makes it

a PSM. The developer has to work on this compli-

cated, execution environment and configuration-spe-

cific FBN for any change, even in the case of a very

simple one that concerns the introduction of a new

FB instance or the reassignment of an FB instance to

a new device that can be imposed by a change in the

network of devices.

To exploit the benefits of PIM, the design diagram

should be defined for a target technology-neutral

virtual machine. Such a virtual machine that is

defined as a set of parts and services, which should

be defined independent of any specific platform, is

shown in Figure 5 and is called IEC 61499 virtual bus.

software systems. It improves quality and reusabil-

ity of the product. The software architecture should

be defined at early development stages based on the

requirements to the system.

So far, IEC 61499 has been commonly understood

as a programming language for implementation of

control algorithms. This view is limiting and not suf-

ficient for designing complex industrial automation

control systems. By definition, IEC 61499 defines a

reference architecture. Therefore, it has several

means to capture architecture, application struc-

ture, and requirements already at early stages of the

application-development process. These means how-

ever have not attracted proper attention of research-

ers so far. In the following subsections, we will discuss

some of them.

Application Structuring with Subapplications

A typical top-down application-development process

starts with specifying the top-level application com-

ponents and their interaction. In subsequent design

steps, these components are specified in detail. The

FB concept is only partly suited for such a top-down

application development since the FB is atomic. That

means that an FB can be later assigned only to one

device. However, top-level or even medium-level

application components may encapsulate the func-

tions of several control devices (e.g., the control of a

whole machine). Therefore, other encapsulation arti-

facts are necessary, which allow the internals of such

components to be distributed to different devices.

IEC 61499 provides such a design artifact called sub-

application [2, pp. 37–39].

The top-down application development does not

cover all the design scenarios, and the bottom-up

approach is also necessary. In the bottom-up ap-

proach, the application parts can be grouped to

subapplications. This can be illustrated on our closed-

loop control example. We can encapsulate it in a sub-

application providing the interface of the closed-

loop control to higher levels (e.g., updating the set

point) while still being able to distribute the FBs to

the two control devices (Figure 3).

Currently, only the open-source engineering tool

4DIAC-IDE [18] provides some basic support of sub-

applications, which allows to group application

parts together. To be fully usable, further exten-

sions toward saving subapplications or loading

subapplication templates as suggested by [19] will

be necessary.

Typed Interfaces with Adapters

Another problem of IEC 61499-based design is clarity

and readability of applications composed of many

large FBs. Such FB diagrams usually have many data

16 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

It should include parts, such as a FB-type container

and FB-instance container, and services that provide

the functionality of SIFBs, management FBs, and

event FBs. This virtual machine (bus) will be next

realized in platform-specific ways on different execu-

tion platforms. Two prototypes that implement this

proposal have already been described [5], [6]; pub-

lished performance measurements show that both

satisfy stringent real-time constraints. This approach

also fulfills the objective of the standard, which is to

support run-time reconfiguration. However, most of

the existing or under evolution run-time environ-

ments adopt the monolithic application approach.

Run-Time Environments

Unsubstantiated Claim 4: A Profile Will Define

the Execution Semantics of IEC 61499 FB Model

The term ‘‘profile’’ is used in standardization to

define an agreed-upon subset and an interpretation

of a specification. It is used in complex technical

specifications that have many optional features so

as to define different conforming implementations

that may not interoperate because of choosing dif-

ferent sets of optional features to support. This is

also the meaning of the term in UML. A profile not

only does it conform to the semantics of general

UML but also specifies additional constraints on

selected general concepts to capture domain-spe-

cific forms and abstractions [32]. According to the

earlier definition of the term, it is clear that there is

no need for a profile to define the execution seman-

tics, but the standard has to provide a clear defini-

tion of the underlying IEC 61499 metamodel at least

as far as the execution semantics are concerned.

An IEC 61499-compliant run-time environment

should provide a platform-specific implementation

of the IEC 61499 virtual bus, as shown in Figure 5.

This means that the run-time environment should

not affect the design of FB types and network

and event connections cluttering the design space and

making hard the understanding of FBs’ interaction.

However, IEC 61499 provides a solution based on

the adapter concept [2, pp. 39–43]. This concept

allows grouping together events and data to form an

interface that is represented as an FB. It is similar to

the concept of ports used in UML 2.0. Ports simplify

the interface of components by grouping of interface

elements that logically belong together.

There are two different ways of using an adapter

in FB interface definition: an interface accepting

adapter called plug or an interface-providing adap-

ter called socket. In the interface definition of an FB,

the plugs are associated with the input side, and

sockets are associated with the output side. The

definition of an adapter type is done from the plug

perspective, because the plug side of an adapter

connection is typically the requirements-defining

side. The socket has always the mirrored interface

of the plug. This means that the events and data

going into the plug are coming out of the socket and

vice versa for the plug’s outputs. Apart from reduc-

ing the number of connections, the adapter concept

has the great advantage that it increases the decou-

pling of application parts. The plug or socket user

needs no knowledge on the other part that they will

be connected to.

We illustrate the use of the adapter concept in

our example from Figure 2. Let us assume that our

control loop is a pressure control loop. In this case,

our control algorithm would need the process value

delivered from a pressure sensor. To make the con-

trol algorithm independent from a particular pres-

sure sensor type, we define a pressure sensor

adapter. Our control algorithm will initialize the sen-

sor giving it a pressure range it should deliver.

Concept

Realization
61499 RE
RTOS C

61499 RE
RTOS B

61499 RE

IEC61499-Compliant
Device

IEC61499-Compliant
Device

IEC61499-Compliant
Device

RTOS A

IEC61499 Virtual Bus

(a)

(b)

FIGURE 5– The IEC 61499 virtual bus (a) and its
realization (b).

Platform-Independent Application Model
Control_Loop Subapplication

Device 1

Sensor
DATA_1

DATA_2

IND

PARAM
Control

OUT

REQ

IN_1

IN_2

Platform-
Specific

Parameters

0.37

PUBLISH

REQ

DATA

COM_PARAM

Platform-Specific
Parameters

Process Interface

Device n

SUBSCRIBE
COM_PARAM

IND

DATA

Process Interface

Actuator

REQ

IN
PARAM_1
PARAM_2

Platform-
Specific

Parameters

Process

Sensor

DATA_1

DATA_2

IND

PARAM
Control

OUT

CNFREQ

IN_1

IN_2

Actuator

REQ

IN

PARAM_1
PARAM_2

Network Interface

Platform-Specific
Application Part

Platform-Specific
Application Part

Platform-Specific
Parameters

Network Infrastructure

CNF

Mapping

Network Interface

FIGURE 3– The example closed-loop control application
encapsulated in a subapplication.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 17

diagrams, i.e., there is no need for the designer to

know the specific characteristics of each run-time

environment. The whole design should be based on

the semantics of the virtual machine. This means

that the execution semantics of an FB instance and

network should have been clearly defined by a

standard in a platform-independent way. It should

have been defined in such a way that the design

models be detailed and precise enough to produce

fully executable models. It should also permit the

automatic generation of the implementation models

in the form of efficient code that can be executed on

specific run-time environments. The FB design mod-

els should be behaviorally expressive and rigorous

as well as intuitive and well structured. Unfortu-

nately, the standard fails to rigorously define the

semantics, and this makes the development of run-

time environments a very hard task. This is also a

major source of incompatibility between the differ-

ent platforms as far as the execution of applications

is concerned.

Since the IEC 61499 standard is intended to be

used by control engineers in specifying distributed

control systems, clarity and simplicity should be

considered as key parameters for deciding upon exe-

cution semantics. Control engineers should be able

to understand how their models work in a relatively

intuitive way. So the semantics have to be rich

enough to support different styles of modeling and

at the same time be simple and intuitive.

There are several proposals regarding the execu-

tion of FB instance and network. Some of these have

already provided a reference implementation; others

are just specs without reference implementations or

a theoretical proof of concept. This makes the devel-

opment of run-time environments a very hard task.

This subsection discusses these proposals, with the

objective to identify the pros and cons that can be

used to complement the standard in the direction of

execution semantics.

The standard introduces many sources of confu-

sion regarding execution semantics. One example is

the so-called ECC operation state machine that is

supposed to define the dynamics of ECC. Actually,

this state machine defines the dynamics of the FB

instance; the behavior of the FB instance is defined

by the ECC of the corresponding FB type. The ECC

operation state machine is the main source of confu-

sion regarding the FB instance execution. The state-

chart shown in Figure 6 was constructed to clearly

describe the dynamics of an FB instance, as close as

possible to the one described by the standard, for

the case that the FB instance is implemented as

active. An FB instance may be defined at PIM or PSM

as active or passive. An active FB has its own thread

Furthermore, we will request it for a new pressure

value. The sensor should deliver the pressure in pas-

cals and signal if there is any problem. The resulting

adapter (from the plug view) can be seen in Figure

4(a). The usage of this adapter in the Pressure_

Control FB and in the Pressure_Sensor_TypeA

FB is shown in Figure 4(b). As the adapter has been

defined according to the needs of the pressure con-

trol algorithm, the plug can be directly used in the

Pressure_Control FB. In Pressure_Sensor_

TypeA, there are some adjustments necessary. In

our example, the pressure sensor delivers its values

not within the correct range. Therefore, the FB

RANGE_ADAPT transforms the sensor value to the

correct range. Note the mirrored interface of the

socket in the Pressure_Sensor_TypeA FB.

Describing Interface Semantic

The interface of an FB as defined in IEC 61499 is an

important feature for designing safe and reusable

software components. However, according to [20,

pp. 50ff], the interface specification alone is not suffi-

cient to ensure the use of a software component as a

black box in different applications. Also, the interface

semantic have to be defined. The interface semantic

describe how the interface has to be used (e.g., first,

event A and then event B), or how it behaves. For

specifying the behavior of adapters and SIFBs, IEC

61499-1 prescribes in Clause 6.1.3 the use of Interna-

tional Organization for Standardization (ISO)/IEC

10731 time-sequence diagrams. According to this

description, the sequence of input and output events

and the values of data input and outputs can be

defined with time-sequence diagrams. Although the

Pressure_
Sensor_
Adapter

PV in Pa

CONDITION

CNF_RD

INITOINIT
RD

PARAMS
RANGE

ERROR

STATUS

Pressure_Sensor_TypeA Pressure_Control

P_SENS_IF

SENSOR

STATUS

VALUE

CNF_RD

INITOINIT

RD

PARAMS

ERROR

CONDITON

Pressure_
Sensor_Adapter

PV

CONDITION

CNF_RD

INITOINIT

RD

PARAMS

RANGE

ERROR

STATUS

P_SENS_SKT

CONVERT

RANGE_ADAPT

PV

CNFREQ

VALUE

RANGE

Pressure_
Sensor_Adapter

PV

CONDITION

CNF_RD

INITO INIT

RD

PARAMS

RANGE

ERROR

STATUS

P_SENS_PLG

P_CONTROL

CONTROL_ALG

ACT_VALUE

IND_ACT

RD_SENSSTART

SENS

PV

SENSOR_MGM

MANAGER

PARAMS

RANGE

START

INIT_SENS

SENS_ERROR

STATUS

INIT_CNF

CONDITION

P_SENS_PLG >> >> P_SENS_SKT

(a)

(b)

FIGURE 4– (a) An adapter FB for a pressure sensor and (b)
its usage in a pressure control application.

18 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

of execution, while a passive FB does not have its

own thread of execution; it is executed by other

threads. It is clear that the assumed design-level

behavior for the FB instance should be the same in

both cases. The same behavior should also be

ensured for the case of an event-based implementa-

tion or a cycle-based one.

The execution semantics of the FB instance that

are considered so far as undefined by the standard

can be classified into three categories: 1) queuing or

losing of input events; 2) scheduling function; and 3)

event-processing policy.

As far as the first category is concerned, state-

chart semantics imply the use of an event pool,

which means that there is no loss of event. The con-

cept of the scheduling function and the concept of

resource are not clearly defined by the standard,

and this is one of the biggest problems for the devel-

opment of a run-time environment. It is clear that

the given definitions are greatly influenced by IEC

1131 and are in contrast to the meaning of the corre-

sponding terms in software engineering. A proposal

is to avoid both concepts [33] and use 1) the con-

cept of FB container to partially support the

assumed by the resource functionality and 2) the

real-time operating system (RTOS) scheduler when

scheduling of FB instances is required.

Regarding the event-processing policy, both the

first-come order or the priority-based order can be

considered. However, to obtain a more efficient

response to safety critical events, the priority-based

order should be adopted. According to the adopted

policy in UML statecharts, the state machine proc-

esses one event at a time and finishes all the conse-

quences of that event before processing another

event; a policy known as run-to-termination. How-

ever, the FB-type definition, and mainly, the definition

usage of time-sequence diagrams is prescribed for

adapters and SIFBs, IEC 61499 does allow their use

for the interface definition of any FB type (according

to Annex A of IEC 61499-2). Figure 5 shows an exam-

ple of such an interface behavior description.

This method provides additional means to docu-

ment the FB behavior to the benefit of both develop-

ers and users. Thus, the time-sequence diagrams

can be used in the specification phase to define

interfaces of new FBs. These specification can be

then passed to the FB developer, who implements

the functionality of an FB.

Compliance Profiles
One of the main goals of IEC 61499 development was

to promote the development of heterogeneous sys-

tems composed of control devices of different ven-

dors. Compliance with the standard brings some level

of compatibility even if such devices have completely

different internals. Quite naturally, the standard can-

not foresee upfront all the features of devices’

programming, configuration, or communication that

need to be standardized. Instead, it defines a flexible

and extensible mechanism of compliance profiles.

A compliance profile shall describe how the plat-

form and implementation-specific issues are solved.

The structure of a compliance profile is described in

IEC 61499-4. In general, an IEC 61499 compliance pro-

file has to define the following three points:

n The portability provisions describe how the

models of IEC 61499 can be exchanged between

tools of different vendors.

n The interoperability provisions describe how

devices from different vendors can communi-

cate with each other.

n The configurability provisions describe how devi-

ces from different vendors can be configured and

E_PERMIT
Bool

EO EventEvent EI

PERMIT

Permitted Event
Propagation

Input Output

Input Output

EO

EI

Unpermitted Event
Propagation

EI
PERMIT = FALSE

PERMIT = TRUE

FIGURE 5– Interface of the standard FB E_PERMIT as
defined in Annex A of IEC 61499-1 and the time-sequence
diagram describing its behavior.

Read Next Event

Evaluate EC Transitions

Perform EC Actions

Event Occurrence

Read Data
Update EI Variables

Transition Clears

No Transition Clears

Actions Completed

Clear Associated
EI variables

Clear All
EI Variables

FIGURE 6– State machine of the active FB instance
construct of IEC 61499.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 19

of EI variables and their use in transition expressions,

favors a policy that is influenced by the cycle-based

implementation approach, where all pending input

events are candidates for processing. Events from

the event queue will be transferred to the EI variables

that are to be consumed based on their priority.

The problem of the undefined transition evalua-

tion order, which rises when the trigger expressions

of two transitions starting from the same state are

simultaneously fulfilled, a situation that leads to

nondeterminism, can be easily handled by the defini-

tion of the evaluation-order priority parameter that

explicitly defines the evaluation order on the PSM

[33]. The concept of negated trigger event, as

defined in [34], can also be used to address this

problem. The standard assumes as order of execu-

tion the order of transitions in the extensible

markup language (XML) specification, but this is a

source of ambiguity.

Terms formally defined by the UML 2.0 statechart

formalism [30], which is an object-based variant of

Harel statecharts, can be used to resolve all the

ambiguities in an FB instance execution and obtain a

formal model of execution for the FB instance. Such

concepts include deferred events, conflicting transi-

tions, firing priorities, completion transitions and

completion events, and deferred triggers, which

address many of the open issues in FB instance exe-

cution. For example, the concept of completion

event can be used to formally handle the transition

that has as transition condition the expression ‘‘1,’’

which is introduced by the standard. Moreover, the

concept of deferred event can be used to mark an

event in a given state that should not be cleared if it

does not trigger any transition in this state.

Many assumptions made by the IEC 61499

community over the last few years regarding the

process of defining execution semantics are unsub-

stantiated without proof of concept, i.e., a reference

implementation or a clear theoretical basis. Thus,

confusion is created in the domain. For example,

authors in [21] claim that a single run of a basic FB is

instantaneous or relatively short, and they use it as

an assumption to the definition of what they call

sequential model of execution. They define as single

run the time from the activation of an FB instance

until the time that there are no more transitions in

the ECC to clear. This assumption is completely arbi-

trary and, of course, in conflict with the definition of

FB as a component that is given by the same

authors. There is an assumption in statecharts on

zero execution time, but this refers only to the

transition time. It should be noted that an issue that

differentiates the ECC from the classical statecharts

is the fact that the transition label in statecharts

how applications can be downloaded into the

devices.

An example of a compliance profile is provided

in [21].

The compliance profile concept has the great

advantage that the standard can be extended to dif-

ferent needs and also define things the standard has

intentionally left open (e.g., the concrete communi-

cation between devices on a certain field bus sys-

tem). However, this flexibility may also bring

problems, as it opens the door to vendor-specific

extensions that destroy the open distributed system

idea of IEC 61499. An example for this is the imple-

mentation of ISaGRAF, whose features follow the

compliance profile mentioned in [22]. However, the

compliance profile is not publicly available, so no

other vendor can develop compatible solutions.

In our opinion, a regulatory instrument is needed

to keep the control system vendors in line with the

ideas of IEC 61499. The international organization

O3neida has been volunteering so far to be such a

regulatory body. O3neida has been promoting the

ideas of IEC 61499 and, on the other hand, has been

involved in the development of IEC 61499 compli-

ance profiles [23].

A good example of an issue targeted by a compli-

ance profile is the execution behavior (semantics) of

FBs and applications built thereof. The reason for this

are weak semantic-related descriptions in IEC 61499-

1, which have been interpreted differently by differ-

ent execution environment developers. This resulted

in the situation that the same application can behave

differently on different execution environments. Dif-

ferent execution problems were reported in [24]–

[26]. To overcome these limitations, O3neida is cur-

rently developing a compliance profile defining the

execution behavior of run-time environments and

also clarifying the ambiguously defined elements of

IEC 61499-1 (see [23] for more information).

Many of the semantic ambiguities can be poten-

tially fixed by amending the standard’s text. Cur-

rently, IEC 61499-1 is in a revision phase. The

corresponding IEC working group (of which the

authors are members) is actively working on improv-

ing several descriptions in the standard to provide a

common and clearly defined execution behavior of

applications and an FB independent of the underly-

ing execution behavior. Obviously, achieving consen-

sus in the standard would be the best solution to

satisfy both the application developers and the

device vendors.

Conclusions
Currently, control engineers are challenged by

the growing complexity of automation projects,

20 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

determines not only the triggering but also event

generations. Event generation in ECC is not shown in

transition labels, but it is shown in the EC action

specification. The term EC action that is used in ECC

to define the algorithm and the corresponding event

that is to be issued after the execution of the algo-

rithm is probably confusing to the statechart users.

It is also clear that the EC action does not have the

semantics of the term action as used in statecharts.

The authors in [21] also introduce the parallel

hypothesis execution model and claim that it better

fits to the not-so-short algorithms assumption,

since, as they claim, the execution of each block

should take, according to the standard, a short time

interval. In [19], the short time execution of algo-

rithms is a prerequisite to assume that a whole daisy

chain of event connections between FB instances

executes as a critical region. This completely arbi-

trary and wrong assumption is used to define the

nonpreemptive multithreaded resource model of

execution, according to which a running FB instance

cannot be preempted by another FB instance of the

same resource. It should be noted here that it is very

important to clearly distinguish the notion of run-to-

completion from the concept of thread preemption.

Run-to-completion event handling is performed by a

thread that can be preempted, and its execution can

be suspended in favor of another thread executing

the same processing node [30]. The authors pro-

ceed in the same article in the axiomatic definition of

a number of semantics that are also criticized for

not being consistent with the real-time domain con-

cepts of embedded systems and greatly complicate

the execution of IEC 61499 design specifications.

Concluding Remarks
The market of industrial systems needs open solu-

tions. Distribution, interoperability, portability, and

run-time reconfiguration are open issues that have to

be addressed in the development process of today’s

complex industrial process systems. IEC 61499 is

here to provide some solutions. However, it is clear

that this standard has been influenced very much

from the IEC 1131 FB model and fails in successfully

exploiting current software engineering practices. It

also has many ambiguities and open issues; the effec-

tive use of requirements, the architectural design

phase, as well as the execution semantics have to be

addressed. This is why a major revision is required

for the standard to be seriously considered by the

industry. A reliable reference implementation is

required to demonstrate the applicability of the

standard and also validate the concepts behind it.

Since the standard attempts to introduce at the

same time two paradigm shifts, the one from the

accompanied by shortened development time

and tight quality requirements. New program-

ming methodologies are necessary to increase

software quality and reuse. With IEC 61499, mod-

ern software engineering methodologies have

been adapted to the domain of industrial automa-

tion. This investigation showed that IEC 61499

defines several means that can help to improve

software quality and reduce the development

effort of distributed control systems. However, it

also identified some open issues to be solved.

How fast these issues can be solved will deter-

mine the success of IEC 61499.

Although the current adoption of IEC 61499 is

low, it does not determine the failure of IEC 61499.

One reason for the low adoption rate so far has been

that control engineers needed comprehensive solu-

tions rather than a single technology. Such solutions

have finally appeared. The solutions from ICS Tri-

plex, nxtControl, and the open-source project 4DIAC

are the promising signs toward broad industrial

application of IEC 61499.

Biographies
Alois Zoitl (zoitl@acin.tuwien.ac.at) received his

Ph.D. degree in electrical engineering with the

focus on automation and control technology from

Vienna University of Technology, Austria, in 2007.

Since 2002, he has been with the Automation and

Control Institute (ACIN), Vienna University of

Technology. Currently, he is the head of the Agile

Control Group at ACIN. He has participated in

several applied research projects with direct rela-

tion to industry. His research interests are low-level

control of manufacturing systems with the focus on

distributed reconfigurable real-time control sys-

tems based on IEC 61499. He is a member of the

IEC SC65B/WG15 team for the IEC 61499 standard.

Valeriy Vyatkin (v.vyatkin@auckland.ac.nz) is

with the University of Auckland, New Zealand. He is

the head of infoMechatronics and Industrial Auto-

mation research laboratory, whose research focus

is the next generation of intelligent automation sys-

tems based on self-configuration, plug and play,

adaptability, and resilience to faults. His research

expertise is software engineering for industrial auto-

mation systems, including IEC 61499 architecture,

new methods of automatic validation of industrial

automation systems, and algorithms improving

their performance.

References
[1] Iacocca Institute, ‘‘21st century manufacturing enterprise

strategy: An industry-led view,’’ Iacocca Institute, Bethlehem,
PA, Tech. Rep. D148708, 1991.

[2] Function Blocks—Part 1: Architecture, IEC 61499-1, 2005.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 21

procedural to the object based, and the other from

the device-centric to the application-centric, a very

long time is required for its adoption from industrial

engineers. Experiences from the procedural to the OO

paradigm shift in the software domain can be

exploited to facilitate this paradigm shift.

Acknowledgments
The author is grateful to the anonymous referees for

the numerous remarks and suggestions that have

led to significant improvements of this article.

Biography
Kleanthis Thramboulidis (thrambo@ece.upatras.

gr) received his B.Sc. and Ph.D. degrees in electri-

cal engineering from the University of Patras,

Greece, in 1981 and 1989, respectively. He is an

associate professor with the Department of Electri-

cal and Computer Engineering, University of Patras,

where he is leading the Software Engineering

Group. He is currently a visiting professor at Hel-

sinki University of Technology, Finland. He is the

designer of CORFU, a framework for the unified de-

velopment of distributed control and automation

systems. He proposed model-integrated mechatronics,

a new paradigm for the model-driven development

of mechatronic manufacturing systems. His research

interests include object technology, model-driven

development, service-oriented architectures, embed-

ded systems, and mechatronics. He is a member of

the Industrial Electronics Society Technical Commit-

tee on Factory Automation.

References
[1] Function Blocks, Part 1-Part 4, IEC International Standard

61499, Jan. 2005.
[2] V. Vyatkin, Z. Salcic, P. S. Roop, and J. Fitzgerald, ‘‘Now that’s

smart!’’ IEEE Ind. Electron. Mag., vol. 1, no. 4, pp. 17–29,
Winter 2007.

[3] K. Thramboulidis. (2006). IEC 61499 in factory automation.
Advances in Computer, Information, and Systems Sciences, and
Engineering. Proc. IETA 2005, K. Elleithy. et al., Ed. New York:
Springer-Verlag, pp. 115–123 [Online]. Available: http://www.
springer.com/engineering/signals/book/978-1-4020-5260-6

[4] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. K. Sünder, and
B. Favre-Bulle, ‘‘The past, present, and future of IEC
61499,’’ in Proc. 3rd Int. Conf. Industrial Applications of Hol-
onic and Multi-Agent-Systems, HoloMAS 2007, Deutschland,
pp. 1–14.

[5] K. Thramboulidis and A. Zoupas, ‘‘Real-time Java in control

and automation: A model driven development approach,’’ in
Proc. 10th IEEE Int. Conf. Emerging Technologies and Factory
Automation, ETFA’05, Catania Italy, Sept. 2005, pp. 38–46.

[6] G. Doukas and K. Thramboulidis. A real-time Linux based
framework for model-driven engineering in control and auto-
mation. IEEE Trans. Ind. Electron. [Online]. Available:
http://ieeexplore.ieee.org/xpl/freepre_abs_all.jsp?isnum-
ber=4387790&arnumber=5210159pp. 1–14.

[7] A. Luder, J. Peschke, and M. Heinze, ‘‘Control programming

using Java,’’ IEEE Ind. Electron. Mag., vol. 2, no. 2, pp. 19–27,
June 2008.

[8] S. Panjaitan and G. Frey, ‘‘Functional control objects in dis-
tributed automation systems,’’ in Proc. Workshops Intelligent
Manufacturing Systems (IMS’07), Alicante, Spain, May 23–25,
2007, pp. 293–298.

[3] Function Blocks—Part 2: Software Tool Requirements, IEC
61499-2, 2004.

[4] Function Blocks—Part 4: Rules for Compliance Profiles, IEC
61499-4, 2005.

[5] K. Thramboulidis, ‘‘IEC 61499 in factory automation,’’ in Proc.
Int. Conf. Industrial Electronics, Technology and Automation
(CISSE’05—IETA), Dec. 2005.

[6] A. Zoitl, T. Strasser, K. Hall, R. Staron, C. Sünder, and B.
Favre-Bulle, ‘‘The past, present, and future of IEC 61499,’’
in Proc. 3rd Int. Conf. Industrial Applications of Holonic and
Multi-Agent-Systems, HoloMas, Regensburg, Germany, 2007,
pp. 1–14.

[7] A. Zoitl, T. Strasser, C. Sünder, and T. Baier, ‘‘Is IEC 61499 in

Harmony with IEC 61131-3?’’ Ind. Electron. Mag., vol. 3, no. 4,
pp. 49–55, 2009.

[8] V. Vyatkin, ‘‘The IEC 61499 standard and its semantics,’’ Ind.
Electron. Mag., vol. 3, no. 4, pp. 40–48, 2009.

[9] R. Lewis, Modeling Control Systems Using IEC 61499—Applying
Function Blocks to Distributed Systems. London: The Institu-
tion of Electrical Engineers, 2001.

[10] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Dis-
tributed Control Systems Design. Durham, NC: ISA and O3neida,

2007.
[11] Programmable Controllers—Part 3: Programming Languages,

IEC 61131-3, 1993.
[12] A. Zoitl, Real-Time Execution for IEC 61499. ISA and O3neida,

Durham, NC: 2009.
[13] ICS Triplex ISaGRAF Inc. (2009, June). ISaGRAF User’s Guide

[Online]. Available: http://www.isagraf.com
[14] D. Lavall�ee, J.-F. Lalibert�e, N. Landreaud, K. Thrambouli-

dis, P. Bettez-Poirier, F. Desy, F. Darveau, N. Gendron, and

C.-D. Trang. (2009, June). An IEC 61499 configuration with
70 controllers: Challenges, benefits and a discussion on
technical decisions [Online]. Available: http://www.
isagraf.com/pages/documentation/ETFA07_SS1_Final17Oct2007.
pdf

[15] nxtControl GmbH. (2009, June). nxtControl—Next generation
software for next generation customers [Online]. Available:
http://www.nxtcontrol.com/

[16] Object Management Group. (2009, June). Model driven archi-

tecture [Online]. Available: http://www.omg.org/mda/faq_mda.
htm

[17] B. Huber, R. Obermaisser, and P. Peti, ‘‘MDA-based develop-
ment in the DECOS integrated architecture—Modeling the
hardware platform,’’ in Proc. 9th IEEE Int. Symp. Object and
Component-Oriented Real-Time Distributed Computing, ISORC
2006, Apr. 2006, pp. 43–52.

[18] 4DIAC Consortium. (2009, June). Framework for distributed
automation and control (4DIAC) [Online]. Available: http://

www.fordiac.org
[19] C. Sünder, A. Zoitl, J. Christensen, M. Colla, and T.

Strasser, ‘‘Execution models for the IEC 61499 elements
composite function block and subapplication,’’ in Proc.
2007 5th IEEE Int. Conf. Industrial Informatics, June 2007,
vol. 2, pp. 1169–1175.

[20] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. New York: ACM Press, 2002.

[21] J. H. Christensen. (2009, June). IEC 61499 compliance profile

for feasibility demonstrations [Online]. Available: http://
www.holobloc.com/doc/ita/index.htm

[22] TÜVRheinland. (2009, June). ISaGRAF 5.1 assessment accord-
ing to IEC 61499 [Online]. Available: http://www.isagraf.com/
get/ISaGRAF_5-1_1499-TUVconfirmation.pdf

[23] O3neida. (2009, June). Compliance profile [Online]. Available:
http://www.oooneida.org/standards_development_Compliance_
Profile.html

[24] L. Ferrarini and C. Veber, ‘‘Implemenation approaches for

the execution model of IEC 61499 applications,’’ in Proc. 2nd
IEEE Int. Conf. Industrial Informatics, Berlin, Germany, June
2004, pp. 612–617.

[25] K. Thramboulidis and G. Doukas, ‘‘IEC 61499 execution model
semantics,’’ in Innovative Algorithms and Techniques in Auto-
mation, Industrial Electronics and Telecommunications, T.
Sobh, K. Elleithy, A. Mahmood, and M. Karim, Eds. Berlin:
Springer-Verlag, 2007, pp. 223–228.

[26] A. Zoitl and G. Frey, ‘‘Special session: S07 execution seman-

tics of IEC 61499 function block applications,’’ in Proc. 5th
IEEE Int. Conf. Industrial Informatics, June 2007, vol. 2.
pp. 1141–1194.

22 IEEE INDUSTRIAL ELECTRONICS MAGAZINE n DECEMBER 2009

[9] K. Soundararajan and R. W. Brennan, ‘‘Design patterns for real-
time distributed control system benchmarking,’’ Robot. Comput.-
Integr. Manuf., vol. 24, no. 5, pp. 606–615, Oct. 2008.

[10] Programmable Controllers, Part 3: Programming Languages, IEC

International Standard 61131–3, 2003.
[11] T. M. Egyedi, ‘‘Standard-compliant, but incompatible?!’’ Comput.

Stand. Interfaces, vol. 29, no. 6, pp. 605–613, 2007.
[12] ISO/IEC Directives—Part 1: Preparation stages for standards

[Online]. Available: http://www.iec.ch/ourwork/stages-e.htm
[13] J. Chouinard, D. Lavall�ee, J. Lalibert�e, N. Landreaud, K. Thram-

boulidis, P. Bettez-Poirier, F. Desy, F. Darveau, N. Gendron, and C.
Trang. (2007). An IEC 61499 configuration with 70 controllers;
challenges, benefits and a discussion on technical decisions

[Online]. Available: http://www.isagraf.com/pages/documentation/
whitepapers.htm

[14] J. Bergin and R. Winder. (2000). Understanding object oriented
programming [Online]. Available: http://csis.pace.edu/~bergin/pat-
terns/ppoop.html

[15] K. Thramboulidis, ‘‘A constructivism-based approach to teach
object-oriented programming,’’ J. Informat. Educ. Res., vol. 5,
no. 1, pp. 1–12, 2003.

[16] K. Thramboulidis, ‘‘Using UML in control and automation: A

model driven approach,’’ in Proc. 2nd IEEE Int. Conf. Industrial
Informatics, INDIN’04, Berlin Germany, June 24–26, 2004, pp. 587–
593.

[17] K. Thramboulidis, S. Sierla, N. Papakonstantinou, and K. Koski-
nen, ‘‘An IEC 61499 based approach for distributed batch process
control,’’ in Proc. 5th IEEE Int. Conf. Industrial Informatics (INDIN
07), Vienna, Austria, July 23–27, 2007, pp. 177–182.

[18] Representation of Process Control Engineering Requests in P&I Dia-
grams and Data Exchange Between P&ID Tools and PCE-CAE Tools,

International Standard IEC 62424, 2005.
[19] C. Sunder, A. Zoitl, J. H. Christensen, V. Vyatkin, R. W. Brennan,

A. Valentini, L. Ferrarini, T. Strasser, J.L. Martinez-Lastra, and F.
Auinger, ‘‘Usability and interoperability of IEC 61499 based dis-
tributed automation systems,’’ in Proc. 4th IEEE Int. Conf. Industrial
Informatics (INDIN 06), 2006, pp. 31–37.

[20] V. Vyatkin and V. Dubinin, ‘‘Sequential axiomatic model for execu-
tion of basic function blocks in IEC 61499,’’ in Proc. 5th IEEE Int.
Conf. Industrial Informatics (INDIN 07), Vienna, Austria, July 23–27,

2007, pp. 1183–1188.

[21] V. Vyatkin, V. Dubinin, C. Veber, and L. Ferrarini, ‘‘Alternatives
for execution semantics of IEC 61499,’’ in Proc. 5th IEEE Int. Conf.
Industrial Informatics (INDIN 07), Vienna, Austria, July 23–27, 2007.

[22] V. Vyatkin and V. Dubinin. (2007, Oct. 3). Execution model of IEC

61499 function block based on sequential hypothesis [Online].
Available: http://www.ece.auckland.ac.nz/~vyatkin/o3fb/vd_seqsem.pdf

[23] K. Thramboulidis, ‘‘A model based approach to address ineffi-
ciencies of the IEC 61499 function block model,’’ in Proc. 19th Int.
Conf. Software and Systems Engineering, Paris, France, Dec. 2006.

[24] J. P. Peltola, J. H. Christensen, S. A. Sierla, and K. O. Koskinen, ‘‘A
migration path to IEC 61499 for the batch process industry,’’ in
Proc. 5th IEEE Int. Conf. Industrial Informatics INDIN 07, Vienna,
Austria, July 2007, pp. 811–816.

[25] C. Szyperski, ‘‘Component technology—What, where, and how?’’
in Proc. 25th Int. Conf. Software Engineering (ICSE’03), p. 684.

[26] C. Szyperski. (1999). Components vs. objects vs. component
objects [Online]. Available: http://www.oberon2005.ru/paper/
cs1999.pdf

[27] M. Shaw and D. Garlan, Software Architecture: Perspectives on an
Emerging Discipline. Englewood Cliffs, NJ: Prentice-Hall, 1996.

[28] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmerl, and J. Silva,
‘‘Documenting component and connector views with UML 2.0,’’
Tech. Rep. CMU/SEI-2004-TR-008 ESC-TR-2004-008, Software Eng.
Instt., Pittsburgh, Apr. 2004.

[29] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual, 2nd ed., Reading, MA: Addison-Wes-
ley, 2005.

[30] OMG, ‘‘Unified Modeling Language: Superstructure, version 2.1.1,’’
formal/2007-02-03, Needham, MA.

[31] R. Soley and the OMG Staff Strategy Group. (2000, Nov. 27).
Model-driven architecture. White Paper, Draft 3.2 [Online]. Avail-

able: ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf
[32] B. Selic and L. Motus, ‘‘Using models in real-time software design,’’

IEEE Control Syst. Mag., vol. 23, no. 3, pp. 31–42, June 2003.
[33] K. Thramboulidis and G. Doukas, ‘‘IEC 61499 execution model

semantics,’’ in Proc. Int. Conf. Industrial Electronics, Technology
and Automation (CISSE-IETA 06), Dec. 4–14, 2006, pp. 223–228.

[34] M. von der Beek, ‘‘A comparison of statechart variants,’’ Formal
Techniques in Real-Time and Fault-Tolerant Systems (Lecture Notes
in Computer Science, vol. 863), L. de Roever and J. Vytopil, Eds.

Berlin: Springer-Verlag, pp. 128–148.

DECEMBER 2009 n IEEE INDUSTRIAL ELECTRONICS MAGAZINE 23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

