
IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 1, JANUARY 2003 159

Correspondence__

Correction to “A Carry-Free 54 b 54 b Multiplier Using
Equivalent Bit Conversion Algorithm”

Y. Kim, B.-S. Song, J. Grosspietsch, and S. F. Gillig

The algorithm in the above paper1 is incorrect. When, as stipulated, it
is implemented without carry-propagating adders, the circuit produces
incorrect results. The actual fabricated multiplier does produce correct
results with the carry-free conversion block. However, carry propaga-
tion was inadvertently introduced to the StageD RB adders.

The authors regret the error and thank the readers who have pointed
out the need for carry propagation. In particular, the authors wish to
acknowledge the efforts of Prof. W. Rülling for pinpointing the flaw in
the implementation.

Manuscript received September 27, 2002.
Y. Kim, J. Grosspietsch, and S. F. Gillig are with Motorola, Inc., Schaumburg,

IL 60196 USA.
B.-S. Song is with the Department of Electrical and Computer Engineering,

University of California at San Diego, La Jolla, CA 92093 USA.
Digital Object Identifier 10.1109/JSSC.2002.806268

IEEE J. Solid-State Circuits, vol. 36, pp. 1538–1544, Oct. 2001.

A Remark on Carry-Free Binary Multiplication

Wolfgang Rülling

Abstract—It is shown that any binary multiplier needs some mechanism
for carry propagation. As a consequence, the carry-free multiplier pre-
sented in the paper by Kim et al. cannot work correctly. To demonstrate
that fact, implementation-independent test patterns are constructed.

Index Terms—Adders, algorithms, encoding, multiplication, redundant
number systems.

I. INTRODUCTION

Recently, in [1], a very fast 54 b� 54 b multiplier with low power
consumption was introduced. It uses a redundant number representa-
tion (RB) for summing up partial products without using carry chains.
Finally, the redundant result is converted into the normal binary repre-
sentation (NB) using a carry-free equivalent bit conversion algorithm
(EBCA).

In the following, it will be shown that, for large data lengths, any bi-
nary multiplier needs some mechanism for carry propagation. This is
demonstrated by constructing general test patterns. Simulating the cir-
cuit from [1], it turns out that, indeed, incorrect results are computed.
This is due to an error in the basic cell for carry-free RB-to-NB conver-

Manuscript received December 11, 2001; revised September 27, 2002.
The author is with the Fachhochschule Furtwangen, D-78120 Furtwangen,

Germany (e-mail: ruelling@fh-furtwangen.de).
Digital Object Identifier 10.1109/JSSC.2002.806267

TABLE I
TRUTH TABLE FOR CORRECTRB-TO-NB CONVERSION

sion. Unfortunately, correcting the basic cell means introducing a carry
chain, thus increasing the computation time.

II. RB-TO-NB CONVERSION

The essential idea of converting redundant numbers to normal bi-
nary numbers is to replace every pair(X; Y) of adjacent RB digits by
two bits(Z1; Z2). For that conversion, one has to consider an incoming
carryENI from the right and has to produce a carryENO to the left.
Table I specifies the truth table of the elementary converter cell satis-
fying the following equation:

2 �X + Y � ENI = 2 � Z1 + Z2 � 4 � ENO:

In the equation, bits (0,1) and RB symbols(1; 0; 1) are interpreted as
integers (using1 = �1). This way, any input vector is replaced by
a numerically equivalent output vector. For example, the RB number
01 00 00 . . . 00 00 01 is replaced by the output00 11 11 . . . 11 11 11,
demonstrating the effect of a carry chain.

In [1], a slightly different truth table is used. For(X;Y) = (0; 0)
andENI = 1, the outputENO is changed from 1 to 0. As a con-
sequence, the outputENO becomes independent from the inputENI
and the carry chain is broken. Thus, whenever the multiplier produces
a redundant result containing a long sequence of type. . . 0001 . . ., the
RB-to-NB conversion will fail.

III. CONSTRUCTINGTEST PATTERNS

To demonstrate the fault by an easy-to-understand example, we use
the fact that a multiplier computingy = u � v can also be used to add
two numbers. For any binary numbersa andb at mostn = 26 in length,
we construct the input vectorsu = a �2n+b andv = 2n+1. Then, the
correct resulty = u�v becomesy = a �22n+(a+ b) �2n+ b and the
binary representation ofy is the concatenation of the binary numbersa,
a+ b andb. Especially, the output bits(y2n�1; y2n�2; . . . ; yn) are the
binary representation ofa+ b. Please also note that there are only two
bits of v set to one. The Booth coding ofv contains two ones and all
other Booth digits are zero. As a consequence, only two partial products
are needed to compute the resulty. The other partial products and the
error correction vector do not depend ona. This way, we can study
how the multiplier computesa + b for arbitrarya andb. Since binary
addition needs some mechanism for carry propagation like the carry

0018-9200/03$17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

