
It is not often that major long-standing theories in
geometry are overthrown. Since the time of Plato it has
been thought that there were only five regular solids.
Recently, however, James Arvo and David Kirk of
Apollo have discovered a sixth. The new shape-the
teapotahedron-is illustrated on the back cover of the
SIGGRAPH 87 conference proceedings. Since I dealt
with this shape a few columns ago, I thought I would
share some observations on databases of the other five
Platonic solids. Constructing a database for these
shapes is a good basis for exploring the various sorts of
symmetry they have. The main problem is to find
explicit coordinates for the vertices. A cube or an octa-
hedron uses pretty simple numbers. The other shapes,
made of equilateral triangles or pentagons, might at
first seem to require strange numbers as coordinates,
but the messiness of the values depends on the orienta-
tions of the shapes. My object here is to find orienta-
tions that allow the vertex coordinates to be as simple
as possible. It is possible to construct all five shapes
using only the numbers 0, 1, and the golden ratio cp.
This latter is defined by the equation

1 (

'p 1+ p

which works out to

+=l + ts 1.6180342

Now some notational conventions: Each point (ver-
tex) is numbered, and the coordinates are declared by a
line of the form

PNT n, x, y, z

After the points are defined, the polygons (faces) are
described by a sequence of point numbers denoted

POLY nl, n2, n3, ...

Each polygon is carefully constructed so that the points
are named going in a consistent clockwise order as
seen from the outside (if you are left-handed) or coun-
terclockwise order (if you are right-handed).

The cube
The cube is centered at the origin, has an edge length

of 2, and uses only the numbers + 1 and -1 as coor-
dinates.
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PNT
PNT
PIT
PIT
PNT
PNT
PNT
PIT
POLY
POLY
POLY
POLY
POLY
POLY

1, 1., 1., 1.

2, 1,33, 1. -1.,1

6, -1., 1., 1.

2, 1 ,3,4
5,6,8,7
1,2,6,5
4,3,7,8
3,1,5,7
2,4,8,6

A picture of this appears in Figure 1.

I tim including decimal points in the coordinates,
even though they happen to be integers, to emphasize
the fact that they are floating-poirnt numbers-a little
readability trick. All the point numbers are integers
and are essentially just names or labels. (In fact, many
polygon modeling systems actually allow symbolic
names here.)

The octahedron
This database is just as easy. Here we use the num-

bers +1, 0, and -1 (see Figure 2).

PNI 1, 1.
PNT 2, -1.,
PNT 3, 0

PNT 4, 0.,

PNT 5, 0.,

PNT 6, 0.

POLY 1,3,5
POLY 3,1,I
POLY 4,1,5
POLY 1,4,6
POLY 3,2,5
POLY 2,3,6
POLY 2,4,5
POLY 4,2,6

0.,

0. ,

1.,

-1.

0.,

0.,

0.

0.

0.

0.

1.

-1.

The octahedron is what is known as the "dual" shape
of the cube. That is, each:vertex of the octahedron lies
at the center of a face of the cube, and each vertex of
the cube corresponds to a face of the octahedron. (Scal-
ing the cube uniformly by 1/3 makes its vertices lie
eXactly in the center of the octahedron's faces.) In fact,
even though we are not numbering polygons explicitly,
the polygons and points of the above databases have
been carefully ordered so that the jth point of the octa-
hedron lies at the center of the jth polygon of the cube.
Likewise, the jth point of the cube (times 1/3) lies at the
center of the jth polygon of the octahedron.
So all right...the octahedron is balancing on its nose.

To get it to lie with one face on, say the z =0 plane, you

Figure 2.

have to rotate and translate it. I have chosen to do this
by selecting the final polygon (that is, points 2, 4, and 6)
and solving for a rotation and translation matrix that
makes all three points have a z coordinate of zero. First
rotate by 45 degrees around y to get the points to have
coordinates

2: -R, O, -R
4: 0, -1, 0

6: R, 0, -R
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Figure 1.
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To make the z coordinates the same, the angle and z
value must be

a = arctan X ;-35.2644'2
z = -34 z-.57735

Using the notation for transformations developed last
month, the face-on octahedron is

PUSH
TRAN
ROT
ROT
DRAW
POP

0, 0, .57735
-35.2644, 1
45.0000, 2
OCTAHEDRON

The tetrahedron
This is the first tricky one. The initial thought is to

put one of the triangles in, say, the z=0 plane, but the
coordinates are not obvious. It happens, though, that a
tetrahedron can fit entirely inside of a cube, its edges
lining up with the diagonals to the cube's faces (abraca-
dabra). The database is

PNT 1, 1.,
PNT 2, 1.,
PNT 3, -1.,
PNT 4, -1.,
POLY 4,3,2
POLY 3,4,1
POLY 2,1,4
POLY 1,2,3

1., 1.
-1., -1.
1 ., -1.

-1., 1.

No muss, no fuss. See Figure 3.
Admittedly it is in a bit of a weird orientation, sitting

on one edge instead of one face. You can make it face
down by putting it through exactly the same transfor-
mation that made the octahedron face down (double
abracadabra).

PUSH
TRAN
ROT
ROT
DRAW
POP

0, 0, .57735
-35.2644, 1
45.0000, 2
TETRAHEDRON

where

R = /2

Then rotate about x by the angle ep, putting the points at

2:
4:
6:

-R, -Rsina,
0, -cos ca,

R, -Rsin ce,

-R cos a

sin a
-R cos a

The icosahedron
This can also be easily done edge on. In this case the

12 vertices of the icosahedron happen to lie at the
corners of three golden rectangles that are symmetri-
cally intertwined, as in Figure 4. A golden rectangle
has a height-to-width ratio of 1:qp, where the aforemen-
tioned cp - 1.618034. Admittedly this is an irrational
number, but it seems to be a popular one in nature.
Generating the numbers and tying them together into
polygons gives the database:

IEEE Computer Graphics & Applications

Y

z

Va

Figure 3.

Figure 4.

64



1.618034, 1., 0.
-1.618034, 1., 0.
1.618034, -i., 0.

-1.618034, -1., 0.

1., 0., 1.618034
1., 0., -1.618034

-1., 0., 1.618034
-1., O., -1.618034

0.,
0.,
0.,
0.,

31,
22,
21,
34,
23,

, 33,
, 32,
, 24,

, 33,
, 31,
, 32,
, 34,

, 13,
11,

, 12,
, 14,

, 23,
, 21,
, 22,
, 24,

1.618034,
-1.618034,
1.618034,

-1.618034,

21
33
32
22
31
24
23
34

31
33
34
32

11
13
14
12

21
23
24
22

1.
1.

-1.
-1.

1
2
3
4
5
6
7
8

11
12
13
14

21
22
23
24

31
32
33
34

See Figure 5. The points have been number-named

nonconsecutively in an attempt to show which golden
rectangle they come from. The polygons are named in
the comment field (after the "!") also in a nonconsecu-

tive way, which will be useful later. Again, this orienta-
tion is unsatisfying if you want to set the shape on a

table. To get it face down, let us rotate it about the x
axis so that the vertices of polygon 34 (that is, points 34,
24, and 22) all have equal z coordinates. The angle and
z turn out to be

-1

arctan o -20.90510

Z =_e2IV3_ ;z -1.51152

Figure 6.

The stable icosahedron is then

PUSH
TRAN 0., O., 1.61152
ROT -20.9051,1
DRAW ICOSAHEDRON
POP

The dodecahedron
Once again an edge-on orientation gives the easiest

coordination. Here, we need to generate 20 vertices.
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PNT 11,
PNT 12,
PNT 13,
PNT 14,

PNT 21,
PNT 22,
PNT 23,
PNT 24,

PIT 31,
PNT 32,
PNT 33,
PNT 34,

Figure 5.

POLY
POLY
POLY
POLY
POLY
POLY
POLY
POLY

POLY
POLY
POLY
POLY

POLY
POLY
POLY
POLY

POLY
POLY
POLY
POLY

11,
11,
13,
13,
12,
12,
14,
14X

11,
123
13,
14,

21,
223
23,
243

31
32
33
34

z
32

ks

¼31

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
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The dodecahedron is the dual shape of the icosahe-
dron. This means that each vertex of the dodecahedron
can be calculated as the centroid of a face of the icosa-
hedron. Doing this for each face yields coordinates that
look a bit messy at first. But by using the following
identities

Now the naming of the polygons of the icosahedron
makes sense. Polygon i of the icosahedron corresponds
to point i of the dodecahedron. Polygon j of the dodeca-
hedron corresponds to point j of the icosahedron. How
to get it face down? Rotate about x to make all points of
face 34 have the same z coordinate. The angle and z are

lAo = p- 1
2

3= 2+ 1

and scaling the whole shape by 1/cp2, you get points
with coordinates that use only the values 0, 1, gp, and
1/cp. This process reveals another interesting property
of the dodecahedron: It has a cube embedded in it.
Eight of the vertices are the same as the eight vertices
of our cube. The other 12 come from a set of three rec-
tangles, intertwined in a fashion similar to those in the
icosahedron. In this case, however, the rectangles have
aspect ratio 1/cp:cp. The database is

PIT 1,
PIT 2,
PIT 3,
PNT 4,
PNT 5,
PNT 6,
PNT 7,
PNT 8,

PIT 1i,
PIT 12,
PIT 13,
PNT 14,

PIT 21,
PNT 22,
PNT 23,
PNT 24,

1., 1., 1.
1., 1., -1.
1., -1., 1.
1., -1 ., -1 .

-1., 1., 1.
-1., 1., -1.
-1., -1., 1.
-1 . , -1 ., -i .

.618034,
-.618034,
.618034,

-.618034,

1.618034,
1.618034,

-1.618034,
-1.618034,

1.618034,
1.618034,

-1.618034,
-1.618034,

0.
0.
0.
0.

0., .618034
0., -.618034
0., .618034
0., -.618034

arctan(-ip) Pt: -58.2825°

z = , 2/ - -1.37638

The net transformation is

PUSH
TRAN 0., 0., 1.37638
ROT -58.2825, 1
DRAW DODECAHDERON
POP

Other ways
These databases have simple point coordinates but

the solids need to be rotated to get them face down. It is
still an interesting exercise to try to generate a database
directly in another coordinate system, either face-on or
vertex-on. I leave this as (ahem) an exercise for the-
reader. Another way to generate these highly symmet-
ric shapes is to use a single triangular polygon and
place rotated copies of it in space to form the shape. In
a few months I will show the results of some such
experiments.

0., .618034, 1.618034
O., -.618034, 1.618034
0., .618034, -1.618034
;0., -.618034, -1.618034

2,11,1,21,22
5,i2,6,24,23
3,13,4,22,21
8,14,7,23,24

3,21,1,31,32
2,22,4,34,33
5,23,7,32,31
8,24,6,33,34

5,31,1,11,12
3,32,7,14,13
2,33,6,12,11
8,34,4,13,14

! 11
! 12
! 13
. 14

! 21
! 22
! 23
! 24

Applications
What good is this? Hey, it's abstract mathematics; it

doesn't have to be practical. But actually there are prac-
tical applications. Geodesic domes are based on the
icosahedron. You need to calculate locations of the ver-
tices to build the dome. Knowledge of these coordinates
also proved useful in the making of The Mechanical
Universe. Several of the programs dealt with electric
field lines radiating from point charges in space. A
symmetric placement of starting points for these field
lines was necessary. The vertex coordinates of an icosa-
hedron or a dodecahedron proved exactly what was
needed.

! 31
! 32
! 33
! 34
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31,
32,
33,
34,

PIT 3
PNT 3
PIT 3
PIT 3

POLY
POLY
POLY
POLY

POLY
POLY
POLY
POLY

POLY
POLY
POLY
POLY

66


