
One of my favorite experiences in high school math-
ematics was learning how to solve quadratic equa-

tions. We all remember how it goes—we want to find
values of x that satisfy the equation

ax2 + bx + c = 0

After some algebraic magic we find the solution for x as
the quadratic formula. Let’s all recite it together:

(1)

I think it was the sheer nonobviousness of this solution
that fascinated me so much.

Little did I know in high school that I would later use
this equation extensively to make pictures of planets and
DNA molecules. Each pixel in such an image requires the
intersection of a second order surface with a ray con-
necting the eye and the pixel; so it’s the solution of a qua-
dratic equation. I’ve described some of these adventures
in a series of articles titled“How to Draw a Sphere.”1

As is usual with life, things are not as simple as they
were in high school. There are several problems with
the quadratic formula as written in Equation 1. In this
column, I’ll talk about these problems and various solu-
tions to them.

Neater coefficients
Before doing anything else, I’m going to change the

representation of the inputs to the problem. It will turn
out that later calculations will be much neater if we
express the quadratic as

Ax2 + 2Bx + C = 0

I’ve basically just pulled a factor of 2 out of the coeffi-
cient b and changed a, b, and c to uppercase. I like to use
uppercase for coefficients as it helps to distinguish
between inputs to the algorithm (uppercase) from inter-
mediate results and outputs (lowercase). Mathematics
is all about finding patterns, and anything we can do to
make patterns more apparent visually, even within alge-
braic formulas, is good.

The standard quadratic formula then looks like

(2)

Figure 1 illustrates the universe of possible quadratics
in ABC space. The surface where the discriminant
B2 − AC is zero is a cone with its axis along the A = C line,
and with the A and C axes embedded in it. Note that it
is not a circular cone; the cross section is elliptical. Points
on this cone correspond to quadratics with double roots.

Inside the cone there are no real roots, outside
the cone there are two distinct roots. Looking at
the relative volumes involved, it’s comforting to
know that, statistically at least, you are much
more likely to stumble upon a quadratic with two
real roots as one with complex roots. In this arti-
cle I’ll only talk about real solutions, so I’ll con-
sider only polynomials where B2 − AC ≥ 0.

Numerical problems
The first problem with Equation 2 is numeri-

cal. A classic source of numerical problems is the
subtraction of two nearly equal quantities. The
higher order bits cancel out leaving a result that
has only a few bits of accuracy. This will happen
with Equation 2 whenever B2 >> AC so that

B AC B2 − ≈

x
B B AC

A
= − ± −2

x
b b ac

a
= − ± −2 4

2

James F. Blinn

Microsoft
Research

How to Solve a Quadratic Equation __________________

Jim Blinn’s Corner
http://www.research.microsoft.com/~blinn/

76 November/December 2005 Published by the IEEE Computer Society 0272-1716/05/$20.00 © 2005 IEEE

A

C

B

B2− AC < 0
No real roots

B2− AC 0
Two coincident roots

B2− AC > =0
Two distinct roots

B2− AC < 0
No real roots

1 The space of possible quadratics.

When calculating the roots according to Equation 2, one
or the other of the expressions

and

results in subtraction of two nearly equal values. That
calculated root can be mostly noise.

Fixing the numerical problem
The typical way to solve the numerical problem, as

discussed in more detail elsewhere,2 is to first note that
the product of the two roots is

Because we know that finding one of the roots is numer-
ically safe, we just calculate the other root as x2 = C/Ax1.
We can find the safe root by looking at the sign of B and
picking the solution that has us adding values instead
of subtracting them. Press et al.2 recommend an algo-
rithm that is, in our notation,

(3)

Does this really matter?
It’s worthwhile understanding exactly when this

numerical problem happens. The condition

means that one of the two roots is much smaller (in mag-
nitude) than the other, a perfectly likely occurrence. For
example, consider the polynomial

(4)

For comparison purposes, let’s calculate the roots in
extremely high precision. The basic interesting quanti-
ty is

According to Equation 2 the roots are, then

(5)

However, when we do this with single-precision float-
ing point we get the approximate intermediate results:

If we were to blindly use Equation 2 with these approx-
imate values we would get

On the other hand, if we use Equation 3 we would get

This, of course, is a better match to the result in Equation
5. But this might not always be all that big a deal. For
example, consider the accuracy with which we know x2.
For single-precision floating-point numbers, the repre-
sentable values surrounding this root are

−1999999.875
−2000000.000
−2000000.125

That is, the least significant bit for a number of magni-
tude 2000000 has the value 0.125. This means that the
accuracy with which we can represent the larger root,
simply due to floating-point representation limitations,
is much bigger than the error we got in the smaller root
by using Equation 2. Of course, the relative error in the
smaller root is much better using Equation 3. But if, for
example, the x value represents a position in space, know-
ing one root to high relative precision might not be all that
useful if the absolute error of the other root is large. Or
consider the following. Let’s evaluate the function f(x)
from Equation 4 at the various numerically calculated
roots and see how close to zero we get:

Sure, using the value −.0000005 for x1 gives us some-
thing really small. But using the value zero for x1 gives
us a value of f that is no worse than that for the best
approximation we can get to the other root x2.

All in all though, I recommend Equation 3 (with some
modifications that we’ll discuss next). But in some situ-
ations it might be useful to consider whether it’s really
necessary.

Root ordering
The formulation in Equation 3 works numerically but

has a few problems for computer animation (which is
notoriously hard on algorithms). First, the algorithm as
stated returns values that are discontinuous in B. If we
smoothly animate B from positive to negative (a possi-
ble scenario), the x1, x2 pair swaps places from being the
(lowest, highest) roots to being the (highest, lowest)

f

f

f

−() =

−() =

() =

2000000 1

0000005 0000005

0 1

2. .

x x
1 2

1 0 0000005= = − .

x

x
1

2

1000000 1000000 0

1000000 1000000 2

= − + =

= − − = − 0000000

B AC

B AC

2

2

999999995904

1000000

− ≅

− ≅

B AC2 21000000 1− = −

= 999999999999
=999999.9999999499999999999875 ...

f x x x() = + × + =2 2 1000000 1 0

B AC B2 − ≈

q B B B AC

x q A

x C q

= − + () −





=

=

sgn

/

/

2

1

2

x x
B B AC

A
B B AC

A
C

1 2

2 2

= − − −











− + −











=
AA

− + −B B AC2

− − −B B AC2

IEEE Computer Graphics and Applications 77

x
1

1000000 999999 999999499999999999875= − +

.= −0 000000500000000000124999999999968502833
1000000 999999 999999499999999999

2

...
.x = − − 8875

1999999 999999499999999999875= − .

roots (or vice versa, depending on the sign of A). This
could create various kinds of havoc in rendering algo-
rithms. For this reason I prefer the following variant:

(6)

This guarantees that x2 ≤ x1 (if A > 0) and that x1 ≤ x2

(if A < 0) independently of what happens to B and C. If
you are solving a lot of quadratics it might be possible
(and worthwhile) to have some global constraint that
guarantees that A > 0 (note that we can always flip the
sign of all three of A, B, C and get a quadratic with the
same roots). You might also be tempted to simply divide
A out of B and C as a preprocess and perform some opti-
mizations using the fact that now effectively A = 1. I’m
not going to do that here since I will shortly enter into
homogeneous land where we can have A = 0.

Again there are some tradeoffs. Equation 3 is more
likely to parallelize nicely because it doesn’t have con-
ditionals. (The sgn function just requires bit shuffling.)
So if you don’t care about the ordering of the returned
roots, Equation 3 might seem to be a better choice. But
first consider the following.

A degeneracy
Both Equations 3 and 6 have an Achilles heel that

Equation 2 does not. If it happens that B = C = 0 (a pos-
sible occurrence), Equations 3 and 6 go up in smoke.
One of the solutions will come out as 0/0 even though
the quadratic has a perfectly respectable double root at
0. Since we are testing the sign of B anyway, we can head
off this problem by including a case for B = 0. If B = 0 we
don’t have the numerical problem so we can use
Equation 2, which gives us

Let us, then, fix up the algorithm to include this test.
I’ll present the algorithm as Table 1, with the three con-

ditions along the three rows and the results down the
columns. Note that I have made some of the cells in this
table white. This is to call attention to the pattern that
for B = 0 the calculation for x1 is the same as that for B <
0 and the calculation for x2 is the same as that for B >0.

Going homogeneous
Now what happens if A = 0? Conventionally, this means

that the quadratic degenerates into a linear equation:

2Bx + C = 0

But we’re not going to think that way. Instead, I want to
generalize our problem slightly into that of solving a
homogeneous quadratic equation:

Ax2 + 2Bxw + Cw2 = 0

This allows us to write the equation as a matrix prod-
uct, and writing things as matrices is always good:

(7)

For example, the discriminant of the quadratic can
now be seen as (minus) the determinant of the matrix:

Now we are looking for [x, w] pairs that satisfy this equa-
tion. And any nonzero multiple of such an [x, w] pair
also satisfies it. Computer graphicists familiar with 3D
homogeneous coordinates can think of [x, w] as a 1D
homogenous coordinate location on the number line.
You get the actual solution by the homogeneous divi-
sion x/w. Going homogeneous basically adds a value at
infinity to the number line at [x, w] = [1, 0].

Now we can see that the condition A = 0 simply means
that the homogeneous quadratic has one root at infinity:

2Bxw + Cw2 = (2Bx + Cw)w = 0

And the two roots are any scalar multiples of

We just need to beef up our algorithm to generate
homogeneous results (easy) and to work properly for any
values of (A, B, C), in particular for any combinations of
A, B, C being zero (slightly trickier). In addition, we expect
that the final algorithm will be nicely symmetrical with
respect to A and C, in the same manner as Equation 7.

With a homogeneous quadratic, the solutions we
require are now [x, w] pairs, whose ratio equals the non-
homogeneous solution we got previously. The nonho-
mogeneous solutions are already ratios, so recasting
them in this 1D homogeneous coordinate notation is
easy (see Table 2).

x w C B

x w

1 1

2 2

2

1 0

, ,

, ,





 = −









 = 





B AC
A B

B C
2 − = −













det

Ax Bxw Cw x w
A B

B C

x

w
2 22 0+ + = 




























=

x
AC

A
= ± −

if

else

B

q B B AC

x q A

x C q

q B B AC

<()
= − + −
=

=

= + + +

0

2

1

2

2

/

/

xx C q

x q A
1

2

= −

= −

/

/

Jim Blinn’s Corner

78 November/December 2005

Table 1. Algorithm.

Conditions q x1 x2

B > 0

B = 0

B < 0 C
q

q
A− + −B B AC2

–
q
A

q
A

+ −AC

–
q
A–

C
q

B B2 − AC+ +

This version works fine for all cases except one, where
A = B = 0. This case is symmetrical to the one we’ve
already covered, where C = B = 0. This latter case cor-
rectly generates a double root at [0, 1]. We would like for
the A = B = 0 case to generate a double root at infinity,
[1, 0]. Instead, it generates [0, 0]. To fix this let’s look
more closely at our choices for [x1, w1]. I’ll now give
names to the two homogeneously equivalent candi-
dates:

If B > 0 we pick p, and if B < 0 we pick m. If B = 0 these
choices simplify to

Usually either one of these will work; they are homoge-
neous scales of each other. But if, in addition, we have
C = 0 we do not want to pick p0; we have to pick m0.
Contrariwise, if A = 0 we do not want to pick m0; we have
to pick p0. We can avoid testing floating-point numbers
against zero (always a dicey proposition) by instead see-
ing which of A and C are largest in magnitude and pick-
ing appropriately:

Similarly, for [x2, w2] we have the two choices:

When B = 0, these simplify to

And the choice becomes

Putting it together
Table 3 shows the final homogeneous algorithm. In

this version I’ve shown it using the vector names instead
of their values to emphasize the pattern in the entries.
Recall that we were careful to make the [x1, w1] solu-
tion stay stable when B goes from positive to zero to neg-
ative. That is, we made sure that the [x1, w1] solution
doesn’t abruptly jump over to the other solution during
this transition. There is, however, a jump via a homoge-
neous scale when B passes zero. Finally, note that if B =

0 and , there doesn’t seem to be a good reason
for picking one solution set over another. I’ve arbitrari-
ly chosen the m0 and q0 pair.

We’re not done yet
There is another way to look at this. Numerical con-

siderations aside, we have found two possible formula-
tions for each of the two homogeneous roots:

The two formulations for each of [x1, w1] and [x2, w2]
are homogeneously equivalent; one is a scalar multiple
of the other. But what does the existence of two-solution
formulations really mean? Next time, we’ll see that these
are special cases of a more general solution scheme, and
also find an intriguing relationship between the trans-
formation of [x, w] parameter space and corresponding
transformations in [A, B, C] coefficient space. We’ll use
this to come to a deeper understanding of what we are
really doing when we solve quadratic equations. ■

References
1. J.F. Blinn, Notation, Notation, Notation, Morgan Kauf-

mann, 2003.
2. W.H. Press et al., Numerical Recipes in C, Cambridge Univ.

Press, 1988, p. 184.

Readers may contact Jim Blinn at blinn@microsoft.
com.

x w

B B AC A C B B AC

1 1

2 2





 =

− − −





− + −





or

xx w

B B AC A C B B AC

2 2

2 2





 =

− + −





− − −





or 

A C=

x w A C
2 2 0 0

,



 >()= if then elseq n

q

n

0

0

= − −





= + −





AC A

C AC

q

n

= − − −





= − + −





B B AC A

C B B AC

2

2

x w A C
1 1 0 0
,



 >()= if then elsem p

p

m

0

0

= + −





= −





–C AC

AC A

p

m

= + + −





= − + −





–C B B AC

B B AC A

2

2

IEEE Computer Graphics and Applications 79

Table 2. Incomplete homogeneous algorithm.

Condition q [x1, w1] [x2, w2]

B > 0 [–C, q] [–q, A]

B = 0 [q, A] [−q, A]

B < 0 [q, A] [C, q]−B + B2 − AC

+ −AC

+B + B2 − AC

Table 3. Final homogeneous algorithm.

Condition [x1, w1] [x2, w2]

B > 0 p q

B = 0 m0 q0

p0 n0

B < 0 m n

A < C

A ≥ C

