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Abstract—Data provided by most optical Earth observation
satellites such as IKONOS, QuickBird, and GeoEye are com-
posed of a panchromatic channel of high spatial resolution (HR)
and several multispectral channels at a lower spatial resolution
(LR). The fusion of an HR panchromatic and the correspond-
ing LR spectral channels is called “pan-sharpening.” It aims at
obtaining an HR multispectral image. In this paper, we propose
a new pan-sharpening method named Sparse Fusion of Images
(SparseFI, pronounced as “sparsify”). SparseFI is based on the
compressive sensing theory and explores the sparse representation
of HR/LR multispectral image patches in the dictionary pairs
cotrained from the panchromatic image and its downsampled LR
version. Compared with conventional methods, it “learns” from,
i.e., adapts itself to, the data and has generally better perfor-
mance than existing methods. Due to the fact that the SparseFI
method does not assume any spectral composition model of the
panchromatic image and due to the super-resolution capability
and robustness of sparse signal reconstruction algorithms, it gives
higher spatial resolution and, in most cases, less spectral distortion
compared with the conventional methods.

Index Terms—Data fusion, dictionary training, pan-sharpening,
SL1MMER, sparse coefficients estimation, Sparse Fusion of
Images (SparseFI).

I. INTRODUCTION

MANY remote sensing applications such as land-use clas-
sification, change detection, map updating, and hazard

monitoring require images with both high spectral and high
spatial resolution (HR). However, due to technological limi-
tations of current remote sensors, the data provided by most
topographic Earth observation satellites such as IKONOS,
QuickBird, GeoEye, and WorldView-2 are composed of a
panchromatic channel of HR (e.g., 0.5–1 m) and several (typ-
ically 3–8) multispectral channels at a lower spatial resolu-
tion (LR) (e.g., 2–4 m). While the HR panchromatic image
allows for accurate geometric analysis, the LR spectral chan-
nels provide the spectral information, necessary for thematic
interpretation.

The fusion of panchromatic and spectral channels is called
“pan-sharpening.” Simple pan-sharpening methods aim at pro-
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viding a color image of pleasing and sharp appearance. This
is facilitated by the fact that the human visual perception
has an LR in the three color channels than in the black-
and-white (panchromatic) channel. Quantitative evaluation of
remote sensing data, however, calls for more sophisticated
methods. The aim is obtaining an HR multispectral image as
if it was acquired by a sensor with the same spectral response
as the multispectral sensors but the spatial resolution of the
panchromatic sensor. A particular difficulty is that, in general,
the panchromatic pixel value cannot be considered to be simply
the linear combination of the ones in the spectral bands. The
reason is that the spectral bands may not add up to the panchro-
matic sensitivity band.

Pan-sharpening can be referred to as a special case of
image fusion. Pohl and Van Genderen [1] provided a com-
prehensive review of most conventional pan-sharpening tech-
niques and references approximately 150 academic papers
on image fusion. Since then, further research in the image
fusion area is mostly focused on improving fusion quality
and reducing color distortion. Among the existing hundreds
of various pan-sharpening methods, the most popular ones
are intensity–hue–saturation technique (IHS) [2], principal
component analysis (PCA) [3], Brovey transform [4], and
wavelet-based fusion [5], [6]. Due to the mentioned significant
difference of the gray value between the panchromatic and
multispectral images, caused by different wavelength ranges,
the conventional methods may suffer from significant spectral
distortion.

The goal of this paper is to explore a sparse signal represen-
tation of image patches to solve the pan-sharpening problem.
This is a relatively new topic. A first successful attempt is
addressed in [7] where multispectral image patches are assumed
to have a sparse representation in a dictionary randomly sam-
pled from HR multispectral images acquired by “comparable”
sensors. It is demonstrated to give competitive or even supe-
rior performance compared with the aforementioned methods.
However, since the algorithm in [7] requires training images
from an—possibly nonavailable—HR multispectral sensor that
is spectrally similar to the sensor at hand, its applicability is
limited. For example, pan-sharpening of data of the highest
available resolution is not possible per definition with this
algorithm. To cope with this problem, a joint dictionary from
oversampled LR multispectral and HR pan images is proposed
in [8] in which the HR multispectral image is assumed to
be sparse. Still, this method requires big collections of LR
multispectral and HR pan image pairs.

In this paper, we propose a new pan-sharpening method
named Sparse Fusion of Images (SparseFI, pronounced as
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Fig. 1. Flow chart of the SparseFI method.

“sparsify”) that can be used in a much broader application
domain. Different from [7], SparseFI explores the sparse repre-
sentation of multispectral image patches in a dictionary trained
only from the panchromatic image at hand. Therefore, no
HR multispectral images from other sensors are required. The
SparseFI algorithm also does not assume any spectral com-
position model of the panchromatic image and gives robust
performance against spectral model errors.

Compared with conventional methods, sparse reconstruction-
based methods “learn” from, i.e., adapt themselves to, the
data. Due to the super-resolution capability and robustness of
the used sparse reconstruction technique, these methods are
expected to give higher spatial and spectral resolution with less
spectral distortion compared with other existing methods.

Although, in this paper, we take pan-sharpening as the pre-
ferred application, the proposed algorithm is generally applica-
ble to image fusion, including hyperspectral image sharpening
or spectral unmixing.

II. SPARSEFI ALGORITHM FOR IMAGE FUSION

Pan-sharpening requires a low-resolution (LR) multispectral
image Y with N channels and a high-resolution (HR) panchro-
matic image X0 and aims at increasing the spatial resolution of
Y while keeping its spectral information, i.e., generating an HR
multispectral image X utilizing both Y and X0 as inputs. The
SparseFI algorithm reconstructs the HR multispectral image
in an efficient way by ensuring both high spatial and spectral
resolution with less spectral distortion. It consists of three main

steps: 1) dictionary learning; 2) sparse coefficients estimation;
and 3) HR multispectral image reconstruction (see Fig. 1).

A. Dictionary Learning

The HR pan image X0 is low-pass filtered and downsampled
by a factor of FDS (typically 4–10) such that it has a final
point spread function similar to a sampling grid identical to
the multispectral channels. The resulting LR version of X0

is called Y0. This downsampling step may be combined with
the coregistration of the different channels that is required,
anyway. The LR pan image Y0 and the LR multispectral image
Y are tiled into small (typically 3 × 3 to 9 × 9) possibly,
but not necessarily, partially overlapping patches y0 and yk,
where k stands for the kth channel and k = 1, . . . , N . All the
LR patches y0 with pixel values arranged in column vectors
form the matrix Dl called the LR dictionary. Likewise, the HR
dictionary Dh is generated by tiling the HR pan image X0

into patches x0 of FDS times the size as the LR pan image
patches, such that each HR patch corresponds to an LR patch.
These image patches are called “atoms” of the dictionaries.
Fig. 2 provides an example of a few corresponding LR and HR
atoms from the dictionary pair Dh and Dl. In this example,
the LR and HR patches are of sizes 5 × 5 and 50 × 50 pixels,
respectively, i.e., downsampling factor FDS = 10. We use this
extreme downsampling factor for the later experiments and to
test the limits of the proposed algorithm.

It is worth mentioning that, for the image sharpening
tasks where dictionaries are trained from external image
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Fig. 2. Few atoms y0 and x0 of (left) the LR and (right) HR dictionaries Dh and Dl, respectively. In this example, LR and HR patches are of sizes 5 × 5 and
50 × 50 pixels, respectively, i.e., downsampling factor FDS = 10, which is very high.

collections [9], dictionary training is the key issue to super-
resolve the LR images. In our method, the dictionary pair is
learnt directly from the image itself. Due to the fact that the
dictionaries are built up from the pan image observing the
same area and acquired at the same time as the multispectral
channels, the LR multispectral image patches yk and their
corresponding HR patches xk to be reconstructed are expected
to have a sparse representation in this LR/HR dictionary pair.
Furthermore, the corresponding yk and xk share the same
sparse coefficients in Dh and Dl. This gives us an alternative
method for image fusion when large collections of representa-
tive satellite images are not available.

B. Sparse Coefficients Estimation

This step attempts to represent each LR multispectral patch
in the kth channel yk as a linear combination of LR pan patches
y0, i.e., of the atoms of the dictionary Dl with a coefficient
vector denoted by α̂k. Since this dictionary is overcomplete,
i.e., its columns are not orthogonal, there may be infinitely
many solutions. We argue that it is very likely that the “best”
solution is the one employing the least number of pan patches.
Therefore, for each LR multispectral patch yk, a sparse coeffi-
cient vector α̂k is estimated by an L1 − L2 minimization:

α̂k = argmin
α

{
λ‖αk‖1 +

1

2
‖D̃αk − ỹk‖22

}
(1)

where

D̃ =

[
Dl

βPDh

]
ỹk =

[
yk

βwk

]
. (2)

Matrix P is a matrix that extracts the region of overlap between
the current target patch and previously reconstructed ones. wk

contains the pixel values of the previously reconstructed HR
multispectral image patch on the overlap region. Note that, if
the patches do not overlap, D̃ = Dl and ỹk = yk. Parameter β
is a weighting factor that gives a tradeoff between goodness
of fit of the LR input and the consistency of reconstructed
adjacent HR patches in the overlapping area. In our experiment,
β is chosen to be 1/F 2

DS, i.e., we weight the overlapped and

nonoverlapped areas according to their physical sizes. λ is the
standard Lagrangian multiplier, balancing the sparsity of the
solution and the fidelity of the approximation to yk.

If and only if the dictionaries are stable [10], [11], solving
(1) by means of standard convex optimization algorithms can
give the sparsest solution, though with systematic amplitude
bias introduced by the L1-norm approximation of the NP hard
L0-norm minimization problem [12]. However, due to the fact
that the atoms in the dictionaries are often highly coherent,
the dictionaries are normally not stable. Hence, we estimate
the sparse coefficient α̂k using the SL1MMER algorithm [13],
[14], which includes a model order selection step [15] and a
debiasing [12] step to get rid of the mentioned amplitude bias.

C. HR Multispectral Image Reconstruction

Since each of the HR image patches xk is assumed to
share the same sparse coefficients as the corresponding LR
image patch yk in the coupled HR/LR dictionary pair, i.e., the
coefficients of xk in Dh are identical to the coefficients of yk

in Dl, the final sharpened multispectral image patches xk are
reconstructed by

x̂k = Dhα̂k. (3)

The tiling and summation of all patches in all individual
channels finally give the desired pan-sharpened image X̂.

The proposed SparseFI algorithm is supposed to demonstrate
the potential of sparse signal reconstruction for data fusion.
We do not expect that it outperforms all other well-established
algorithms that have been optimized over years and decades.
The experimental results in the next two chapters, however,
show that SparseFI in its infancy compares quite favorably with
conventional algorithms and even exceeds them in most of the
quality metrics.

III. EXPERIMENTS WITH ULTRACAM DATA

SparseFI has been applied to UltraCam data. They are mul-
tispectral images with four channels (i.e., red, green, blue, and
near infrared) with a spatial resolution of 10 cm. From this very
HR multispectral image, we simulate the panchromatic image
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Fig. 3. Input images: (left) simulated HR pan image with a model error of 2.7%; (right) LR multispectral image obtained by downsampling the original HR
multispectral image with a factor of 10.

X0 by linearly combining the multispectral bands and adding
some model error

X0 = c1X1 + c2X2 + c3X3 + c4X4 + ε. (4)

Xk and ck are the values of the kth band of the HR multispec-
tral image, and its corresponding weighting coefficient. ε is the
model error. A simulated LR multispectral image Y is obtained
by low-pass filtering and downsampling the original image, i.e.,
the HR multispectral image X. As a validation, we use the
proposed method to reconstruct the HR multispectral image X̂.
By comparing to the original multispectral image X, we access
its performance with respect to conventional methods.

In this section, the performance of the proposed SparseFI
algorithm against the model error is investigated. Furthermore,
the optimum regularization parameter λ under different noise
levels is analyzed.

A. Robustness Against the Model Error

To investigate the robustness of the algorithm against model
errors, as shown in Fig. 3(a), a panchromatic image of an
urban area with a reasonable model error of 2.7% is simulated.
Fig. 3(b) illustrates the corresponding LR multispectral image
obtained by downsampling the HR multispectral image with
an extreme factor of 10. From the two input images, the HR
multispectral image can be reconstructed and then be compared
with the original HR multispectral image [see Fig. 4(a)]. Fig. 4
shows the HR multispectral image reconstructed using (b) the
proposed SparseFI method, (c) IHS method, (d) adaptive IHS
method, (e) PCA method, and (f) Brovey transform method.
Note that, for visual comparison, only the RGB channels are
visualized. Compared with the results produced by conven-
tional pan-sharpening methods, it is verified that SparseFI can
provide visually satisfactory results even under the situation of
the large downsampling factor of 10.

For quantitative assessment, the results shown in Fig. 4 are
evaluated using the well-known assessment criteria (see the

detailed definitions in the Appendix). In brief, the utilized
assessment metrics include [16]–[20] the following:

• root-mean-square error (RMSE): calculates the changes in
pixel values to compare the difference between the original
and pan-sharpened images;

• correlation coefficient (ρ): measures the similarity of spec-
tral features;

• spectral angle mapper (SAM): denotes the absolute value
of the angle between the true and estimated spectral
vectors;

• degree of distortion (D): reflects the distortion level of the
pan-sharpened image;

• universal image quality index (UIQI): a widely used image
sharpening quality assessment indicator;

• average gradient: reflects the contrasts of details contained
in the image and the image intelligibility;

• error relative dimensionless global error in synthesis
(ERGAS): reflects the overall quality of the pan-sharpened
image.

Table I summarizes the calculated assessment criteria value.
The second row gives the reference values of different criteria.
The best value is highlighted for each criterion. It is obvious that
SparseFI gives in most of the metrics the best performance.

Even more obvious results are achieved by adding a more
significant model error of 25%.

Fig. 5 gives the reconstructed HR multispectral image by
the proposed SparseFI method, and Table II summarizes the
quality metrics. It is evident that the SparseFI method is far
less sensitive to the model error of the panchromatic image
compared with other methods.

B. Dependence on Patch Size and Overlapping Area Size

It is obvious that the performance of the SparseFI algorithm
depends on the patch size and overlapping area size between
the adjacent patches. It is a tradeoff between the compactness
and completeness of the dictionary. On the one hand, a too
small image patch size in the LR dictionary renders the LR
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Fig. 4. (a) Original HR multispectral image. HR multispectral image reconstructed from the input images shown in Fig. 3 using (b) SparseFI, (c) IHS method,
(d) adaptive IHS method, (e) PCA method, and (f) Brovey transform method.

dictionary not compact, i.e., the atoms in the LR dictionary are
generally highly coherent. On the other hand, a too large image
patch size endangers the sparse representation of multispectral
image patches in the dictionary pair, i.e., the atoms in the

dictionary should contain primitive patterns instead of specific
objects. Table III summarizes the quality assessment results
when an HR multispectral image is reconstructed with different
patch sizes. The data set in Fig. 3 is used in this experiment,
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TABLE I
QUALITY METRICS FOR THE ULTRACAM DATA (PAN IMAGE SIMULATED WITH A 2.7% MODEL ERROR)

Fig. 5. HR multichannel image reconstructed by SparseFI with a model error of 25%.

TABLE II
QUALITY METRICS FOR ULTRACAM DATA (PAN IMAGE SIMULATED WITH A 25% MODEL ERROR)
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TABLE III
PERFORMANCE ASSESSMENT—DEPENDENCE ON PATCH SIZE

TABLE IV
PERFORMANCE ASSESSMENT—DEPENDENCE ON REGULARIZATION PARAMETER λ

i.e., with a downsampling factor of 10 and a model error of
2.7%. The overlapping area size and the regularization param-
eter have been tuned to be optimum. Table III tells that the best
overlap area size is 20%–40% of the patch size. The optimum
patch size is 7 × 7 with an overlapping area size of 7 × 3 pixels.
The dictionary size is determined by the image size, the patch
size, and the overlap area size. In this experiment, with an
LR image size of 150 × 150, the length of unknown sparse
coefficients to be estimated is 28 times larger than the measure-
ment length, i.e., the pixel number in a LR patch.

C. Dependence on Regularization Parameter

The regularization parameter λ in (1) balances the sparsity
of the solution and the fidelity of the approximation to y,
and it guarantees the robust image reconstruction from noisy
data. Due to the fact that parameter λ (see Table IV) depends
on the noise level of the input data [21], different levels of
Gaussian white noise are added to the LR input image to find
an appropriate value of λ that could give a common solution to
this convex minimization problem. It is claimed in [22] that, for
Gaussian white noise with standard deviation σ, one typically
sets λ = Tσ with T ≤

√
2 loge L, where L is the number of

atoms in the dictionary. In our experiments, any λ smaller
than 3.7∗σ could provide a solution. Within this region, under
different noise levels σ, we tuned the regularization parameter.
The resulting optimum λ and its corresponding assessment
metrics values are listed in Table III. It shows that the noisier
the data, the larger the value of λ should be, and the best
performance appears with λ having a value on the order of noise
level σ.

IV. EXPERIMENTS WITH WORLDVIEW-2 DATA

The data acquired by WorldView-2 are a panchromatic image
with a spatial resolution of 0.5 m and multispectral images with
a spatial resolution of 2 m. Hence, the HR multispectral image
with a spatial resolution of 0.5 m should be reconstructed. In
order to have a reference for the multispectral image for latter

quality assessment, we downsample the provided pan image to
2 m as the input HR pan image [see Fig. 6(c)] and the multi-
spectral image to 8 m as the input LR multispectral image [see
Fig. 6(b)]. Finally, the HR multispectral pan-sharpened image
with a resolution of 2 m is reconstructed [see Fig. 6(d)] and
compared with the original multispectral image [see Fig. 6(a)]
at the same resolution level.

The reconstructed HR multispectral images are compared
with the results produced by the original IHS, adaptive IHS,
PCA, and Brovey transform methods in Table V. It confirms the
conclusion we found in the previous experiments, i.e., SparseFI
gives superior performance for most of the quality metrics. In
particular, different from the moderate performance in SAM
from the previous tests, in this experiment, the HR multispectral
image reconstructed by the SparseFI algorithm shows superior
performance in SAM.

V. CONCLUSION

In this paper, we have proposed the SparseFI algorithm for
image fusion and validated it using UltraCam data. The superior
performance of SparseFI has been demonstrated by a statistical
assessment. Compared with other conventional pan-sharpening
methods, SparseFI does not assume an accurate spectral model
of the panchromatic image, and hence, it is less sensitive to
the model error of the panchromatic image. It outperforms
the other algorithms in most of the assessment. The analysis
of dependence on the regularization parameter indicates that
optimal λ has a value on the order of noise level σ.

A few additional remarks might be helpful for further use of
our results.

• The proposed algorithm is generally applicable to image
fusion. The most straightforward example is hyperspectral
image sharpening. Often, we have an LR hyperspectral im-
age and an HR multispectral image of the same area possi-
bly, but not necessarily taken at the same time. We can use
the HR multispectral image to build up the overcomplete
dictionary pair and sharpen the LR hyperspectral image to
the spatial resolution of the HR multispectral image.
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Fig. 6. (a) Original multispectral image with a resolution of 2 m. (b) Downsampled input LR multispectral image Y with a resolution of 8 m. (c) Downsampled
input HR pan image X0 with a resolution of 2 m. (d) HR multispectral image reconstructed by SparseFI.

TABLE V
QUALITY METRICS FOR WORLDVIEW-2 (TEST SITE: ROME)

• The proposed algorithm can be easily extended to image
sharpening under the condition that no HR pan image
X0 is available. The dictionaries can be trained from
redundant numerous image resources, e.g., a remote sens-
ing data archive. Although the straightforward dictionary
learning method mentioned in Section II cannot be directly
applied in this case, it can be used for generating the ini-
tial overcompleted dictionaries. Followed by the training

process, the cotrained compact but overcomplete dictio-
naries Dl and Dh, which contain the essential geometric
information of reconstruction process, can be used to-
gether with the offered LR image Y to generate the desired
HR image X̂ [9].

• It is worth mentioning that, when the patch size is chosen
to be extremely large, the proposed method works similar
as IHS because (1) will then tend to simply choose a
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single patch, i.e., the corresponding one. A further study
on developing parameter-free algorithms, i.e., systemati-
cally tuning for an optimal patch size and regularization
parameter, would be of great interest.

• Since the dictionary of SparseFI is only trained from the
data set at hand, it contains less atoms than a dictionary
trained from a larger set of images. Therefore, the algo-
rithm is computationally efficient even with patch sizes
much larger than 2 × 2 as used in [7]. These larger patches
also contain more textural information. A potential disad-
vantage is that texture or object classes that cover only
a small fraction of the image might be underrepresented,
leading to a less sparse solution. If additional images of
similar content and from the same sensor are available, the
dictionary can be readily extended to specifically cover the
otherwise underrepresented object classes.

• Although the proposed sparse reconstruction-based
method leads to competitive results, it still can be
improved by considering the fact that the information
contained in different multispectral channels is correlated.
Such correlation allows us to introduce further prior, the
so-called joint sparsity. The authors are currently working
on the extension of the proposed SparseFI algorithm
toward a Jointly Sparse Fusion of Images (J-SparseFI)
algorithm.

APPENDIX

The quality criteria used in this paper are defined as [16]–[20]
follows.

• RMSE: The RMSE is frequently used to compare the
difference between the original and pan-sharpened images
by directly calculating the changes in pixel values. It is
defined as

RMSE =

√√√√ 1

MN

M∑
i=1

N∑
j=1

(Xi,j − X̂i,j)2. (5)

Xi,j is the pixel value of the original image X, and X̂i,j

is the pixel value of the pan-sharpened image X̂. M and
N are the HR image sizes. The pan-sharpened image is
closer to the original image when RMSE is smaller.

• Correlation Coefficient (ρ): The correlation coefficient
of the pan-sharpened and original images measures the
similarity of spectral feature. It is defined as

ρ =

∑
i,j

[
(Xi,j − x) · (X̂i,j − x̂)

]
√∑

i,j

[(Xi,j − x)2] ·
∑
i,j

[
(X̂i,j − x̂)2

] (6)

where x and x̂ are the mean values of the original image
X and the pan-sharpened image X̂, respectively. A corre-
lation coefficient of close to +1 means that the two images
are highly correlated.

• SAM: It denotes the absolute value of the angle between
the true and estimated spectral vectors

SAM(Xi,j , X̂i,j) = arccos

(
〈Xi,j , X̂i,j〉

‖Xi,j‖2 · ‖X̂i,j‖2

)
. (7)

A value of SAM equal to zero denotes absence of spectral
distortion, but radiometric distortion is possible (the two
pixel vectors are parallel but have different lengths). SAM
is measured in either degrees or radians and is usually
averaged over the whole image to yield a global measure-
ment of spectral distortion.

• Degree of Distortion: The degree of distortion directly
reflects the level of pan-sharpened image distortion. It is
defined as

D =
1

MN

M∑
i=1

N∑
j=1

|Xi,j − X̂i,j |. (8)

The distortion of the pan-sharpened image is small,
whereas the value of D is small.

• UIQI (Q-average): The UIQI has been widely used to
assess the quality of image sharpening recently. It is
defined as

Q0 =
σxx̂

σxσx̂
· 2xx̂(

x2 + x̂
2
) · 2σxσx̂

(σ2
x + σ2

x̂)
(9)

where x, σx and x̂, σx̂ are the mean values and standard
deviations of the original image X and the pan-sharpened
image X̂, respectively. It combines three different factors,
namely, loss of correlation, luminance distortion, and con-
trast distortion. The best value of Q-average is 1.

• Average Gradient: The average gradient reflects the con-
trasts of details contained in the image and the image
intelligibility. It is defined as

G =
1

(N − 1)(M − 1)
·
M−1∑
i=1

N−1∑
j=1

√(
Δ1x2

i,j +Δ2x2
i,j

)
/2.

(10)

Δ1xi,j and Δ2xi,j are the first difference along both
directions, respectively. Generally, a bigger value of G
represents the image with higher definition.

• ERGAS: The ERGAS reflects the overall quality of the
pan-sharpened image. It represents the difference between
the pan-sharpened and original images and is defined as

ERGAS = 100
h

l

√√√√1

k

K∑
k=1

[
RMSEk

X̂k

]2

(11)

where h/l is the ratio between pixel sizes of the panchro-
matic and original multispectral images, and RMSEk and
X̂k are the RMSE and mean values of the kth band,
respectively. A small ERGAS value means small spectral
distortion so that the algorithm has high preservation of
spectral information.
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