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Classification of Sea Ice Types in ENVISAT
Synthetic Aperture Radar Images

Natalia Yu. Zakhvatkina, Vitaly Yu. Alexandrov, Ola M. Johannessen, Stein Sandven, and Ivan Ye. Frolov

Abstract—In this paper, sea ice in the Central Arctic has
been classified in synthetic aperture radar (SAR) images from
ENVISAT using a neural network (NN)-based algorithm and a
Bayesian algorithm. Since different sea ice types can have sim-
ilar backscattering coefficients at C-band HH polarization, it is
necessary to use textural features in addition to the backscatter-
ing coefficients. The analysis revealed that the most informative
texture features for the classification of multiyear ice (MYI), de-
formed first-year ice (FYI) (DFYI), and level FYI (LFYI) and open
water/nilas are correlation, inertia, cluster prominence, energy,
homogeneity, and entropy, as well as third and fourth central sta-
tistical moments of image brightness. The optimal topology of the
NN, trained for ENVISAT wide-swath SAR sea ice classification,
consists of nine neurons in input layer, six neurons in hidden layer,
and three neurons in output layer. The classification results for a
series of 20 SAR images, acquired in the central part of the Arctic
Ocean during winter months, were compared to expert analysis of
the images and ice charts. The results of the NN classification show
that the average correspondences with the expert analysis amount
to 85%, 83%, and 80% for LFYI, DFYI, and MYI, respectively.
The Bayesian pixel-based method can provide a higher resolution
in the classified image and, therefore, better capability to identify
leads compared to the NN method. Both methods may be effec-
tively used in the Central Arctic where MYI is predominant.

Index Terms—Classification, neural network (NN) algorithm,
sea ice, synthetic aperture radar (SAR).
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I. INTRODUCTION

S EA ice monitoring has been one of the main mission
objectives for satellite programs such as RADARSAT,

European Remote Sensing satellite (ERS), ENVISAT, and the
upcoming Sentinel-1. With the growing amount of synthetic
aperture radar (SAR) images available for sea ice observation,
it is important to generate SAR data products in support of var-
ious user applications. These include sea ice research, climate
studies, support to navigation in ice, and other operations in
ice-covered seas. Studies of sea ice signatures in C-band SAR
images over the last two decades have shown that a number
of ice parameters can be determined from the images such as
ice edge; ice types—multiyear, first-year, young, and new ice;
fast ice boundaries; ice drift and shear zones; areas of level
and deformed ice; leads; polynyas; and some other parameters
[1]–[7].

Analysis of sea ice in SAR images can be done with a number
of different techniques. Developing automatic ice classification
methods for SAR images has been a long-standing goal for sea
ice researchers and operational ice charting services [1]. SAR
records the magnitude and phase of the signal backscattered
from the ice surface. To form an image in the azimuth direction,
these complex-valued signals are summed coherently with an
appropriate phase shift [5]. The objective of sea ice classifi-
cation of SAR images is to identify the main sea ice features
related to ice types and surface roughness and classify them
into a set of predefined categories. These categories should be
in agreement with the sea ice nomenclature as defined by the
World Meteorological Organization [8]. This implies that quan-
titative information about forms of ice, stage of development,
and concentration should be derived from SAR images. This
information is derived by visual inspection of SAR images in
the production of operational ice charts, but this process may
possibly be improved by the use of automatic algorithms.

The most straightforward method to employ SAR data for
sea ice analysis is to use calibrated backscattering coefficients
(σ◦) for discrimination between multiyear, first-year, and some
young and new ice types, but this method is hampered by
ambiguities in the relation between ice types and σ◦ [9], [10],
since different ice types can have a similar σ◦ [2], [11]. More
advanced methods use image texture analysis, such as Markov
random fields [12], [13]. An unsupervised algorithm that com-
bines learning vector quantization and iterative maximum like-
lihood algorithms has been presented by Hara et al. [14] for the
classification of polarimetric SAR images in C-, L-, and P-band
data. Automated algorithms of sea ice classification and ice drift
retrieval from SAR data have been implemented at the Alaska
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TABLE I
LIST OF ENVISAT ASAR WS IMAGES (PIXEL SPACING OF 75 m × 75 m; 420-km SWATH WIDTH) AT HH POLARIZATION, ACQUIRED

OVER DIFFERENT ARCTIC REGIONS IN THE WINTERS OF 2005–2008 AND USED FOR ANALYSIS IN THIS STUDY

SAR Facility [15]–[17]. An approach used in the ARKTOS
system includes the segmentation of SAR image, generation of
descriptors for delineated segments, and use of expert system
rules to classify these sea ice features [18], but this automated
system needs to be further developed.

Modeling the processes and mechanisms of information
processing by the human brain and their implementation in
computer technologies can be used in the development of algo-
rithms of sea ice classification from satellite images [19]–[21].
Radar image data are generally given as pixel values within
a given range of digital values (usually 8 or 16 b). In order
to make quantitative image interpretation, digital values of
image brightness need to be recalculated to backscattering
coefficients. The pulse-coupled neural network (NN) was used
for ice edge detection, segmentation, and ice classification in
RADARSAT SAR images of the Baltic Sea [22]. Its training
was based on the assumption of Gaussian brightness distribu-
tion for different ice classes. These distributions are partially
overlapped, and each pixel can belong to some ice types by
detecting peaks (modes) in image brightness distribution. These
M classes present an input of pulse-coupled NN, which de-
termines a final value based on neighboring pixel analysis. As
a result, images of new ice, level first-year ice (FYI) (LFYI),
deformed FYI (DFYI), and fast ice were classified correctly,
although thick fast ice was classified in some cases as thin
level ice [22]. Bogdanov et al. [23] found that a multilayer
feedforward NN, trained by a standard back-propagation algo-
rithm, recognized six sea ice types in RADARSAT and ERS
SAR images of the Kara Sea. The NN algorithm classification
accuracy amounts to 71% and slightly outperforms the linear
discriminant analysis algorithm, developed by Wackerman and
Miller [24], whose accuracy is 68%.

The main objective of this study is to develop an NN-based
sea ice classification method for SAR images, including its

comparison with Bayesian approach and validation. The NN-
based algorithm is developed to discriminate between LFYI,
DFYI, multiyear ice (MYI), and open water/nilas (ON) in the
high Arctic during winter conditions. The study includes the
following steps: 1) to determine the backscattering coefficients
or the normalized radar cross section from ENVISAT wide-
swath (WS) SAR images (C-band HH polarization) for the four
aforementioned ice types based on a selected data set from
the interior of the Arctic; 2) to estimate σ◦ as a function of
incidence angle from the data set and normalize it to a fixed
angle for each ice type; 3) to investigate and select the optimal
combination of SAR image texture features for discrimination
between the ice types; 4) to train the NN-based algorithm using
the σ◦ and the selected texture characteristics; 5) to perform
classification of a test data set using the NN algorithm; and
6) to compare the NN-algorithm classification results with a
Bayesian classification and to validate it by using indepen-
dent data.

The results of the studies will be used to implement auto-
matic SAR ice classification as part of the Global Monitoring
for Environment and Security (GMES) services1 for operational
sea ice monitoring using data from RADARSAT-2, Sentinel-1,
and other SAR satellites.

II. SELECTION AND PREPROCESSING OF SAR DATA

A. Backscattering Coefficients for Different Ice Types

A series of 14 ENVISAT Advanced Synthetic Aperture
Radar (ASAR) WS images (pixel spacing of 75 m × 75 m;
420-km swath width) at HH polarization, acquired over differ-
ent Arctic regions in the winters of 2005 and 2006, were used

1http://www.gmes.info/
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Fig. 1. (a) Fragment of original ENVISAT WS SAR image (HH polarization), taken over the northern part of the Kara Sea on April 18, 2005, at 06:22 UTC.
(Right) Extracted fragments show examples of squares (5 × 5 and 15 × 15 pixels) selected in a SAR image for the estimation of σ◦ for different ice types at a 23◦

incidence angle. (b) Estimated σ◦ values for various ice types derived from calibrated ENVISAT WS SAR images (HH polarization) at a 23◦ incidence angle.

for the analysis of the sea ice backscatter (Table I). Calibration
of the backscatter values to σ0 was done using

σ0 =
A2

K
sin(αD) (1)

where K is the absolute calibration constant, A2 is the average
pixel brightness, and αD is the incidence angle for each pixel
[25]. The major factor, limiting measurement accuracy for
calibrated radar, is a number of noncoherent sums, i.e., speckle
noise [26].

The backscatter coefficients for five sea ice types (ON, young
ice, LFYI, DFYI, and MYI) were derived for an incidence
angle of 23◦. This angle was selected for comparison with
literature data on sea ice backscatter at VV polarization, mostly
derived from ERS SAR images. The defined ice types were
delineated in the 14 ENVISAT ASAR images based on an
expertise in image interpretation, obtained in a number of
subsatellite experiments in the Arctic [5], as well as using
visual sea ice observations and in situ measurements, conducted
during the expedition on board research vessel Mikhail Somov
in April–May 2006 in the northeastern part of the Barents
Sea. We used only those parts of the ASAR images where the
incidence angle is 23◦ ± 0.5◦ as is shown in Fig. 1(a). The
backscatter coefficients were averaged in squares of size 5 ×
5 or 15 × 15 pixels [Fig. 1(a)]. We selected areas of 5 × 5 for
young ice, because this ice type was observed in limited parts
of the images (leads). The typical size of FYI and MYI floes
was larger, and we used areas of 15 × 15 pixels. The mean and
ranges of σ◦ for the five ice types were calculated from a total
of 29 (ON), 22 (young ice), 1050 (LFYI), 200 (DFYI), and 450
(MYI) squares, respectively; these are summarized in Fig. 1(b).

Open water in the case of low wind speed and dark nilas
have low σ◦ in C-band due to the near-specular reflection
of electromagnetic waves from their level surfaces [27], [28].
Beaven et al. [29] showed that σ◦ for dark nilas at a 35◦ incident
angle was about −24 dB and, for light nilas, between −19
and −20 dB. Dark nilas mostly has a bare surface, and light
nilas can be covered with frost flowers. According to [30], the
frost-flower-covered light nilas has approximately 6 dB higher
backscatter than the bare light nilas for all incidence angles. Our
analysis of ENVISAT WS SAR data, described in [31] and [32],
shows σ◦ between −18.7 and −17.2 dB for nilas [Fig. 1(b)],
which is slightly higher than values −22 and −24 dB at VV
polarization, reported by Askne et al. [27] and Kwok et al. [28].
The term nilas is used here, because it is difficult to distin-
guish dark nilas and light nilas, when visual observations are
unavailable.

Young ice is subdivided into gray and gray-white ice types
[8]. For young ice, the σ◦ was between −8.8 and −5.9 dB
[Fig. 1(b)], which is approximately 10 dB more than that for ni-
las. This result is in agreement with Melling [33], who reported
a 10–15-dB increase of σ◦ for young ice when it is completely
covered with frost flowers. In most cases, this difference is
explained by the presence of frost flowers but can also come
from snow [30]. In some cases, the high backscatter of young
ice can be caused by its rafted/ridged-to-100% surface.

For LFYI, backscatter coefficients vary from −16.4 to
−11.2 dB for drifting ice and from −17.5 to −15.0 dB for
fast ice. DFYI has a much higher σ◦, varying from −11.2 to
−8.4 dB. For MYI, σ◦ values are even higher, with values
from −8.4 to −6.4 dB [Fig. 1(b)]. These ice types can be
roughly separated by a threshold of −12 dB in HH polarization
[6]. The backscatter coefficients for some sea ice types have
significant overlap [11], [34]. Young ice overlaps with the σ◦
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Fig. 2. (a) Location of ENVISAT WS SAR images used in the analysis of σ◦ for the selected ice types. (b) σ◦ as a function of incidence angle for various
ice types calculated from ENVISAT WS SAR images (HH polarization). Young ice—three profiles with 78 squares, LFYI—five profiles with 130 squares, and
MYI—five profiles with 130 squares. The dots are estimated from observations, while the straight line is a linear fit to the data.

of DFYI and MYI. Young ice and MYI have a near-similar
backscatter [Fig. 1(b)]. LFYI has a wide range of backscatter
and partly overlaps with DFYI and very little with ON. ON
has a low backscatter, which is different from that for other ice
types. Therefore, our analysis confirms with earlier studies that
additional image features need to be used in automatic sea ice
classification in SAR images.

B. Backscattering Coefficients as a Function of
Incidence Angle

The angular dependences of the sea ice backscatter have
been derived from the eight ENVISAT ASAR WS calibrated
images at HH polarization given in Fig. 2(a) and Table I. The
backscattering coefficients were determined for incidence angle
steps of 1◦ for the selected squares in the SAR images for
young ice, LFYI, and MYI [Fig. 2(b)]. These ice types were
observed continuously across the ENVISAT ASAR swath for
the incidence angle range of 17◦–42◦. The DFYI and ON sam-
ples occupied only limited parts of the swath, which precluded
obtaining their backscatter angular dependences. The decrease
in σ◦ as a function of incidence angle for the various sea ice
types is shown in Fig. 2(b). These data show that the decrease
in σ◦ with increasing incidence angle is larger in absolute
value for LFYI (−0.255 dB/◦) than for MYI (−0.196 dB/◦)
and for young ice (−0.167 dB/◦). The decrease of σ◦ for LFYI
with incidence angle falls into the range given by [35] (from
−0.15 to −0.37 dB/◦). The change of MYI backscatter with
incidence angle significantly exceeds in absolute value those for
VV polarization from −0.03 to −0.1 dB/◦, presented in [35],
and −0.08 dB/◦ in [36]. Our estimates for young ice are not
significantly different from the value of −0.17 dB/◦ for thin FYI
used in [36].

In order to classify SAR images where σ◦ is a function of
incidence angle, the σ◦ values are normalized across the swath,
using 25◦ as a reference angle and a linear function for predom-
inant ice type as shown in Fig. 2(b). Although the difference in
radar backscatter between different ice types is slightly higher
at far range of SAR image, we used 25◦ angle, which allows
analyzing SAR image without brightness amplification and also
following the recommendation by R. Kwok. The predominant

ice type is identified by means of SAR image visual inspection.
The normalization method consists of the following stages:
1) recalculation of image brightness to the backscatter coef-
ficient according to (1); 2) backscatter recalculation to 25◦

incidence angle using the calculated coefficients [Fig. 2(b)];
and 3) recalculation of the derived backscatter coefficient to
corrected brightness [29]. The backscatter normalization to pre-
defined incidence angle allows obtaining a homogenous image
contrast across the swath. The incidence angle of 25◦ provides a
satisfactory contrast between various ice types. With the differ-
ence between the σ◦ angular dependences for MYI and FYI
of 0.05 dB/◦, an error of using a function for MYI over a
predominantly FYI area in the far range of SAR image (42◦)
amounts to 0.75 dB, which is within the range of its σ◦ standard
deviation.

III. METHODS USED IN SAR IMAGE CLASSIFICATION

A. Bayesian Classification Method

In this paper, a Bayesian algorithm is implemented for sea
ice classification in the SAR images. This method accounts
for differences in the probability density functions and allows
minimizing the error rate, if, for example, FYI has a larger
variance of σ◦ compared to MYI [16]. We also believe that a
Bayesian algorithm is suitable for the Central Arctic, where
MYI dominates, so its a priori probability is quite high. For
using this technique, the distribution densities and a priori
probabilities of the ice types have to be estimated.

The elaborated algorithm is pixel-based and uses a priori
probability of occurrence of given ice types. A posteriori prob-
ability p(ωj/xi) for various sea ice classes is calculated as [37]

p(ωj/xi) = p(xi/ωj)× p(ωj)/p(xi),

p(xi) =

N∑

j=1

p(xi/ωj)× p(ωj). (2)

Here, p(ωj) is the a priori probability and p(xi/ωj) is the
conditional probability of xi for ωj class.
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Fig. 3. Probability density functions of σ◦, derived from calibrated ENVISAT
ASAR images in the Central Arctic for incidence angles of 25◦ for MYI, LFYI,
and DFYI.

Conditional probabilities p(xi/ωj) were assessed from cal-
ibrated ENVISAT WS SAR images, where areas typical for
each ice type were delineated visually and histograms of the
backscattering coefficients were calculated (Fig. 3). Statisti-
cally significant estimates of conditional probabilities were de-
rived for MYI, DFYI, and LFYI. MYI dominates in the Central
Arctic, where its partial concentration amounts to 90%. The
partial concentration of other ice types (LFYI, DFYI, young
ice, and nilas) does not exceed 10% [5]. Due to the absence
of reliable estimates of conditional probabilities for ON and
young ice, we made an assumption that three ice types (MYI,
LFYI, and DFYI) are observed in the Central Arctic and their
a priori probabilities are 0.9, 0.05, and 0.05, respectively. Here,
we also assume that leads in the MYI are covered with LFYI.
Classification was made for these three ice classes.

Decision is made in favor of

ωmy, if p(ωmy/xi)>p(ωfy/xi) and p(ωmy/xi)>p(ωfd/xi)

ωfy, if p(ωfy/xi) > p(ωmy/xi) and p(ωfy/xi) > p(ωfd/xi)

ωfd, if p(ωfd/xi)>p(ωmy/xi) and p(ωfd/xi)>p(ωfy/xi).

The probability error is given by the equation

p(e) =

N∑

i=1

(1− p(ωj/xi))× p(xi)

=

N∑

i=1

p(xi)− p (xi/ωj)× p(ωj)) . (3)

In this paper, Bayesian classification was mostly used for
comparison with NN classification. Several of the SAR images
of the Central Arctic, shown in Fig. 2(a), were classified using
this approach.

B. NN Classification Method

NN models have received much attention during recent
decades for the classification of satellite images. An NN may
have one or more hidden layers of neurons between the input
and output layers (Fig. 4). They have a simple layer structure
in which successive layers of neurons are fully interconnected,

Fig. 4. NN topology.

with connection weights controlling the strength of the con-
nections. The input to each neuron in the next layer is the
sum of all its incoming connection weights multiplied by their
connecting input neural activation value (activation function).
Empirical comparisons showed that an NN could outperform
standard parametric statistical classifiers as long as a sufficient
number of representative training samples are presented to its
input [38]. Moreover, an NN can be used for data fusion without
the determination of their informational content and any prior
assumptions on the statistical distribution of the data [38], [39].

We use supervised training, which requires a teacher. In su-
pervised training, both the inputs and the outputs are provided.
In our case, the training phase of the NN was based on the
back-propagation learning rule to minimize the mean square
error (mse) between the desired target vectors and the actual
output vectors. Training patterns were sequentially presented to
the network, and the weights of each neuron were adjusted so
that the approximation created by the NN minimized the global
error between the desired output and the summed output created
by the network. During the training of an NN, the same set of
data is processed many times as the connection weights are
refined [39]. The data set was split into two parts for training
process: 1) data set for NN training and 2) validation data set,
used to determine the performance of an NN on independent
patterns. MSE has to decrease during training. The training
stopped in the following cases: 1) insignificant decrease of mse
during a long time (several hours or one day—depending on
NN topology) and 2) curves of training and validation data sets
starting to diverge.

IV. CLASSIFICATION OF SEA ICE TYPES IN SAR
IMAGES USING TEXTURE FEATURES

A. Analysis of SAR Image Texture Features

The NN algorithm uses both backscatter data and textural
characteristics of the images. Several studies have shown that
SAR sea ice classification accuracy is improved by using image
texture features [23], [40]. Texture depends on the spatial
scale of sea ice surface and volume inhomogeneity, as well
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as on radar spatial resolution. Texture features describe spatial
variations of image brightness within a group of neighbor pixels
large enough to calculate statistically significant estimates. A
given texture feature can be different from one ice type to
another and reflect variability in sea ice properties sensed by
the SAR.

Before texture can be used in classification, it is necessary to
investigate which texture features are useful for differentiation
between the ice types defined in this study. A set of texture
features has therefore been calculated in a number of SAR
images using gray-level co-occurrence matrix (GLCM), which
is determined as

Sd,α(i, j) =
Pd,α(i, j)

K∑
i=1

K∑
j=1

Pd,α(i, j)

(4)

where Sd,α is an element of GLCM, Pd,α is the number of
neighbor pixel pairs, α is fixed vector directions or orientation
(0◦, 45◦, 90◦, or 135◦), d is the co-occurrence distance (between
pixels), and K is the number of quantized gray levels in
the image [41]. Sd,α is computed along directions α using
different displacement values, also called “interpixel distance”
d = 1, . . . ,K − 1, where i, j = 0, . . . ,K − 1. Each element
(i, j) of the matrix represents the probability that two pixels,
located at an “interpixel distance” d, have brightnesses i and j.

The number of brightness levels which is optimal for calcu-
lating texture parameters is typically 16 according to [23], [40],
and [42]. To improve ice classification accuracy, Clausi [43]
has shown that GLCM should be averaged for four different
directions to account for possible rotation of the ice. The size of
GLCM square is equal to the number of image brightness bins
K [41], [44]. A number of texture features, such as correlation,
inertia, homogeneity, and others, can be calculated from GLCM
[41], [45], [46]. After σ◦ normalization to a 25◦ incidence angle,
nine texture features—correlation, inertia, cluster prominence,
energy, homogeneity, and entropy, as well as third and fourth
central statistical moments of image brightness—have been
calculated in this study. This has been done for a set of images
representing relatively homogeneous areas of each of the four
ice types in this study (LFYI, DFYI, MYI, and ON). Ice type
ON represents a mixture of new ice (grease ice), nilas, and
calm open water, which all have a low backscatter and therefore
cannot be further discriminated without additional data. The
selected images do not contain homogeneous ice types because
some mixing of ice forms and degree of deformation usually
occur in sea ice areas. The normalized texture value for each
texture feature and ice type has been calculated for four window
sizes (16, 32, 64, and 128 pixels), and the results are shown in
Fig. 5. Classification accuracy is improved when the separation
of the normalized texture values for the ice types increases.
Visual examination of mean texture values (Fig. 5) suggested
that the 32 × 32 sliding window provides better separation of
the ice types compared to other window sizes.

A change of distance d between neighboring pixels in (4)
is also important in the calculation of GLCM [42], [44]. The
same data set as used in Fig. 5 was used to analyze variation in
the texture parameters for values of d of 2, 4, 8, and 16 pixels,

Fig. 5. Normalized mean values of texture characteristics for LFYI, DFYI,
MYI, and ON, calculated for different window sizes: (a) 16 × 16 pixels,
(b) 32 × 32 pixels, (c) 64 × 64 pixels, and (d) 128 × 128 pixels. [(1) Average
sea ice backscatter, (2) energy, (3) correlation, (4) inertia or contrast, (5) cluster
prominence, (6) homogeneity, (7) entropy, (8) third central statistical moment
of brightness, and (9) fourth central statistical moment of brightness.] The
calculations were made for the images shown in Fig. 2(a).

Fig. 6. Four examples of scatter plots showing how two textural features
calculated from subimages in ENVISAT WS data can be used to classify
ice types (LFYI, ON, DFYI, and MYI). ENVISAT WS ASAR image (HH
polarization) for the following: April 23, 2007, at 07:54 UTC, the Central
Arctic; April 18, 2005, at 06:22 UTC, the northern part of the Kara Sea; and
January 18, 2008, at 09:55 UTC, the northern part of the Kara Sea. (Round)
Center of LFYI, (asterisk) center of DFYI, (cross) center of MYI, and (triangle)
center of ON.

using a window size of 32 × 32 pixels. Calculations were
done for all textural features, and visual comparison showed
that the best discrimination between the ice types was obtained
for d = 4.

Presentation of scatterplots of the values of two texture fea-
tures is a convenient way to illustrate which features are more
useful for discrimination between the sea ice types. It was found
that the cluster prominence versus energy and correlation versus
energy provide good separation between LFYI, DFYI, and MYI
[Fig. 6(a) and (c)]. Separation of ON can be done by the use
of cluster prominence versus energy and, to some degree, by
inertia/contrast versus energy [Fig. 6(b) and (d)]. An example of
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TABLE II
CORRELATION MATRIX, CALCULATED FROM SAR IMAGES FOR FOUR ICE TYPES

poor separation between two classes is shown in Fig. 6(d) where
LFYI and DFYI have overlapping values of inertia/contrast
versus energy. The correlation coefficients between all pairs of
texture features for each of the four ice types are calculated
and presented in the correlation matrices in Table II. When
there is high correlation between two textural characteristics,
they show the similar properties of the ice type, and it makes
no sense of using both features. In case of low correlation,
both features will contribute to the improvement of the sea ice
classification accuracy [43]. In Table II, all correlations with an
absolute value less than 0.7 are marked in gray, highlighting
which pairs of texture features are useful for classification. The
correlation matrices can thus be used to divide the correlation
pairs into two groups: Group 1 is defined by high internal corre-
lation and consists of energy, inertia, homogeneity, entropy, and
third and fourth statistical moments. Group 2 includes correla-
tion and cluster prominence and is characterized by moderate
and low correlation with group 1 but high correlation internally.
In group 2, backscatter is also included.

It is known from previous studies [44], [45] that energy,
inertia, and homogeneity characterize the repeatability and
spatial distribution of neighboring pixels. Therefore, inertia and
homogeneity are well correlated with each other but with a
negative sign. MYI and ON can be better discriminated by com-
binations of earlier defined features, namely, energy, inertia,
homogeneity, entropy, and central statistical moments together
with the correlation, cluster prominence, and mean backscatter,
which are characterized by moderate and low correlation coef-
ficients. A similar combination of texture features but with a
negative sign of correlation coefficients was found for DFYI.
Correlation, cluster prominence, and backscatter coefficient in
combination with the third and fourth statistical moments of
brightness, as well as joint use of correlation and energy, inertia,
and fourth statistical moment of brightness are most important
for the discrimination of LFYI.

Statistical analysis showed that the entire set of selected tex-
ture features can be used for the discrimination of the four ice
types. Therefore, all eight texture features and the backscatter
coefficients, shown in Table II, have been used as input for the
creation, training, and determination of the NN parameters.

B. NN Classification Technique

Based on texture features analyzed in the previous section,
the NN was trained for sea ice classification for the high
Arctic during winter conditions. The training consisted of the
following steps: 1) analysis of 12 SAR images (Table I) by three
experienced ice scientists for the delineation of the polygons of
the ice types to be classified; 2) preliminary image processing
(see Section II) and calculation of texture features using sliding
window and interpixel distance described in Section IV-A; and
3) selection of the NN topology (Fig. 4) and training data set.

Step 1 consisted of the following: Twelve SAR images of
various sea ice types were selected and prepared for NN training
in the Central Arctic during winter conditions (Fig. 7, marked
by the light tone, and Table I). Ice experts at the Arctic and
Antarctic Research Institute (AARI) delineated a number of
homogenous areas for each ice type in the images. The 12 SAR
images were divided into two groups: one for training and one
for testing as described in step 3.

In step 2, the homogenous areas defined by AARI experts
were used to calculate texture characteristics and backscattering
coefficient values for each ice type. A database was established
where the texture characteristics for all homogenous areas of
the four ice types were included.

Step 3 consisted of a cyclic process where, first, an NN
topology was selected based on the initial and, later, ana-
lyzed data [39] as described in Section III-B. The database
of textural characteristics and backscatter values was used for
NN training as preparation for sea ice classification of new
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Fig. 7. Location of ENVISAT ASAR images, used for NN training (12 image
stripes in light tone) and classification (20 images—dark tone). Several images
were divided in two parts, one for training and one for classification.

SAR images, listed in Table I. The Stuttgart Neural Network
Simulator software was used to implement the NN classifica-
tion method (ftp.informatik.uni-tuebingen.de). The trained NN
was then used to classify a set of test images (Table I). The
classification results were visually compared by the sea ice
expert’s classification [similar to Figs. 3(b) and 9(b)]. Step 3
was then repeated using different NN topologies with various
numbers of hidden layers and neurons in these layers until the
optimal NN architecture was found based on the comparison
with ice expert classification. More than 50 NNs were trained,
each with nine input neurons and three or four output neurons,
corresponding to the number of sea ice classes. These NNs had
different numbers of hidden layers (1, 2, or 3) and neurons in
these layers. The numbers of neurons in hidden layers varied
from 6 to 50. MSE varied from 0.5 to 0.015.

The optimal NN topology for ENVISAT ASAR sea ice
image classification was selected based on the analysis of ice
expert’s classified input data as well as on processing time.
The selected topology consisted of nine neurons in input layer,
which correspond to the number of used features, six neurons
in hidden layer, and three neurons in output layer (Fig. 4).
The output neurons correspond to classes of LFYI, DFYI, and
MYI. MSE amounted to 0.015 in this case. The trained NN was
applied to the training data set to check if the ice classes initially
defined in the training data set could be reproduced. The outputs
for each pattern were calculated and compared with the actual
outputs from the training data set. Correspondences were 96.7%
for MYI, 98% for DFYI, and 97% for LFYI. This test suggested
that the NN classification algorithm is self-consistent. Another
NN was trained to classify ON, LFYI, DFYI, and MYI types
using ON areas, delineated in the same SAR images in addition
to the previously determined data sets of LFYI, DFYI, and MYI
(see step 1). The optimal topology of this NN consists of 9, 15,
and 4 neurons in input, hidden, and output layers, respectively.

The trained NN was then applied for the automated classi-
fication of 20 new SAR images, listed in Table I. Each SAR
image was first preprocessed with the angular correction for the
predominant ice type for an incidence angle of 25◦ as described
in Section II, followed by calculation of texture characteristics
for the whole image.

TABLE III
MAIN DIAGONAL OF THE CONFUSION MATRICES FOR COMPARISON OF

CLASSIFICATION RESULTS, APPLIED TO ENVISAT ASAR IMAGES,
USED FOR NN TRAINING/TESTING AND BAYESIAN APPROACH,

WITH AARI ICE CHARTS

V. RESULTS

A. Results from the NN Algorithm

NN quality was assessed by means of sea ice classifica-
tion in the SAR images used for training (Table I). The re-
sults of classification were compared with AARI ice charts
(www.aari.ru), which depict the distribution of open water and
sea ice types—nilas, young, first-year, and old ice during the
winter period (1.XI-31.V). Ice charts are issued every Thursday
using data collected and averaged for the preceding two to five
days. These charts are based on the generalization of regional
ice charts, compiled from visible, infrared (IR), and radar
satellite images and reports from coastal stations and ships.
Confusion matrices, describing how well an algorithm can
classify data, were calculated to get a quantitative measure of
the classification method accuracy. The total correspondences
of NN classification results and ice charts (diagonal elements
of confusion matrix) were 79.3% for MYI and 92.2% for FYI
(Table III).

Classification with the NN algorithm was then carried out for
LFYI, DFYI, and MYI and, in the case of the second NN also,
for ON for a total of 20 ASAR images in the Central Arctic
(Fig. 7). The classification results were compared with ice anal-
ysis of the same SAR images performed by ice experts at AARI.
The ice experts estimated visually the partial concentration for
each ice type corresponding to the NN classes. This partial
concentration was then compared with the partial percentage
of each ice class from the NN analysis. The percentage of
correspondence between the NN classification and expert anal-
ysis for the whole classified image was given in the confusion
matrix. The classification results were also validated by field
observations near the “North Pole-35 (NP-35)” drifting station.
Airplane observations and in situ measurements showed that the
ice floe where the “NP-35” station was located was a mixture of
MYI floes of various size, thickness, and configuration. In many
cases, MYI floes are separated by stripes of FYI with inclusions
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Fig. 8. (a) Fragment of original ENVISAT WS SAR image (HH polarization), taken over north of the Kara Sea on January 18, 2008, at 09:55 UTC. (b) Fragment
of SAR image with normalized σ◦ to an incidence angle of 25◦ and analysis by an ice expert from AARI: A is LFYI, where ridges cover less then 20% of the ice
surface; B is FYI, where ridges cover more than 40% of the ice surface; C is MYI area; and D is ON. Arrows show the location of small ice features, marked by
corresponding characters. (c) Result of the NN classification of four ice types where the class ON is included. (d) Ice chart provided by AARI for January 16–18,
2008. The lower legend is for the SAR classification, and the upper legend is for the ice chart. (e) Manually colored image according to sea ice expert’s visual
analysis.

TABLE IV
CONFUSION MATRICES FOR COMPARISON OF NN AND BAYESIAN CLASSIFICATION RESULTS, APPLIED TO ENVISAT ASAR IMAGES,

WITH VISUAL EXPERT ESTIMATION. (A) JANUARY 18, 2008, [FIG. 8(C)] AND (B) FEBRUARY 4, 2008 [FIG. 9(C)]

of broken MYI. The SAR signature of such mixture of MYI and
FYI can be generalized to be valid for larger areas.

An example of classification results is shown in Fig. 8 where
the SAR image from January 18, 2008, covers the transition
zone between MYI and FYI north of the Barents Sea. The im-
age was divided into zones of four ice types: A is LFYI, where
ridges cover less than 20% of ice surface; B is FYI, where
ridges cover more than 40% of the ice surface; C is MYI area;
and D is ON [Fig. 8(b)]. The result of the NN classification is
shown in Fig. 8(c) with the ice expert’s analysis superimposed.

The confusion matrix between classification results and expert
analysis gives 86%, 73%, 65%, and 38% correspondences in
areas A, B, C, and D, respectively [Table IV(a)]. This is a
relatively good result because the ice structure is very complex
and the expert analysis does not take into account all the small
features in the image. The result also shows difficulties in
separating ON from LFYI, although some ON in leads could
be classified in the MYI region (area C). The backscattering
from open water, nilas, and LFYI can be similar, and in some
cases, experts cannot distinguish them in SAR images without
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Fig. 9. (a) Fragment of original ENVISAT WS SAR image (HH polarization),
taken over the northern part of the Kara Sea on February 04, 2008, at 11:00
UTC with geographical grid where near range is in the lower part and far range
is in the upper part, where yellow box shows a classified part of the image. (b)
Fragment of SAR image after normalization of σ◦ to an incidence angle of 25◦

and analysis by an ice expert from AARI: A is LFYI, where ridges cover less
than 20% of the ice surface; B is FYI, where ridges cover more than 40% of
the ice surface; C is MYI area; and D is thick FYI and second-year ice. Arrows
show the location of small ice features, marked by corresponding characters.
(c) Result of NN classification. (d) Ice chart provided by AARI for February
06, 2008. The lower legend is for the SAR classification, and the upper legend
is for the ice chart. (e) Manually colored image according to sea ice expert’s
visual analysis.

additional information. Therefore, our further analysis deals
with the classification of three ice types—LFYI, DFYI, and
MYI.

Another SAR image for February 4, 2008, covering the
transition zone from FYI to MYI, was classified using three
ice types [Fig. 9(a)]. The experts delineated areas marked as
the following: LFYI, where ridges cover less than 20% of the
ice surface (A); DFYI, where ridges cover more than 40%
of the ice surface (B); MYI area (C); and thick FYI and
second-year ice (D). The NN classification gave 72% corre-
spondence with expert analysis in area C with predominant
MYI. In areas A and B+D, correspondences between NN clas-
sification and expert analysis were 62% and 73%, respectively
[Table IV(b)]. Some areas of MYI, LFYI, and DFYI were er-
roneously classified, particularly in small patches embedded in
larger areas of homogeneous ice. The expert analysis suggested
that second-year ice or smaller forms of MYI are present in
area D. The NN was not trained to classify this ice type and
will therefore tend to classify these areas as MYI or DFYI. In
summary, this example shows that MYI floes and areas of LFYI
were, to a large extent, classified correctly, while classification
of DFYI is more difficult. This can be explained by the fact that
the DFYI characteristics used in the classification tend to be
located between MYI and LFYI, both in backscatter [Fig. 1(b)]
and in some of the textural characteristics [Fig. 6(a) and (c)].

The results of NN classification were also compared with
digital ice chart for January 16–18 [Fig. 8(d)], 2008, and
February 6 [Fig. 9(d)] for the Kara Sea, where only one FYI
class is used [Fig. 9(d)]. This implies that LFYI and DFYI from

Fig. 10. Sea ice classification of original ENVISAT WS SAR image (HH
polarization), taken over in the NP-35 area, north of the Barents Sea on
January 14, 2008, at 11:59 UTC. (a) Fragment of SAR image with normalized
σ◦ to an incidence angle of 25◦. (b) Result of NN classification for three
sea ice types. (c) Bayesian-approach-classified image. (d) Bayesian-approach-
classified image by averaging in a sliding window 32 × 32 and with moving
step equaled four.

the NN classification cannot be validated separately but jointly
as one class. This joint class corresponds to FYI shown in ice
charts by 93% and 99%, respectively. The MYI result shows
correspondences of about 64% and 46%, respectively. However,
the MYI area is not very accurately estimated in the ice charts
because information comes mainly from visible and IR satellite
images.

The best method available in this study is the expert anal-
ysis, because the expert has spent time to analyze the SAR
images in more detail. The method was used to validate the 20
classified SAR images (see Fig. 7 and Table I). The average
correspondences in NN and expert classifications, calculated
from this series of ASAR images, acquired both from ascending
and descending orbits, amount to 85%, 83%, and 80% for
LFYI, DFYI, and MYI, respectively. The NN consistently
distinguishes MYI areas from those with predominant FYI.
Within MYI massifs, it identifies wide leads, although ice type
in leads could be misclassified in some cases.

B. Results from the Bayesian Classification

Twelve ENVISAT ASAR images, acquired in the Central
Arctic, were also classified using a Bayesian algorithm in order
to compare classification results from two different methods
(Table I). The preprocessing of the SAR images is similar
to the NN method and consists of calibration, normalization
to incidence angle of 25◦, and also speckle reduction using



ZAKHVATKINA et al.: CLASSIFICATION OF SEA ICE TYPES IN ENVISAT SAR IMAGES 2597

TABLE V
CONFUSION MATRIX FOR COMPARISON OF THE FOLLOWING: (A)

BAYESIAN CLASSIFICATION RESULTS VERSUS AARI ICE CHARTS; (B)
TWO CLASSIFICATION METHODS, APPLIED TO ENVISAT ASAR IMAGES:

JANUARY 14, 2008 [COMPARISON OF FIG. 10(B) WITH FIG. 10(B)],
JANUARY 18, 2008 (SEE FIG. 8), AND FEBRUARY 4, 2008 (SEE FIG. 9). SAR

IMAGES WERE AVERAGED USING window size = 32× 32 AND

sliding step = 4 PIXELS BEFORE BAYESIAN CLASSIFICATION

averaging by a 4 × 4 pixel sliding window. An example of
classification by the two algorithms is shown in Fig. 10. The
Bayesian algorithm was applied twice to this image, acquired
on January 14, 2008, at 11:59 UTC [Fig. 10(a)], first, with a 4
× 4 pixel resolution [Fig. 10(c)] and, then, with averaged 32 ×
32 pixels to present a classified image with the same resolution
as the NN algorithm [Fig. 10(d)]. The classification results look
quite similar [Fig. 10(b)–(d)], and higher resolution provides a
more detailed classification, allowing better detection of leads
and other small-scale features. On the other hand, the higher
resolution also implies more noise in the classification results.
The lower resolution shows results that are comparable to the
NN results.

The main result is that MYI and FYI were generally iden-
tified correctly by both methods. The major difference is that
the Bayesian method shows a larger area of LFYI, whereas
the NN method shows a predominance of DFYI. There are
no validation data to provide evidence which ice type is pre-
dominant. Both methods show wide leads in MYI, but the
Bayesian method seems to classify ice in the leads as LFYI,
which is more correct than DFYI from the NN method. This
misclassification may be caused by using sliding window for
textural characteristic calculation in the NN algorithm. The size
of this sliding window is comparable with the typical size of
small-scale ice features. In the case of Bayesian classification,
lower values of σ◦ for LFYI and higher values for MYI tend to
be averaged within the sliding window, and the resulting value
appear as DFYI. Bright narrow features in the area of FYI are
leads with frost flowers. They were mostly classified as MYI,
because the Bayesian algorithm does not include young ice,
since its backscatter is similar to that of MYI [Fig. 1(b)].

Confusion matrices have been calculated to compare the
classification results of the NN and Bayesian algorithms, ap-
plied to 12 SAR images, with ice charts (Table III). SAR images
were averaged in a sliding window of 32 × 32. The comparison
was made for MYI and FYI zones, delineated in the digital
AARI ice charts. The total classification accuracies (diagonal
elements of confusion matrix) were 68.1% for MYI and 95.7%

for FYI. Comparisons of Bayesian classification results for
images shown in Figs. 8(a), 9(a), and 10(a) with ice charts are
presented in Table V(a). The total classification accuracies were
50.7%, 49.8%, and 60.2% for MYI and 93.7%, 99.3%, and
94.3% for FYI. Therefore, FYI was classified quite well. Corre-
spondence for MYI is not so good, probably due to limitations
in using SAR data for ice chart composition. Comparison of
Bayesian classification results for images shown in Figs. 8(a)
and 9(a) with visual expert analysis [Figs. 8(e) and 9(e)] is
presented in Table IV. In this case, the total classification
accuracies were 52.4% and 67.9% for MYI, 73.1% and 94.4%
for LFYI, and 24.9% and 55.9% for DFYI. Poor accuracy
in DFYI classification may be explained by subjectivity in
distinguishing LFYI from DFYI in the process of SAR image
visual interpretation.

The confusion matrix in Table V(b) shows the correspon-
dence of NN and Bayesian SAR sea ice classification results.
In our case, when both data sets are not perfect, it is possible
to estimate the difference between the two data sets and not
the error. Therefore, we estimate the similarity of the NN
and Bayesian classification results by determining the relative
number of equivalently classified pixels, belonging to each ice
type. The correspondences of these two algorithms are from
97.8% to 99.1% for FYI, from 48.7% to 73.9% for DFYI, and
from 47.1% to 87.8% for MYI.

VI. DISCUSSION AND CONCLUSION

Algorithms of automatic NN-based and Bayesian classifica-
tions of sea ice types from ENVISAT ASAR images have been
created and tested for winter conditions in the high Arctic. The
implementation of the algorithms requires normalization of the
observed sea ice radar backscatter to a predefined incidence
angle to compensate for its angular dependence. The backscat-
ter normalization across the swath has been carried out for a
reference incidence angle of 25◦ using linear functions of the
radar backscatter angular dependence derived separately for the
predominant ice types. The ice types selected for classification
were multiyear, deformed first-year, level first-year, and ON. A
fifth ice type, young ice, has been also analyzed for backscatter
normalization but has not been used in the subsequent analysis.
The reason was that this ice type was very scarce in the analyzed
images, implying that it was difficult to find enough data for
training of the NN method. The remaining four ice types have
different but partly overlapping radar backscatter value ranges
in SAR images. Therefore, algorithms using only backscatter
data will give ambiguous classification in many cases. By the
use of various texture features of the ice types in addition to
backscatter data, the hypothesis has been that ice classification
should be improved.

Before the NN algorithm was applied, several image texture
features together with backscatter values have been investigated
for each ice type, using a training data set. The correlation
coefficients between pairs of texture features have been calcu-
lated for each ice type, showing that correlation, inertia, cluster
prominence, energy, homogeneity, and entropy, as well as third
and fourth central statistical moments of image brightness,
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could be used for the identification of these ice types. Different
sizes of the sliding window for texture calculation have been
tested, and the result has been that a window size of 32 × 32
pixels and a co-occurrence distance (distance between pixels)
of four gave the best separation between the four ice types.
Furthermore, several NN topologies with various numbers of
hidden layers and neurons in these layers have been tested
by the classification of 12 SAR images. Based on analysis of
classification errors and processing time, it has been found that
the optimal topology of the NN consisted of nine neurons in
input layer, six neurons in hidden layer, and three neurons in
output layer. The selected topology was then used in the NN to
run classification algorithm on the training data. The ice classes
used for training have been reproduced with high accuracy,
showing that the algorithm was self-consistent. The algorithm
was then ready for use to classify a new SAR data set. The
classification results of these images have been also compared
with ice charts issued by AARI, where MYI and FYI have been
discriminated. The total classification accuracies, determined
by the confusion matrix between classification results and ice
charts, have been 79.3% for MYI and 92.5% for FYI.

A series of 20 ENVISAT ASAR images of sea ice has been
classified using the NN algorithm described in Sections III–V.
The images have been selected as representative for winter sea
ice in the Central Arctic. Comparison of classification results
with expert analysis has shown that the NN algorithm can
distinguish MYI from areas with predominant LFYI, DFYI,
and ON. Within the MYI massif, it can also identify relatively
wide leads, whereas classification between open water, nilas,
and other thin ice types has not been attempted. To simplify
the classification, open water and nilas were treated as one
ice type, characterized by lower backscatter than the other ice
types. Classification results have been compared with visual
analysis of the images by experts, who analyzed the SAR
images in more detail. The ice experts have estimated the partial
concentration for each ice type. This partial concentration was
then compared with the partial percentage of each ice class
from the NN analysis. The average correspondences in the NN
classification of ASAR image series, as compared with visual
expert’s estimates, amount to 85%, 83%, and 80% for LFYI,
DFYI, and MYI, respectively.

The Bayesian classification algorithm has used a priori prob-
abilities of LFYI, DFYI, and MYI appearance in the Central
Arctic. These probabilities have been estimated from knowl-
edge of ice conditions, and conditional probabilities of these
ice types have been derived from calibrated ENVISAT ASAR
WS images. The Bayesian algorithm uses only backscatter but
correctly classifies major sea ice types due to big differences
in their a priori probabilities, as well as leads in sea ice.
Correspondences of the Bayesian ice classification results for
SAR images and ice charts for the same periods amount to
68.1% for MYI and 95.6% for FYI.

A comparison of confusion matrices shows a correspondence
of Bayesian and NN classification results for LFYI and MYI
in the Central Arctic. The NN classification results are less
noisy, whereas pixel-by-pixel Bayesian algorithm better detects
narrow leads in ice cover. NN allows detecting wide leads,
which are important for climate studies and ice navigation.

The possibility to detect leads, as well as other small-scale
ice features, is limited by the size of sliding window, used for
textural characteristic calculation. When using 32 × 32 size
and pixel spacing of 75 m, the minimum size of ice features
is limited to 1200 m.

The Bayesian and NN algorithms may be effectively used in
the Central Arctic where MYI is predominant. However, they
hardly can be used in the marginal ice zone, where there is a
mixture of many different ice types and their SAR signatures
significantly depend on the size of ice floes. Classification
accuracy can be improved by using SAR images at different
polarizations, and the next step of this study is the development
of sea ice classification from multipolarization data, as well as
from SAR images in other spectral bands. The automatic SAR
ice classification can be implemented as part of the GMES
services for operational sea ice monitoring using data from
RADARSAT-2, Sentinel-1, and other SAR satellites.
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