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Abstract—We discuss the optimization of components in a
single-wavelength airborne laser bathymeter that is intended
for a low-power unmanned aerial vehicle platform. The theo-
retical minimum energy requirement to detect the submerged
sea floor in shallow (< 5 m) water using a low signal-to-noise
ratio (LSNR) detection methodology is calculated. Results are
presented from tests of a prototype light detection and ranging
(LiDAR) instrument that was developed by the University of
Florida, Gainesville. A green wavelength (532 nm), 100-beamlet,
low-energy (35-nJ/beamlet), short-pulse (480 ps) laser ranging
system was operated from a low-altitude (500-m) aircraft, with
a multichannel sensor that is capable of single photoelectron
sensitivity and multiple stops. Data that were collected during tests
display vertical structure in shallow-water areas based on fixed
threshold crossings at a single-photon sensitivity level. A major
concern for the binary detection strategy is the reliable identifi-
cation and removal of noise events. Potential causes of ranging
errors related to photomultiplier tube afterpulsing, impedance
mismatching, and gain block overdrive are described. Data
collection/processing solutions based on local density estimation
are explored. Previous studies on LSNR performance metrics
showed that short (15-cm) dead time could be expected in the case
of multiple scattering objects, indicating the possibility of seamless
topographic/bathymetric mapping with minimal discontinuity at
the waterline. LiDAR depth estimates from airborne profiles are
compared to on-site measurements, and near-shore submerged
feature identification is presented.

Index Terms—Airborne laser swath mapping (ALSM),
bathymetry, light detection and ranging (LiDAR), photonics.
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I. INTRODUCTION

A. ALB Background

THE ABILITY of light detection and ranging (LiDAR)
hydrography to create detailed maps through flexible data

collection methods supports a variety of applications, includ-
ing nautical charting, hazard identification, erosion modeling,
storm damage assessment, and beach nourishment/design [1].
In 1973, a joint program for constructing an operational air-
borne laser bathymetry (ALB) unit was founded by the National
Aeronautics and Space Administration (NASA) Wallops Flight
Center LiDAR Research Group and the U.S. Naval Oceano-
graphic Office, resulting in test flights from 1973 to 1975 [2].
By the late 1980s, the idea of ALB showed promise from
systems such as the NASA Airborne Oceanographic LiDAR
(AOL), the Canadian Larsen 500, the Australian WRELADS,
and the Swedish FLASH [3]. Operational systems matured dur-
ing the early part of the next decade, with successes by systems
such as the Royal Australian Navy’s Laser Airborne Depth
Sounder (LADS), the U.S. Army Corps of Engineers’ Scanning
Hydrographic Operational Airborne Laser Survey (SHOALS),
and the Swedish Maritime Administration’s HawkEye. As the
volume of data and rate of acquisition became less challenging
with improving computer technology, the processing work-
flow moved from a manually intensive line-based approach to
an automatic area-based methodology [1]. Through the early
2000s, continued improvements have been made to increase
the pulse rate, spot spacing, and portability of ALB systems
[4]–[6], but the nature of submerged sensing—the measurement
of the water column and bottom through elastic backscat-
ter measurements at (green) wavelengths of 500–550 nm—
remains largely the same.

ALB systems are currently routinely flown on light aircraft
platforms (< 5670 kg) such as the de Havilland Canada (DHC)
Twin Otter. In this paper, we will consider the possibility of
integrating a sensor package onto an even smaller aircraft—an
unmanned aerial vehicle (UAV). Introducing a large heavy
payload may impede flight operations for this type of platform.
Considering that ALB designs with a high signal-to-noise ratio
(HSNR) often favor simplified detection over weight, size,
and power consumption [7], [8], it is of interest to consider
the minimum requirements for shallow bathymetry mapping,
i.e., the parts of the ALB process that can be optimized in
the context of technology improvements. Utilizing a high-
energy laser can shorten the mission duration by draining the
battery life; high-power lasers require complex electronics and
sophisticated cooling systems. Bulky equipment is unsuitable
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for scalability with low-power applications. Replacement costs
may also carry more significance. UAVs are often intended for
potentially “disposable” functions, and the loss of an expensive
laser mapping unit can be prohibitive. Operation in populated
areas restricts maximum laser power and sensor altitude due
to eye safety requirements. Designs based on a high energy
requirement per illuminated area limit the size of the footprint,
resulting in less than contiguous coverage of the terrain. We can
suggest the following three areas in which to optimize ALB
components to prepare for a low-power platform: 1) output
wavelength; 2) output energy; and 3) waveform capture.

B. Output Wavelength

In a typical ALB system, a 532-nm (green) laser is manda-
tory due to its water penetration capabilities. The emission of
1064-nm (infrared) radiation is useful for identifying the water
surface and for mixed topographic mapping [9]–[12]. In addi-
tion, a receiver that can sense the 645-nm (red) wavelength in
conjunction with parallel green waveforms can be beneficial for
distinguishing the specular interface reflection from the diffuse
bottom reflection. The excitation of water molecules at the
water surface by the green laser energy or induced vibrational
modes of the O–H stretch in liquid water causes energy to
be reemitted as photons at a different wavelengths (Raman
scattering) [11]. Based on these ideas, data from the Optech
SHOALS have been used to make high-density measurements
of the coastal zone for a number of years [10]. This system is
sensitive to bottom returns out to two to three times the Secchi
depth and to a maximum of 60 m in the clearest coastal waters.
Recent developments in sensor design have shown that we may
eliminate the dependency on infrared transmission and the red-
channel receiver with new sensor configurations. The air–water
interface reflectivity in the green spectrum is often subject to
significant variation dependent on environment conditions [13],
but creative methods can be employed to overcome potential
pitfalls. One example is shown in the next section.

Sensors that are intended to provide green-waveform sub-
merged sensing must typically be optimized for deep-water ap-
plications; the exponential decay in signal strength through the
water column necessitates large amplification at the receiver.
With such large-amplification techniques, strong signals that re-
sult from the air–water interface may saturate the detector. This
condition is one of the reasons that a multiple-receiver/multiple-
wavelength approach is traditionally used for ALB. Data that
are collected by the NASA Experimental Advanced Airborne
Research LiDAR (EAARL) has indicated the potential for
single-wavelength (green) laser backscatter measurement in
the surveying of shallow submarine topography. Building on
the progress of topographic LiDARs that were engineered to
sense the vertical structure of vegetation canopies, the EAARL
employs a frequency-doubled neodymium-doped yttrium alu-
minum garnet (Nd–YAG) laser that produces 10-kHz, 1.3-ns-
duration, 70-μJ pulses along with four 1-ns temporal waveform
digitizers. The parallel operation of the four digitizers in the
EAARL system compensates for saturation issues. Optical
rugosity analysis in Biscayne National Park showed measure-
ments that were consistent with field observations of coral

features relative to rubble-dominated bank reefs within the
study area out to 12-m depths [14]. EAARL data have indicated
that green-only laser bathymetry is a viable alternative.

C. Output Energy

The EAARL presents an interesting new option for small-
footprint ALB, but the system nominally outputs more than
50 μJ of output energy per laser pulse. In this paper, we
will consider this level to be “high energy,” because we are
interested in exploring the minimum requirements for shallow
benthic detection. In theory, surface mapping efficiency can
significantly be improved by using a paradigm with a low
signal-to-noise ratio (LSNR) based on lower energy and shorter
pulse lasers [8], [15]. LSNR LiDAR has been demonstrated to
work well for low-noise environments such as satellite laser
ranging [16], [17], but shallow-water bathymetry presents a
host of new variables with which to contend due to a consid-
erably more noisy environment. The application of these ideas
is not nearly as common for ALB. Traditional ALB often relies
on HSNR detection, because it ensures the separation of true
return signals from sources of spurious noise events such as
atmospheric scattering and detector dark noise. The extension
of low-noise satellite ranging theory for use in airborne LSNR
ALB will be detailed in Section II. Both HSNR and LSNR
methods may still contain erroneous points that are associated
with multipath (sequential reflections from different surfaces
prior to returning to the sensor).

If a system can function using a low-output-energy source
(< 100 nJ), we can take some liberties with system design
that were not previously possible. For example, the new power
requirements allow us to holographically divide the beam of a
low-power microlaser (< 5 μJ) into an array of subbeamlets
and pair it with a high-gain (> 104) photomultiplier tube
(PMT) that can distinguish independent responses over a grid
[18]. The spatial resolution then becomes a function of the array
size. Denser point spacing may help offset ambiguity in feature
identification, which is likely to be a problem when operating
near the noise floor. For LSNR ALB, this approach means
evaluating depths as measurements between an interpolated
interface and a submerged surface and necessitates 3-D post-
processing that is reliant on the local coherence of reflecting
features. Even with beam-splitting operations, the capability of
detecting returns at very low output energy allows the use of
small-form-factor (< 40× 15× 15 cm) microlasers.

D. Waveform Capture

Traditionally, ALB systems have recorded a digitization of
the return waveform that results from each laser shot (often
referred to as “full-waveform ALB”). Employing high dig-
itization resolution allows for the reconstruction of a near-
continuous height profile related to the interface, water column,
and bottom. A postprocessing algorithm can identify inflection
points in the reconstructed signal associated with these features.
Small-footprint LiDARs then provide detailed characterization
of vertical structure at high spatial resolution [19]. For full-
waveform ALB, the interface-component signal amplitudes
strongly depend on the beam nadir angle, wind speed, and
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specific irradiated wave slopes, causing surface signals to vary
across a large dynamic range [20]. The resulting surface uncer-
tainty problem is an issue for system designers who attempt to
decide which portions of the return waveform to interpret as sea
surface and bottom in a real-time automatic manner.

Assuming no saturation (waveform clipping), one way of ad-
dressing the dynamic range issue is by modifying calculations
of range based on signal shapes and amplitudes. Given that
modern systems routinely receive thousands of these signals
per second, integrated processing procedures are commonly
implemented. For example, ranges that are derived from very
large amplitude signals that irregularly occur may need cor-
rections for expected timing offsets (range walk). In wave-
form digitization postprocessing or embedded filtering (such
as constant-fraction discrimination), noise observations are au-
tomatically detected and discarded to reduce the overall data
set size. Outcomes such as amplitude dependent range walk,
slope dependency of range, and signal ringing can have negative
effects without proper compensation [21]. The same problems
apply for LSNR ranging.

It is an interesting proposition, therefore, to consider how
relative accuracies from a simple fixed-threshold detection
strategy for LSNR detection, resulting in a binary data structure,
may compare to accuracies from full-waveform LiDAR. A
threshold must be set corresponding to a single-photon sen-
sitivity level due to the low-energy output. The detection of
a photon then results in a threshold crossing or a “1” data
entry for a given range bin. If no laser backscatter is present
to activate the detector during the range bin interval, a “0” data
entry is recorded. Range is calculated by differencing the time
at which the laser pulse exits the aircraft and the next time at
which a “1” is registered at the receiver. Using this simplified
approach, there is only 1 bit for each time step through which
to discriminate an inflection point from the return pulse; in
comparison, traditional waveform systems often employ 8-bit
digitization or larger.

The binary method offers certain advantages. Instead of
attempting to work with a multitude of photons and providing
estimates for optical power integration, the system effectively
records all observations without having to resort to an in-
terpretive algorithm. A serious disadvantage, however, is the
increased probability of false positives when extracting true
signals from background noise [7]. Daytime operation can
cause an increase in solar events, which may be misclassified
as surface returns because of the simplified binary structure.
Noise must be kept to a minimum at high amplification through
careful selection of spatial, spectral, and temporal filters [19].

In addition, it is imperative that the ranging system have
extended multistop capability with a high-speed receiver and
employ short outgoing laser pulsewidth. First-stop systems
record only data that are associated with the first target that
was encountered by the laser pulse. A timing system is capable
of “multiple stops” if it can record multiple returns (stops)
beyond the initial triggered response. It follows that, because
the LSNR paradigm may be faced with significant solar/dark
noise, multistop capability is essential. “Dead” or recovery time
is a significant factor for multistop systems; in the case of
partial reflections for distributed targets, the receiver should

recover faster than the timing bin resolution. Utilizing a short
pulsewidth—a good rule of thumb is to use a width smaller than
the timing bin resolution—helps ensure that multiple binary
events are unique, but pulse stretching and high-amplitude
decay remain relevant. Even with multistop capability and a
short pulsewidth, the effect of noise on data will be the central
concern for this type of simplified structure.

E. University of Florida LSNR ALB Prototype

The goal of this paper is to explore the viability of mixed
topographic and shallow bathymetric (< 5 m) mapping through
a low-altitude (< 600 m), single-wavelength (532-nm), low-
energy (< 50 nJ), short-pulse (< 1 ns) laser ranging system
that operates with the aforementioned optimizations. Recorded
depths should conform to International Hydrographic Organi-
zation (IHO) Order 1 accuracy standards (±50 cm in a 5-m
depth at a 95% confidence interval). A prototype LSNR system,
the Coastal Area Tactical-Mapping System (CATS), has been
developed by the University of Florida for this purpose. In
Section II, we detail the theoretical justification for the design.
Section III addresses the ranging capabilities and airborne
testing of the prototype. Section IV discusses data processing,
and Section V analyzes airborne bathymetry data. Section VI
presents conclusions and suggestions for future work.

II. THEORY

A. LSNR LiDAR Background

At 532 nm in a typical coastal environment, less than 2% [13]
of the laser light is reflected back from the air–surface interface.
The following two primary losses should be considered as laser
light propagates through the water column: 1) absorption and
2) scattering. These losses can be described by the spectral
absorption and scattering coefficients aλ and bλ, respectively.
The sum of these two quantities is the total beam attenuation
coefficient cλ [22]. At the interface, a large portion of the
green laser pulse is refracted into the water column. The beam
undergoes scattering from entrained microscopic particulates.
A fraction of the transmitted energy in the water column, which
exponentially decreases in magnitude with greater depth, is
incident on the bottom, with a lateral extent that depends on
the scattering properties of the medium and optical depth. A
general expression for signal energy that propagates a distance
Rw in the water medium is [7]

E(Rw) = E0 ∗ exp(−cλRw). (1)

A portion of this incident energy, typically 4%–15%, de-
pending on the bottom composition [11], is reflected from
the sea floor back into the water column. Absorption and
scattering again, respectively, attenuate and stretch the pulse as
it passes back to the surface, where it is refracted back into the
atmosphere.

The reduction in signal strength as the laser light propagates
through the water column motivates a significant increase in
the transmitted energy per pulse to range to greater depths.
The generation of large amplitude pulses (> 2 mJ) in past
systems resulted in typical outgoing pulsewidths of > 10 ns,
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which, in turn, reduced the capability of typical ALB systems
to accurately survey shallow (< 5 m) coastal areas [6], [11].
As laser technology continues to evolve, high (> 1 mJ) output
energies at short (1–5 ns) pulsewidths are becoming more cost
effective. The use of “short-pulse” LiDAR systems can help
reduce complications in mixed-waveform processing [23].

In addition to requiring fairly sophisticated lasers, outputting
high pulse energy can raise eye safety issues at low altitudes.
Because low-altitude (< 500 m) applications can potentially
provide higher point density, it is of interest to consider the
limits for low-power detection. Traditional HSNR designs do
not make the most efficient use of available photons, because
they favor simplified detection over other system aspects, for
example, size, weight, and power consumption [8]. In HSNR
designs, the green beam is usually expanded to a diameter of a
few meters at the water surface to achieve eye-safe operation
[24]. This approach is unnecessary if a much lower power
laser is used. Theoretical analysis that was carried out based on
a multiple-forward scattering and single-backscattering model
for narrow field-of-view LiDAR return signals indicated an in-
crease in bottom definition, enhancement in depth measurement
accuracy, reduction of post-surface return effects in the PMT,
and greatly improved rejection of ambient light, permitting op-
erations in all zenith sun angles and flight directions [25]. Given
that producing low-power (< 5 μJ) pulses in short duration
(< 1 ns) is easier, we can also expect the required components
to be less expensive. Changing from a traditional HSNR ap-
proach to LSNR requires a high-sensitivity detector.

Moving to an LSNR detection paradigm can successfully
pair highly sensitive photodetectors such as the microchannel
plate photomultiplier tube (MCP-PMT) with cost-effective low-
power microchip lasers to achieve mixed-feature mapping [15],
[19], [26], [27]. A photodetector such as the avalanche photo-
diode (APD) or PMT needs to employ substantial amplification
(> 104) to magnify low amounts of this backscattered energy
(< 1 fJ or < 2.675 · 103 photons at 532 nm) into a measurable
signal. Detection beyond 10-m depths in current systems has
typically required more significant outgoing pulse energy at
532 nm (> 50 μJ) [14]. To calculate the minimum output en-
ergy that is required for single-photon detection in our case, the
signal strength should be estimated as a function of transmitter,
receiver, and environment characteristics. The uncertainty of an
observation can be measured as a function of the various errors
sources [28]. Even for a radiation field of constant intensity,
the number of photons that arrive at the photodetector for a
given time interval is inherently uncertain due to the discrete
nature of the incident light, charge carriers, and the interaction
of light with the photodetector [29]. Statistical proofs show
that, if photon arrival rates are time independent (which means
that they can be described as being a statistically stationary
process), the total number of photons that arrive during any time
interval is Poisson distributed [30]. The relationship between
the number of photons incident on the detector and the number
of emitted photoelectrons (p.e.) can then be expressed as the
following probability:

P (nt, ns) = nnt
s · e

−ns

nt!
(2)

TABLE I
SAMPLE SYSTEM PARAMETERS FOR LIDAR LINK EQUATIONS

where nt is the expected number of detected PEs, and ns is the
expected number of PEs that were generated at the receiver.
The probability of registering at least one signal event can
then be calculated as a function of ns [7]. For example, it is
expected that, for a signal level of one PE, there is a 63.21%
chance that a signal event will be registered. The LiDAR link
equation relates basic elements to estimate the backscattered
signal strength. A modified form of this equation yields the
following expression for transmitted energy per laser pulse in
the topographic case [15]:

Et,topo =
hv · ns

nhnqnr · ρλ · cos(α) · Ar

πR2 [exp(−βeλR)]2
(3)

where h is Planck’s constant, v is the photon frequency, nh is
the hologram (in the case of an altered beam) efficiency, nq

is the detector quantum efficiency, nr is the receiver optical
efficiency, ρλ is the wavelength-dependent surface coefficient,
α is the local incidence angle on the surface, Ar is the collecting
area of the receiver aperture, R is the range to the surface, and
βe,λ is the atmospheric extinction coefficient per meter. Table I
shows sample system parameters for moderate laser output
power, modest telescope aperture, and average efficiencies for
commercially available materials. The sample values indicate
that we expect 20% transmission loss from the hologram
that creates the beamlet array, 28% quantum efficiency in
the detector, 60% loss due to spatial and spectral filters, 15%
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reflectivity for typical ground soil at 532 nm, a 6.5-cm-diameter
telescope, and a 600-m flying height. To have a 63.21% chance
of detecting one signal event with these parameters, the
transmitted energy Et should be larger than 13.5 nJ for each
beamlet. For a hologram that projects 100 beamlets, we should
use a laser that outputs more than 1.35 μJ of the total energy.

For the submerged case, we assume that single scattering will
dominate the received signal due to the small-spot radius that
is viewed by the receiver [31] and therefore ignore multiple
scattering effects. The expression for transmitted energy in (3)
is modified by including water column extinction parameters as

Et,bathy =
hv · ns

nhnqnr · ρλ · cos(αt) · Ar

π(Rair+Rw)2

· 1

[1− rint(αs)]
2 · [exp(−βeλRair)]

2 · [exp(−cλRw)]
2 (4)

where αt is the incidence angle to the ocean bottom, Rair

is the range in air to the water surface, Rw is the range in
water to the bottom, αs is the angle of incidence to the mean
ocean surface, αr is the refracted angle in the water medium
given by Snell’s law, and rint is the reflectance coefficient at
the air–water interface. If we consider further practical values
(also given in Table I) for near-nadir bathymetric ranging with
“pure-sea-water” absorption (aλ,pure) and scattering (bλ,pure)
coefficients, we find that a 5-m depth requires at least 24.3 nJ
of transmitted energy. Inputting more realistic values for the
“coastal” water case (aλ,coastal, bλ,coastal) yields a threshold
of 0.76 μJ. Further discussion of the derived equations, noise
components, and simulated performance metrics can be found
in [7] and [32].

III. PROTOTYPE TESTING

A. Ranging Capability Assessment

We are interested in a practical assessment of these theoreti-
cal assertions. Analysis of range data from the CATS prototype
is shown here. A frequency-doubled Nd:YAG laser is used to
create 532-nm, 3.5-μJ pulses at 8 kHz. The division of the
primary beam into an evenly spaced array (10 × 10) of 35-nJ
beamlets creates dense spot spacing (∼20 cm) at a flying height
of 600 m. Additional device specifications and parameters
necessary for precise temporal, spatial, and spectral filtering
were described in a previous work [19]. We now present a
ranging capability assessment based on static experiments.

1) Range Accuracy: A calibration test was conducted to
evaluate the consistency of returns from a fixed target. The
CATS was set up to range to a brick wall under full solar
illumination on a clear day. For 16 000 laser shots (approx-
imately two seconds of laser-on time), 1 279 197 total hits
were recorded. Hits were filtered for returns from 264 m to
266 m to discard any dark noise or solar events that are not
associated with scattering off the brick. We considered 72%
of these hits (922 202 points) to evaluate relative accuracy. An
associated histogram of range information is shown in Fig. 1.
At one standard deviation from the mean, 99% of the recorded
range data falls within the 10–20 cm level, as shown in Fig. 2.
The outlier at channel 33 only registered six hits, which is a

Fig. 1. Histogram of the average range per channel in the static (no-scan) test.

Fig. 2. Standard deviation of recorded ranges per channel in the static
(no-scan) test.

very small sample (0.07%) in relation to other channels. This
channel was designated inoperable due to low sensitivity.

2) Minimum Separation Distance, Bathymetric Mapping
Depth, and Atmospheric Scattering: Performance metrics were
assessed in further static experiments [19] to determine values
for minimum separation distance, bathymetric mapping depth,
and atmospheric scattering. These results show that a secondary
surface intercepted by a partially occluded laser beam can be
detected at a distance of 15 cm. Ranges were recorded through
water columns of variable depth. At a depth of 50 cm in coastal
water, on the average, 12% of laser shots registered at least
one signal event. For 20-cm spacing between laser spots, this
was estimated to be a sufficient signal level to produce meter-
scale shallow (2–5 m depth) bathymetry data [7]. Static testing
also established that, for surface–bottom separation in a heavily
turbid suspension (7.5-cm visibility), the maximum MCP-PMT
gain (8 · 105) was necessary to produce adequate discrimina-
tion. Employing maximum gain introduced 70 times more noise
from atmospheric backscatter relative to a multiphoton state
(2 · 105 gain) on a clear day.
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Fig. 3. (a) Received path portion of the optical bench. (b) Cessna Skymaster aircraft. (c) Mounted CATS sensor head.

B. Airborne Testing of Prototype

1) Experimental Setup: The CATS sensor was mounted in
a Cessna Skymaster twin-engine aircraft, as shown in Fig. 3.
To minimize costs, it contained no inertial measurement unit
(IMU). A special mount was constructed out of aluminum
plates and directly bolted to the rails that normally support the
copilot’s seat. The system was therefore rigidly attached to the
aircraft frame, but no IMU data were collected with which to
correct the observations for changes in the orientation of the
aircraft. Artifacts that result from changes in the orientation
of the aircraft (roll, pitch, and yaw) include undulations of flat
water surfaces and lateral wandering of the surface profiles.

2) Dynamic Range Observations: Experiments were con-
ducted to test the system’s airborne profiling capability. The
two prisms were set 180◦ out of phase so that the laser was
pointed at the nadir. The aircraft was flown at approximately
60-m/s and 500–600 m height above ground level for a series
of ranging trials at full PMT amplification over land. Flights
were conducted at night to reduce the effect of solar noise. In
the aforementioned static testing, employing maximum gain on
the PMT produced very large signals over bare-earth surfaces,
resulting in data flow difficulties when attempting to record
100 channels of multistop information. To reduce the data

throughput, only channels on the second ranging board (17–32
or the central 4 × 4 square) were enabled for a majority of the
experiments.

The preliminary analysis of data from test flights showed that
the overall signal strength at the maximum PMT gain (2500 V
or 8 · 105) was high enough to warrant changing data collection
parameters. Responses from strongly reflective surfaces at this
gain level produced a stacking effect (hits in many consecutive
range bins) near roof surfaces in the resulting image. Because
the laser output energy and detector type were selected to maxi-
mize the LSNR performance in turbid waters, this outcome was
expected. The dynamic range between responses from different
types of features (particularly when contrasting topographic
and bathymetric return) can be large; for example, it is not
uncommon to have a difference of more than six orders of
magnitude between strong water interface and weak bottom
returns [24]. Responses from artificial surfaces for on-nadir
beam propagation at 2500 V were tens of range bins deep
in some cases. Stacking effects from large-magnitude water
surface responses are undesirable, because they can eclipse
multiple return data from partial reflections.

3) Off-Nadir Profiling: By changing the type of airborne
profiling from on nadir to off nadir, we can begin to combat
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the dynamic range problem. Although traditional “sawtooth”
(raster scan) patterns pass through the nadir in each swath,
conical or circular patterns are the natural extension of off-nadir
scanning. By imposing a fixed incidence angle relative to the
ground for outgoing laser light, the magnitude of backscattered
radiation is decreased due to less significant contributions from
specular reflections and increased slant range. This condition
has special relevance in the case of mirror-like water surfaces,
because large specular components may cause problems for
on-nadir operation. However, even with off-nadir operation,
a large difference in signal strength between topography and
distributed targets such as partially occluded forest canopies
and submerged surfaces was still observed.

For the LSNR detection paradigm to be worthwhile re-
lated to submerged surface mapping, an amplification level
that produces returns from even very weak scatterers should
be maintained. Data collections at multiphoton sensitivity
(2300-V or 2.5 · 105 gain) produced responses that are three
to four range bins deep from surfaces such as building roofs,
bare earth, and tops of tree canopies. We could thus reduce
the tube voltage and expect the top end of our dynamic range
to be reduced. Theoretically, if interrogated far-field surfaces
are of uniform reflectance and the gain of the tube is matched
to provide just enough amplification to consistently produce
threshold crossings, this technique might be acceptable. How-
ever, in practice, target reflectance properties are not precisely
known, and the tailoring detection strategy to one type of
feature negates the real benefit of this type of sensor, i.e.,
mixed mapping. Previous experimentation [19] showed that
shallow-water bathymetry is difficult at less than full ampli-
fication (2500-V or 8 · 105 gain) for very low output energy
(< 50 nJ).

IV. DATA PROCESSING

A sensor that was intended to provide seamless near-shore
mapping should accommodate difficulties that are associated
with the land–water boundary. The NASA EAARL system uses
four stages of detectors to combat dynamic range challenges
in green-only mapping [14], but the CATS has only a single
PMT. The CATS still provides mixed topographic mapping, but
3-D data postprocessing is required. These same topographic
processing procedures will be applied to bathymetric data. True
signals should exhibit some form of spatial coherence even
in lowly populated areas due to the random nature of noise
formation, allowing us to use techniques such as postdetection
Poisson filtering (PDPF) and a correlation range receiver (CRR)
to beneficially exploit data trends [15]. We will consider
in detail the most significant type of error specific to the
CATS—false surfaces or “ghost images”—to evaluate the ap-
plicability of this claim for mixed topographic and bathymetric
data processing.

A. Ghost Images

Several different types of buildings and other man-made
objects were profiled in a flight over the University of Florida
campus in Gainesville, Florida. Fig. 4(a) shows an aerial pho-

tograph of a region at the south end of the campus and flight
line. Fig. 4(b) is the raw point data from channels 20 and
23. The image allows us to identify a small outcropping in a
building roof, a roof from a nearby parked car, angled roof
geometry from small office buildings, the outline of a stone
bench, and a low-hanging awning between two buildings. A
zoom-in on detected surfaces, as shown in Fig. 4(c), identifies
a potential problem: a “ghost image” of roof surfaces appears
at a constant offset beyond the first return. These false sur-
faces need to be eliminated from the data set. For bare-earth
and building measurements, removal could be accomplished
through an automatic first-surface algorithm, but we then risk
losing important multiple-return information from other types
of features. Leaving the data unfiltered is similarly unaccept-
able. In the worst case scenario, an automatic data classifier
may erroneously identify a ghost image from the water surface
as a submerged element, yielding inaccurate depth estimation.
Identifying the cause of such artifacts and addressing their
influence on feature classification is of prime importance for
shallow-water bathymetry.

The influences of ghost returns are not always obvious,
because the magnitudes of the effects are suspected to be
fairly low, which means that certain types of data visualiza-
tions can cause the effects to be classified as random thermal
events, solar noise, or volumetric scattering residuals rather
than deterministic occurrences. This case is particularly true
when illuminating nonuniform multiple-scattering surfaces. For
example, when returns from channel 23 are plotted in Fig. 5,
noise trends are less prominent. Here, we show an unfiltered
point cloud from a forested region in Mine Run, VA. Small
leaf structure elements are definable based on a large number
of multiple scattering events. The flight was conducted in
autumn, because the deciduous forest was in the process of
shedding leaves; this condition left small pockets of space in
the overhead canopy through which individual beamlets could
propagate. Partial transmission of beam elements as a result of
semiocclusion by leaf surfaces allow for intracanopy response
and the identification of the ground surface below the tree line.
A zoom-in depicting a narrow tree trunk is pictured.

An expanded view of the same near-shore scene is depicted
in Fig. 6. Fig. 6(a) shows the first-return data. The resulting
point cloud seems close to what we would expect; canopy
returns are logically distributed for partial leaf-on conditions,
bare-earth surfaces (x < 150 m) are singular, and water returns
(x > 150 m) are generally bimodal. The distribution of noise
returns relative to these known features, however, should be
analyzed in further detail.

B. Noise Expectations

Above the ground/water surface, we expect random contri-
butions from dark/solar events and atmospheric backscatter.
Below ground and past ∼5 m water depth, we expect only
contributions from dark/solar noise. Fig. 6(a) thus gives us
some indication that an aberrant effect may be in play; below
ground noise events are more numerous. The opposite should be
true if we expect our noise to randomly be distributed. When all
returns from 16 channels of data are plotted [Fig. 6(b)], artifacts
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Fig. 4. Flight testing in Gainesville, FL, over the University of Florida campus. (a) Aerial photograph with a flight line. (b) Profile data from channels 20 and 23,
2300 V, all returns, with the unfiltered data showing vertical resolution capability in structure identification. (c) Zoom-in on data errors.

become much more evident; the number of above-ground points
slightly increases as expected, but the large number of below-
ground returns is now a stark contrast. In addition, note that

the data errors are more pronounced below single scattering
surfaces, i.e., bare earth and building roofs. This effect persists
even through overlapping first-return data.
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Fig. 5. Flight testing in Mine Run, VA, over a forested region. Small leaf
structure elements are definable along with trunk and ground information.

Fig. 6. Flight testing in Mine Run, VA, over a forested region. (a) Channel 23,
first returns plotted. (b) Channels 17–32, all returns plotted.

C. Local Density Calculations

Although it appears clear in Fig. 6 that errors below strongly
reflective surfaces are significant, further quantification may
aid in pattern identification and processing efforts. Estimates
for local density in selected regions within the point cloud
were computed. A segment of flat-ground data was manually
windowed to encompass expected signal returns. Ghost re-
sponses should exhibit well-defined correlation to this window;
the temporal offsets of the expected highest correlation are
shown in Fig. 7 as “afterpulse 1/2.” By then vertically sliding
the true signal window as shown in Fig. 8 and expressing the
correlation coefficient as a ratio of true signal to the measured
effect, the plots in Fig. 9 were generated. In Fig. 9(a), the
amount of correlation exponentially decreases, starting at zero
distance (correlation % of 1.0) down to the noise floor, which
is below a correlation % of 0.1. The ghosting correlation is not
distinguishable in this plot. This result indicates that the spatial

distributions of the ghost effects are significantly less dense
than the true signal; therefore, a logarithmic y-scale is included
to observe the output characteristics near the noise floor. If we
fit a Gaussian profile to the data and measure the peaks, the
largest correlation occurs at 12.67 and 24.00 ns, with peaks of
0.0085 and 0.0053, respectively.

D. Causes of Image Ghosting

We can posit several explanations for the ghost image effect.
First, gas impurities in the tube envelope could generate addi-
tional responses beyond the initial high-intensity return, which
is commonly referred to as “afterpulsing” in nuclear particle
physics experiments. Second, the cable that connects the PMT
output to the high-speed data interface could have an impedance
mismatch. A mismatch could cause undesirable reflections
from the interface junctions to become significant at very large
signal levels. Third, the silicon germanium high-speed gain
block could be overdriven in cases of large signal output. This
case would cause the amplifier to operate beyond the maximum
recommended ratings, thereby inducing anomalous effects.

1) PMT Afterpulsing: Exploration into the chemical and
physical nature of PMT afterpulsing effects [33]–[35] showed
that diffusion of trace gases through the tube envelope con-
tributed to an increase in the probability of pulse formation. In
particular, diffused helium was found to be the main source of
afterpulses in tubes that are more than two years old. In contrast,
the contribution from this impurity in new tubes was often
small [35]. An exponentially decaying low-level background
signal has been shown to occur after the abrupt termination
of a submicrosecond light pulse [36]. Positive ions that were
produced during the ionization of residual gas in the PMT by
PEs produce secondary electrons during their drift back onto
the photocathode, which are then amplified [37], [38]. Other
possible explanations for both short-term (submicrosecond) and
long-term (microsecond to millisecond) responses are electron-
induced luminescence of the dynodes or their support structures
and microdischarges produced during high-gain operation [36].

Because the CATS uses a MCP-PMT that was manufactured
in 2004 and has undergone significant use, it is possible that
trace amounts of atmospheric gas diffused into the envelope
over time may have risen to significant levels. However, be-
cause ghost images occur at highly consistent spacing, it is
unlikely that PMT afterpulsing is the main source of the errors.
Quantifying the amounts of impurities is beyond the scope of
this paper, but potential contributions from afterpulsing should
be mentioned due to the age of the tube.

2) Impedance Matching: The relationship between errors
and dynamic range suggests that the cabling may be a fac-
tor. For radio frequency (30 kHz–300 GHz) circuitry, the
impedance of the transmission line itself becomes significant.
To maintain the maximum power transfer, the characteristic
impedance of the cable (ZO) should be closely matched to
the source (ZS) and load (ZL). If the total path length is
greater than 10% of the signal wavelength, mismatch effects
can have a greater impact. In the CATS system, 2-GHz-level
signals mean that transmission lines that are longer than 4 cm
must be well matched (assuming a velocity factor of 0.8).
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Fig. 7. Identifying afterpulsing effects in raw data.

Fig. 8. Vertical sliding window to evaluate the magnitude of afterpulsing responses.
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Fig. 9. Correlation of the windowed true signal to the afterpulsing signal
in 0.1-m increments, starting from the true surface (correlation coefficient of
1.0). (a) Normal-scale y-axis. Peaks are indistinguishable. (b) Log-scale y-axis.
Ghost peaks are visible. (c) Magnitude of peaks are both less than 1%.

Fig. 10. (a) Large signal (110 mV) injected into the gain block. (b) Output of
the gain block (courtesy of Fibertek Inc.).

After considering the layout of associated PCBs in the receiver
design and estimating the total length between the PMT and
data capture elements, the first reflection in both worst case
scenarios is expected to be three orders of magnitude smaller
than the true signal. The second reflection is six orders of
magnitude smaller. Although potential reflections that result
from worst case impedance mismatch may occur at the same
temporal spacing as the ghost images, we conclude that the
magnitudes should not be significant.

3) Gain Block Overdrive: Output signals are amplified by
a 4000-MHz, 2.8-V SiGe gain block that was manufactured
by Sirenza Microdevices (part number SGA-1263). The output
of this device is directly fed into the threshold comparator for

Fig. 11. (a) Larger signal (200 mV) injected into the gain block. (b) Output of
the gain block (courtesy of Fibertek Inc.).

Fig. 12. (a) Largest signal (300 mV) injected into the gain block. (b) Output
of the gain block (courtesy of Fibertek Inc.).
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Fig. 13. Result of the first step of local density filter for a single channel of raw airborne profile data.

each channel. Because the system needs to operate on a single-
photon sensitivity level, channel thresholds are set to a 4-mV
trigger. According to the manufacturer’s data sheet, the gain
block has a maximum RF input power of −12 dBm or 63 μW,
which equates to 56 mV into a 50-Ω load. An output current
that is more than 1.1 mA will therefore begin to overdrive the
gain block.

In Fig. 10(a), a large signal (110 mV) is injected into the
gain block. This is approximately 25 times larger than a signal
expected to barely produce a threshold crossing (4 mV). The
resulting output is shown in Fig. 10(b). The desired response
is the first large negative pulse. Deviations from the zero level
in the waveform after the first negative pulse are anomalous
effects that result from the large signal input. Here, we see
small negative deformations before and after a positive peak.
If we inject a larger signal, e.g., 200 mV [Fig. 11(a)], the
output shown in Fig. 11(b) is produced. A line is drawn here to
approximate the threshold crossing. The second crossing occurs
at approximately 13 ns. If a still-larger signal, e.g., 300 mV
[Fig. 12(a)], is injected into the block, we can identify threshold
crossings in Fig. 12(b) at approximately 13 and 20 ns. The
temporal spacings of these outputs are similar to spacings that
were estimated from local density correlation within the point
cloud. Because surface ghosting is exacerbated as the return in-
tensity increases, it is likely that the gain block overdrive is the
main culprit.

E. Data Filtering Based on Local Density Estimation

We previously theorized that an LSNR LiDAR that operates
with simple fixed threshold detection may be worth considering
when coupled with short laser pulsewidth and dense point
spacing. The extent to which this approach can be successful
depends on the ability to locally separate coherent features from
contaminating sources of noise, i.e., thermal, solar, and atmo-
spheric effects. If point clouds that result from data that contain
potentially corruptive data artifacts (such as the aforementioned
ghosting) can be filtered to still retain pertinent feature struc-
ture, it is a testament to the instrument potential when the hard-
ware is adjusted to eliminate error production. In the previous
section, calculations showed that comparative spatial densities
of ghost data errors are fairly small, i.e., peaks less than 1% of
the true signal. We can thus perform point cloud filtering based
on local points and expect not to lose a significant amount of
signal information about strongly reflective, spatially coherent
surfaces. We should apply this idea to corrupted LSNR ALB
data and evaluate whether relative feature measurements are
comparable to the ground truth. Generated algorithms should
be near automatic, i.e., with the least possible manual input.

Fig. 13 shows filtering operations on a raw land/water data
set. First, a decision boundary for the coastline (x = 150 m)
was estimated using a windowing approach similar to Fig. 8.
Based on the number of points in a 3-D cube of space cen-
tered at each return, local density estimates were produced for
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Fig. 14. Result of the second step of local density filter for raw airborne profile data. (a) Retained and filtered points. (b) Retained points only.

topographic data (x<150 m) and bathymetric data (x>150 m).
The process is identical to the spatial correlation feature filter
described in [32], which operates on the theory that noise
events, although cumulatively occurring in a large quantity,
sparsely occur in the context of local neighborhoods. One
important assumption is that the probability of noise events with
one or more local neighbors is less than 1.5%; Figs. 13 and 14
evaluate the merits of this assumption using sensor data.

Expected thresholds for noise points in each case, topo-
graphic and bathymetric, were calculated. Each return that
exhibits a local density estimate below these thresholds were
identified (indicated by squares in Fig. 13). The data were
then filtered to retain all other points. Fig. 14 shows a second
filtering step using a similar local density estimation process.
The secondary step helps eliminate the few remaining artifacts,
and the final processed image is shown in Fig. 14(b). A dense
clump of points 5 m above the water surface is visible at
x = 180 m; this is the result of returns from an overhanging
island tree near the flight line. Because the density of returns
suggests that this noise is not atmospheric, the filter retains the
associated points.

V. ANALYSIS OF RESULTS

A. Freshwater Bottom Mapping

The major goal of flight testing for the CATS instrument was
to evaluate LSNR water penetration capabilities. The automated
filtering process described in Section IV was used to produce
a freshwater data set. A zoom-in view of filtered data from a
shallow-lake area (southwest portion of the Lake of the Woods)
in Mine Run is shown in Fig. 15(b). The path of the aircraft near
the shoreline is indicated in Fig. 15(a). Data were collected dur-
ing late-evening/night conditions under very calm surface con-
ditions. The water in this area contained low amounts of colored
dissolved organic material. The Secchi depth was measured by
lowering a black-and-white painted disk into near-shore water
until the pattern was no longer visible, which is an inexpensive
straightforward procedure. Note, however, that Secchi readings
are not necessarily the most accurate for absolute turbidity
measurement; readings can vary, depending on ambient light
conditions, human eyesight, and water surface glare.

To minimize errors, measurements were taken off the shady
side of a boat at approximately 2 P.M. by a single observer. The
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Fig. 15. Flight testing in Mine Run, VA, over the Lake of the Woods, southwest. (a) Aerial photograph near boat docks and shallow launch region with a flight
line. (b) Off-nadir profile, channels 17–32, 2500 V, all returns, with the processed data depicting freshwater penetration out to 1.65 m.

purpose of these measurements was to provide a relative com-
parison of water turbidity for different areas of the lake (and,
thus, for different bottom compositions). In the southwest area
of the lake, the bottom was a mixture of dark sand and decaying
organic material; the bottom reflectivity was very low. The
Secchi depth here was 2 m. Sixteen channels of data were col-
lected at 2500 V or maximum PMT amplification. Manual mea-
surements of water depths in this area at 10-m intervals were
also performed using a measuring tape with an attached weight.

TABLE II
COMPARISON OF LIDAR DEPTH ESTIMATES AND MEASUREMENTS

Point cloud values were interpolated to estimate the lake
bottom surface, as shown in Fig. 15(b), dashed line. The in-
terpolated bottom was then corrected for the index of refraction
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Fig. 16. Flight testing in Mine Run, VA, over the Lake of the Woods, northeast. (a) Aerial photograph near the lake shoreline with a flight line. (b) Off-nadir
profile, channels 17–32, 2500 V, all returns, with the processed data depicting freshwater penetration out to 2.10 m.

of water (1.33), as shown in Fig. 15, solid line. Here, we see a
consistent response from the water surface, as shown in Fig. 15,
flat line, and an exponential decay of water column returns
progressing to further depth. The lake bottom produces a strong
signal at 1–1.3 m depths near the shoreline at x = 150 m.
Water depths at 10-m horizontal intervals were extracted from
the LiDAR data in this region by differencing the interpolated
water surface and corrected lake bottom function. Lake bottom
returns become negligible at a water depth of approximately
1.65 m. There was a large amount of sediment buildup from
organic/inorganic particulate near a small island located at x =
180 m. This case could lead to a shortening of the estimated

depth near the island. Table II compares LiDAR depth estimates
to measured values. The average difference between estimates
and measurements is 21 cm. The central 16 channels (17% of
the total footprint area) were sufficient in the profile mode to
reconstruct the bottom. At a depth of 0.5–1.5 m, on the average,
38 returns per meter were registered from the lake bottom. For
an 8-kHz laser pulse rate and 60-m/s flight speed, this result
corresponds to an average of 1.77% of the outgoing shots that
register returns from the lake bottom.

Fig. 16 shows a location to the northeast where the bottom
was composed of a mix of lighter sand and organic material.
The Secchi depth here was also 2 m, which means that the water
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Fig. 17. Flight testing in St. Augustine, FL, over docks on the Intracoastal Waterway. A slight roll of the aircraft is most likely present, causing the interrogated
profile to be displaced approximately 1 m to the left of the red flight line in the aerial photo. (a) Aerial photograph near boat docks and shallow launch region
with a flight line. (b) Off-nadir profile, single channel (18), 2500 V, all returns, with the processed data depicting saltwater penetration out to 2.5 m. Note the
compression of the x-axis (necessary to depict the entire range of bottom sensing).
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TABLE III
COMPARISON OF LIDAR PLATFORM DISTANCE

ESTIMATES AND MEASUREMENTS

turbidities for the southwest and northeast portions of the lake
were consistent. An off-nadir profile for 16 channels at 2500 V
depicts recovery of the lake bottom out to a 2.10-m depth. The
increase in reflectivity is the expected cause of increased returns
from the lake bottom at a greater depth. Fewer bottom returns
near the shoreline were received as a result of overhanging tree
branches, but multiple returns still provided information about
submerged surfaces. At a depth of 1–2 m, on the average, 74
returns per meter were registered from the lake bottom. This
result corresponds to an average of 3.49% of the outgoing shots
that register returns from the lake bottom.

B. Saltwater Bottom Mapping

Further flight testing was conducted over the Intracoastal
Waterway, St. Augustine, FL, under full daylight conditions.
Fig. 17 shows point cloud data starting from the shoreline and
out to a boat dock 60 m away. The water surface and bottom
profile between boat docks and a shallow boat launch region
are depicted. Note the compression of the x-axis in the plotted
data (necessary to depict the entire range of bottom sensing).
Dense clusters of points that are 1–2 m above the water surface
are a result of narrow wooden walkways (x = 175, 189, 203 m)
that lead out to the boathouses. The sand bottom was reflective
enough in this case for a single channel to provide bottom
reconstruction out to a depth of 2.50 m. Hand measurements of
wood platform heights above the water surface were performed
at five locations (Table III, third row). LiDAR estimates of
platform heights were calculated by getting the difference of the
first above-water return that is associated with the wood surface
and the interpolated bottom at the five indicated locations
(Table III, second row). The comparison of measurements to
estimates yields an average error of 17 cm.

Fig. 18 shows information from three channels over a sand
bar in the St. Augustine Intracoastal Waterway. Bottom features
out to a depth of 1.5 m are recovered here in high detail;
submerged pockets and dunes are identifiable, because currents
have affected the sand geometry. An aerial photograph of the
east coast of Florida near St. Augustine with the aircraft path is
shown in Fig. 19. The associated point data from three channels
extend from the beach out to open water and are colored
according to elevation. Of particular interest in this image are
the gradually increasing sea floor slope in the surf zone near the
beach–water interface and the sand bar located 40 m from the
shore.

A single channel of information (1% of the total footprint
area) was used in the profile mode to reconstruct a saltwater
intracoastal floor (estimated to be highly reflective) in water of
high clarity out to 2.5 m. At a depth of 1–2 m, on the average,
45 returns per meter were registered from the submerged floor.
This result corresponds to an average of 33.98% of the outgoing

shots that register returns from the floor; these are assumed to be
near-ideal turbidity conditions. Three channels of information
(3% of the total footprint area) were used in the profile mode
to reconstruct the sea floor (estimated to be highly reflective) in
the surf zone near a beach in water of optimum clarity out to 2
m. At a depth of 1–2 m, on the average, 56 returns per meter
were registered from the sea floor. This result corresponds to
an average of 13.98% of the outgoing shots that register returns
from the floor.

VI. CONCLUSION

This paper has discussed results from airborne tests of a
prototype LSNR ALB instrument. Analysis of topographic data
identified significant issues related to “ghost surfaces,” and
gain block overdrive was identified as the most likely cause
of the ranging errors. A data-processing methodology based on
local density estimation was proposed to correct corrupted data.
Analysis of corrected airborne profile data from the CATS over
a freshwater lake in Mine Run, VA, and saltwater areas near
the eastern coast in St. Augustine, FL, has yielded submerged
surface reconstruction for practical water turbidities/surface
reflectances down to 2.5-m depths. We have shown contin-
uous mapping of the near-depth shore with limited discon-
tinuity at the land–water interface. Depth calculations from
CATS data estimate average range errors of 17 and 21 cm in
freshwater/saltwater. This result was expected, because there
were no attitude corrections for profile data.

A. Suggestions for Future Improvements

For mixed mapping, it is difficult to automatically process to-
pographic and bathymetric data simultaneously with the current
CATS detector structure. The dynamic range between building
roofs/bare earth and water surface/column/bottom is very large.
Areas such as marsh wetlands can cause trouble for feature
extraction algorithms that manipulate local densities. Range bin
“stacking” caused by highly reflective surfaces can also over-
ride multiple events from distributed laser backscatter through
closely spaced vertical elements. One successful technique for
combating this problem is to use several detectors at varying
brightness sensitivity [5], [14], [24] to characterize returns
based on saturation levels.

In the Optech SHOALS system, the dynamic range problem
is handled by using one high-gain PMT and one low-gain APD.
The high-gain channel is gated on only after the pulse has
passed through the air–water interface [24]. It may be possible
to implement a similar “sensing” stage in the CATS to modify
signal amplification on a dynamic level. For example, the high
voltage is already stepped on a per-shot basis to reduce the
power consumption and extend the PMT life. If a separate
photodetector was placed in front of the primary MCP-PMT
(whether physically or by temporal delay sequencing) such that
it were possible to determine the intensity of the backscattered
radiation before stepping up the tube high voltage, the level to
which the voltage was stepped could dynamically be altered.
It would then be possible to obtain different amplification for
topographic returns as opposed to sea bottom returns with fairly
minimal modification to the current system structure.



4788 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 11, NOVEMBER 2012

Fig. 18. Flight testing in St. Augustine, FL, over a sandbar on the Intracoastal Waterway. (a) Aerial photograph over a sand bar with a flight line. (b) Off-nadir
profile, channels 21–23, 2500 V, all returns. Point cloud depicts sand bottom out to 1.5 m.

Operating in a multiphoton state has been shown to provide
70× less atmospheric noise [18] and still remains capable
of ranging to buildings, tree trunks, and ground surfaces. A
sensing stage could also improve the maximum water pene-
tration depth. Although the MCP-PMT already operates at its
maximum amplification, if the possibility of full amplification

during periods of high-intensity laser backscatter (which can
damage the detector) could be negated, it would be possible to
fly lower than 500 m and lose less power in the atmosphere.
The 10 × 10 array output is eye safe down to 100-m altitudes;
therefore, the only restricting factor even for populated areas is
the Federal Aviation Administration (FAA) regulations. Flying
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Fig. 19. Flight testing in St. Augustine, FL, over the eastern coast. (a) Aerial photograph of flight path relative to the beach. (b) Off-nadir profile, 2500 V,
channels 21–23, all returns, with the processed data related to the beach–water interface region.

lower would also decrease the ground spacing between subpixel
locations in the CATS footprint, creating improved spatial
density and potentially reducing pitch and roll errors. One dis-
advantage of this approach is a narrower swath, which increases
the flight time necessary to cover the same amount of area.
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