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Abstract—The Soil Moisture and Ocean Salinity (SMOS) mis-
sion is European Space Agency (ESA’s) second Earth Explorer
Opportunity mission, launched in November 2009. It is a joint pro-
gram between ESA Centre National d’Etudes Spatiales (CNES)
and Centro para el Desarrollo Tecnologico Industrial. SMOS car-
ries a single payload, an L-Band 2-D interferometric radiometer in
the 1400–1427 MHz protected band. This wavelength penetrates
well through the atmosphere, and hence the instrument probes
the earth surface emissivity. Surface emissivity can then be re-
lated to the moisture content in the first few centimeters of soil,
and, after some surface roughness and temperature corrections,
to the sea surface salinity over ocean. The goal of the level 2
algorithm is thus to deliver global soil moisture (SM) maps with
a desired accuracy of 0.04 m3/m3. To reach this goal, a retrieval
algorithm was developed and implemented in the ground segment
which processes level 1 to level 2 data. Level 1 consists mainly
of angular brightness temperatures (TB), while level 2 consists
of geophysical products in swath mode, i.e., as acquired by the
sensor during a half orbit from pole to pole. In this context, a
group of institutes prepared the SMOS algorithm theoretical basis
documents to be used to produce the operational algorithm. The
principle of the SM retrieval algorithm is based on an iterative
approach which aims at minimizing a cost function. The main
component of the cost function is given by the sum of the squared
weighted differences between measured and modeled TB data,
for a variety of incidence angles. The algorithm finds the best set
of the parameters, e.g., SM and vegetation characteristics, which
drive the direct TB model and minimizes the cost function. The
end user Level 2 SM product contains SM, vegetation opacity, and
estimated dielectric constant of any surface, TB computed at 42.5◦,
flags and quality indices, and other parameters of interest. This
paper gives an overview of the algorithm, discusses the caveats,
and provides a glimpse of the Cal Val exercises.
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I. INTRODUCTION

L -BAND radiometry has proven to be the most promising
remote sensing techniques to monitor soil moisture (SM)

over land surfaces and at the global scale [1]–[4]. An improve-
ment in the estimation of the time variations in SM can provide
significant improvements in meteorological and hydrological
forecasts. In addition, L-Band is used for the estimation of
salinity over global ocean surfaces. For these reasons, a number
of space missions based on L-band microwave radiometers
on satellite platforms have been developed and submitted to
national space agencies. The first was Soil Moisture and Ocean
Salinity (SMOS), launched in November 2009, was followed by
Aquarius in June 2011 and the Soil Moisture Active and Passive
(SMAP) is scheduled for 2014. A major goal of these missions
is to enable, for the first time, direct and robust quantitative
estimates of surface SM over most of the land masses and/or
sea surface salinity over oceans. SMOS has two sets of level 2
products, one for ocean surfaces the other one for land. This
paper gives an overview of the land surface retrieval algorithm,
details of which are provided in the algorithm theoretical basis
document (ATBD) [5].

The microwave signal at L-Band is mainly driven by SM,
vegetation effects, and the effective surface temperature. The
atmosphere and additional surface characteristics, such as soil
surface roughness, topography, soil texture, and soil bulk den-
sity, have a smaller (second-order) influence. The SM retrieval
algorithms, however, need to account for all these various
effects.

A distinguishing feature of SMOS is its multi angular mea-
surement capability. This feature allows for the retrieval of
additional parameters beyond SM. A classical conical scan
radiometer, such as Advanced Microwave Scanning Radiome-
ter (AMSR), scanning multichannel microwave radiometer
(SMMR), soil moisture active passive (SMAP), will provide at
best one fully polarized measurements for any given point. This
makes the retrieval of several surface variables at the same time
impossible (more unknowns than equations) unless other mea-
surements are included, leading to the use of other data sources
to infer extra required pieces of information (i.e., vegetation
opacity or surface temperature for instance). An accurate esti-
mation of the vegetation water content is a key requirement. For
this purpose, it is common to establish a relationship between
an index such as the normalized difference vegetation index
(NDVI) to infer Leaf Area Index (LAI) which in turn is related
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to vegetation water content and opacity. This latter relationship
is obtained by the use of a vegetation type dependent constant
accounting for the vegetation structural characteristics. SMOS
has a definite advantage over conical scan radiometers, as it
measures the angular signature of the surface and provides
up to 160 angular fully polarized measurements, allowing the
user to infer both moisture and, directly, vegetation opacity.
Before settling on iterative approach using forward models,
several approaches including neural networks and statistical
or semi-empirical/empirical methods were considered. They
were not selected as it seemed premature to derive statisti-
cal methods when no previous experience of such L-Band
retrievals of SM at a spatial resolution of 40 km was avail-
able. Consequently, establishing a global relationship between
surface “known” values and satellite brightness temperatures
(TB) seemed a very challenging goal, and the option taken
was to rely on state of the art physically based algorithms as
the retrieval algorithm had to be operational soon after SMOS
launch.

Based on L-Band measurements from airborne or ground-
based observation systems, several studies have investigated
the effects of the vegetation canopy [6]–[11], as well as the
effects of soil temperature [12], [13], snow cover [14]–[17],
topography, and soil surface roughness [18], [20], [21]. Several
retrieval algorithms have also been proposed in the literature
[2], [9], [11], [21]–[25]. Since the 70’s with the SMMR, many
authors have developed and tested various algorithms, the most
successful attempts being made with low-frequency systems
(C-band around 5 cm wavelength and, 5 GHz). These sensors
provided many interesting results but were always hampered by
the relative high frequency and therefore not sensitive enough
when the vegetation became dense [26]. L-Band seemed the
best way to go, and as soon as tractable solutions became
possible for the antenna, the SMOS [27], [28], Aquarius [29],
and SMAP [30], [31] concepts emerged. However, as almost
no space-borne L-Band observations were available yet (with
the notable exception of Skylab which was flown in 1974 and
provided a limited sample of data at a rather coarse spatial res-
olution), the SM retrieval approaches could not be tested with
real data. Results gained from higher frequency missions, and
ground-airborne based experiments were “scaled” to L-Band
using ad hoc methods. The SMOS retrieval algorithm had thus
to be developed based on ground experiments and modeling
activities only, and it was only after the SMOS launch, with real
data, that the actual efficiency could be ascertained. Currently,
through calibration and validation exercises, the algorithm
based on the use of the target’s angular signature, is undergoing
improvements so as to cover more of the land mass.

To summarize the retrieval algorithm first identifies the earth
surface area (or the target) responsible for shaping a particular
set of SMOS signals, i.e., the set of TBs corresponding to multi-
angular views of a single target [32]. This target is considered
as a collection of units, or surface elements, each specified by
its surface characteristics (or state) and its position within the
target area. Since SMOS sees the target from different angles
the contribution of a given surface unit to the signal usually
varies from one view to the next. The amount of contribution for
a given unit is controlled by its state at a given time (captured

by a forward model), its position, and the antenna pattern (both
of which are captured by a weighting function for the given
incidence angle). The collective contributions from all units
and other sources, like sky and atmosphere, is what shapes
the signal for a given angle. The retrieval algorithm, while it
assumes “known” states for certain units (known as default
contribution) attempts to “guess” the states of others in order
to arrive at what is observed by SMOS. In this attempt, the
algorithm, in an orderly fashion, adjusts the parameters that
control the states of each unit in order to minimize the “dis-
tance” between the observed and modeled signal derived from
the last best guess. The parameters that define the state of each
elementary unit include SM and vegetation optical thickness.
This paper describes in details various elements of the above
algorithm.

II. OVERVIEW OF THE INPUT DATA

The retrieval algorithm is designed to use, as input, SMOS
Level 1c (L1c) product. SMOS characteristics are given in
[32]–[34] and are summarized in this section. The basic resolu-
tion (3-dB half power beam width) corresponds to a 43-km foot
print on average (maximum 27 km minimum 55 km over the
field of view for continental areas) The footprint shape varies
with angle [33] making the common term of pixel ambiguous.
As we are dealing with multi-angular measurements, each hav-
ing a different footprint, it is often better to refer them by their
center called the node. The L1c product is provided over the
ISEA-4H9 (icosahedral snyder equal area Earth fixed) grid
referred to as the discrete global grid (DGG). The nodes are
equally spaced at 14.989 km. Products for descending and
ascending half-orbits are separated. They include all possible
land nodes with a margin over sea bodies. The geolocation
accuracy of SMOS is typically 500 m. Geolocation bias due
to launch shift and arms deployment was calibrated within
the first 6 months in orbit, fitting a linear coastline to the
observed transition in SMOS data. Given the spatial resolution
of the instrument and the selected method, the accuracy of
this calibration has been assessed to be slightly better than
500 m [36].

The level 2 (L2) inversion is done over each DGG node
independently and is delivered on the same ISEA-4H9 grid for
the European Space Agency (ESA) products. Although SMOS
pixels, given in the L1c product for a DGG node, are associated
with a single earth-fixed area centered on that DGG node, it
is not always the same area on the ground which is seen from
various angles. This is due to the earth sphericity and the fact
that conical solid angle intercepts the earth over a distorted
ellipse whose main axis changes with azimuth and view angle.
This phenomenon is not new and has been encountered with
other systems, the extreme case being obtained for the scat-
terometer. The revisit time is 3 days at the equator for both
ascending and descending passes which are sun synchronous
at 6 am ascending (resp. 6pm descending). Since the end of
the commissioning phase, data are acquired in full polarization
mode, i.e., the four Stokes’ components are obtained including
Stokes’ 3 and 4. The ground sampling is of ≈15 km. Every
2.4 s, a full set of polarizations is acquired.
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The L2 SM retrieval algorithm uses two types of auxiliary
data files: so called static and dynamic. The static data do not
vary over time or have slowly varying quantities. They include
the soil texture maps from FAO [37], the land use maps from
ECOCLIMAP [38], and the topography index [20].

The dynamic data provide time varying quantities (snow,
freeze defreeze, rain, temperature) and are obtained from
the European Centre for Medium Range Weather Forecasts
(ECMWF) forecasts.

Finally, some quantities are not readily available but can
be inferred from the inversion process. Those are in the so-
called “current” files which include vegetation opacity, surface
roughness, and radio frequency interferences (RFI) indicators.
The “current” files are updated regularly based on SMOS
observations and are used as inputs for future inversions. The
vegetation optical thickness is a time varying quantity, initially
estimated based on the LAI provided in ECOCLIMAP and then
through “current” files.

III. SOIL MOISTURE RETRIEVAL APPROACH

A. Rationale

The signal measured by a passive microwave sensor at
L-Band, over a nonfrozen and snow free surface, is mainly
a function of SM, vegetation opacity, and effective surface
temperature. Other surface characteristics like soil texture and
roughness also play an important role. Atmospheric contri-
bution (including clouds and rain), galactic reflection, can be
easily neglected over land surfaces.

At the SMOS resolution (40 km on average), the surface
responsible for shaping the L-Band signal is rarely uniform.
A surface area responsible for shaping the SMOS pixel often
consists of some water bodies, low and possibly high vegetation
fields, possibly frozen and snow-covered surfaces, topography,
and others. Consequently, any physically based retrieval al-
gorithm has to be able to account for a number of features
in the observed area. Some surface characteristics, like soil
texture and land use, are obtained from static maps while others,
like temperature and snow, are obtained from forecasts. A
significant challenge is therefore to determine with an adequate
accuracy and globally the surface characteristics and use them
in the retrieval process to infer the desired ones.

In order to capture the effects of a wide range of parameters,
it was decided to endeavor to use models as exhaustive and
comprehensive as possible with the assumption that it would
always be possible to simplify at a later stage should any
model component prove to bring very a negligible improvement
during the validation process. For instance, the single scattering
albedo formulation is exhaustive but very seldom used in all its
complexity [5].

Consequently, the retrieval algorithm is physically based
using state-of-the-art models and was designed to be robust and
easily improved. During the first month of operations, some fea-
tures proved to be unnecessary while others required attention.
The overall results, however, were very satisfactory from the
beginning. We can also state that there is still substantial room
for improvements. The most disappointing discovery was the

existence of unexpectedly strong RFI level in some areas of
the world where intensive cal Val sites had been painstakingly
implemented.

B. Core of the Challenge: Dealing With Inhomogeneous Areas

The SMOS Level 2 algorithm is based on an iterative ap-
proach which aims at minimizing a cost function whose main
component is the sum of the squared weighted differences
between measured and modeled TB data, for a collection of
incidence angles. This is achieved by finding the best-suited set
of the parameters, which drive the direct TB model, e.g., SM,
and vegetation characteristics.

Despite the apparent simplicity of the SM retrieval princi-
ple, the modeling of the radiometric signal is complex and
requires close attention to many details. The SMOS “pixels”
can correspond to rather large, inhomogeneous surface involv-
ing many parts each with its own characteristics. Moreover,
the radiometric signal is impacted by the directional pattern
of the SMOS interferometric radiometer. Therefore, modeling
of the SMOS radiometric signal involves both the modeling of
the ground target and the antenna for a variety of incidence
angles. The modeling of the ground target involves estimation
of various parameters (like surface temperature and SM) at
various positions within the target. The antenna pattern is
represented through a weighting function which depends on
the incidence angle. It is important to note that, thanks to the
“reconstruction” principle, any given point of the surface is
always seen with exactly (to the pointing knowledge accuracy
of 400 m) the same center. Hence, from one acquisition to any
other, surfaces seen are always the same.

The primary objective of the SMOS Level 2 SM algorithm
is to retrieve SM over fairly large (40 km typically) and thus
inhomogeneous areas. Obviously, over any pixel, there is a large
variety of surface types, not all of which are characterized by
the same set of parameters and therefore not realistic to carry
out the same retrieval everywhere. It is understood that all
surface types, regardless of whether they support the retrieval
of a given set of parameters, do contribute to the SMOS signal
according to a given model. However, estimation of SM is only
meaningful over certain surface types. For instance, while a lake
contributes to the radiometric signal, it is not parameterized by
SM. In order to facilitate the retrieval process, a node is divided
generally in two areas, one where the retrieval will take place
and one where the contributions to the overall node signal need
to be estimated but no retrievals will be performed. This latter
part is then considered to have fixed (default contributions),
and the retrieval is made on the remaining—dominant—area.
For instance, if there is an area of low vegetation with a dense
forest and a lake, we will estimate the contribution of the lake
and that of the forest using either external data or predetermined
values of the surface characteristics: the reference values. This
default contribution will be assumed constant in the modeled
signal, and the retrieval is performed only on the remaining,
dominant part.

In order to determine the dominant part, an average weighing
function (mean foot print) coupled with a high-resolution land
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use are used. The output of this process indicates what
fractions are available in the target area and which parameters
are required to characterize each fraction. This information is
then used as input to a decision tree which, step by step, selects
the type of model to be used according to surface conditions.
Hence, the basic principle is to divide the target area into a
finite and small number of categories. The main categories
are surfaces with low vegetation (“low” meaning height not
exceeding 1 to 2 m as compared to trees), forested areas,
barren land (rocks), water bodies, urban areas, permanent ice,
and snow. Also, included are varying surfaces (i.e., seasonally
covered with snow). Each target area is decomposed into 4-km
cells for which the land use is assessed from the ECOCLIMAP
database. Using the mean foot print, it is possible to assess the
dominant land use as well as the main secondary land uses. For
instance, a node might be 78% low vegetation, 14% forested,
7% water, 1% urban. Using the decision tree, the algorithm will
do the retrieval (as explained below) only for the low vegetation
part. For other fractions, their “default” contributions is
computed.

A surface area contributing to SMOS signal usually includes
large variety of surface types, like cultivated agriculture, grass-
lands, and forests. These land use classes are grouped together
based on their L-Band microwave emission properties. All
surface types are aggregated into a small number (about 10)
of generic classes having the same modeling characteristics
and using similar parameters. A target area, identified by a
DGG node, is subdivided into a number of units (4 km2 by
default), and each unit is defined by a collection of such
aggregated fractions. The SMOS pixels geolocated to the node,
identifying this target area, correspond to various views of this
target as seen from different angles. The spatial extents of two
different views from the same target are normally different. The
difference normally increases as the viewing angles are further
apart. For instance, a forest on the border might appear in some
views and not in others (i.e., the extent of “forest” fraction in a
target depends on incidence).

The dominant part does not always cover nice rolling hills
of green pastures (also known as “nominal”). The soil can be
frozen or covered with snow or rocks. The target could be an
island within a sea or have a large urban or mountainous compo-
nent, not to forget marshes or rice fields. These non-nominal, or
exotic, cases need to be modeled differently. The exotic surfaces
could be either complementary (i.e., there is no overlap between
two classes of this type) or supplementary (it necessarily over-
laps with complementary classes). For instance, surface char-
acteristics can be supplementary when two “special” cases are
present at the same place and same moment (i.e., topography
and water body or forest). They can be supplementary when
they exclude one another such as water body and forest.

When it is not possible or relevant to retrieve SM, it may be
possible to retrieve other parameters of interest. For instance
one can retrieve dielectric constant parameter (using the so-
called Cardioid approach).

In addition, the algorithms compute modeled TB at a fixed
angle once the retrieval has converged. It uses the set of
parameters obtained at the end of the retrieval process as input
to forward models to compute TB values for both polarizations

are the surface and at the antenna frame. The fixed angle is
currently set to 42.5◦.

C. Implementation

The SM retrieval is based on a Bayesian approach to retrieve
SM. For each grid node, a working area (WA) of 123 × 123 km
is considered. This is assumed to be the maximum area extent
contributing to the SMOS signal for the given node. This area is
centered on a given DGG node and is subdivided into approxi-
mately 35 × 35 cells (also known as discrete fine flexible grid
or DFFG for short) of approximately 4 km2 each. The TB seen
by SMOS is assumed to be the collective contributions from
elementary DFFG cells as weighted by the antenna pattern.

The upwelling set of TB values, one per incidence angle, for
each DFFG cell is computed using an L-Band microwave emis-
sion of the biosphere (L-MEB) [11]. Each DFFG cell contains
a collection of aggregated fractions, and each fraction has an
associated (L-MEB) forward model. The L-Band microwave
emission from a given fraction is determined by the values
of the parameters used in the associated forward model. Such
parameters characterize the fraction, and the set of values define
the state of the fraction. For instance, the state of the “nominal”
soil fraction is defined by its SM, soil temperature, soil rough-
ness, and others. Therefore, each fraction is characterized by a
set of parameters whose values define the state of that fraction.
The set of parameters can be viewed as a vector.

Each target consists of a large number (35 × 35) of DFFG
cells, each of which has at most ten fractions. The sheer number
of these makes tasks of determining the state for each aggre-
gated fraction computationally challenging. While the states of
fractions with default contribution remain fixed, the states of
fractions over which we intend to obtain new information are
updated at every iteration until their modeled emissions closely
matches that of SMOS. The change of state could only involve a
few parameters, like SM or vegetation opacity, but this of course
changes the L-Band emission of the surface. As an example if
the target within SMOS view contains large agricultural fields
together with a small water body, then the state of the water
body usually remains fixed while the state of the agricultural
fields are adjusted by updating their averaged SM.

In order to determine the incidence angle dependent TB
value, the surface emission is convoluted with the antenna
weighting functions obtained from the SMOS equivalent an-
tenna pattern. Such TB values are still in the earth surface
frame. In order to transfer the polarized TB values to the
antenna frame one has to apply rotations due to Faraday (TEC
contents) and geometry.

A cost function is defined which measures the “distance”
of TB values observed by SMOS at the antenna level and
those modeled using L-MEB. The “distance” is essentially the
sum, for available incidence angles, of quadratic differences
between the observed and modeled TBs, normalized by mea-
surement uncertainties. The cost function also includes terms
which depend on prior values and uncertainties on parameters
to be retrieved, thus implementing a Bayesian approach. An
iterative optimization procedure is then used to minimize the
cost function. Successive retrieval attempts with a decreasing
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number of parameters to be retrieved are carried out whenever
needed.

The SMOS observed TBs for each DGG node are provided
in the L1C products. The resolution associated with the TBs
varies with the observation angle as the ellipsoidal footprint
changes in size and shape. The change in the footprint is taken
into consideration in the algorithm via the convolution with the
antenna pattern mentioned earlier.

The L2 SM algorithm uses a mean weighting function to
characterize the WA associated to a target. The WA is the 123 ×
123 km area centered on the DGG node being considered. This
allows the algorithm to determine the fractions for which we
need to assign a forward model. This mean weighting functions
can be considered as the average footprint over all observation
angles of SMOS for one DGG node.

The level 2 SM processor provides also a complementary
product: the SM level 2 data analysis product. This product
contains the description of the surface, the residual TBs be-
tween model and measurements (TBLMEB-TBSMOS) and the
processors performances (number of iterations, χ2 coefficient,
etc. . .), provided over the same ISEA-4H9 grid.

The vegetation optical thickness is related to the vegetation
water content and thus indirectly to LAI. These quantities vary
slowly over a period of 3 days over an area of 800 km2 if no spe-
cial event (rainfall, tsunamis, flooding. . .) occurs. To enhance
the SM retrieval, an initialization of the optical thickness value
and its associated uncertainty is done in the processing by using
the last (i.e., retrieved during the previous SMOS overpass) or
CURRENT value. Using this CURRENT mode enables a lower
uncertainty of the optical thickness. In this case, the modeled
multi-angular TB signature will be highly dependent on SM
retrievals. The current file configuration is also applied to other
files for RFIs detection.

IV. DIRECT MODEL

Fig. 1 gives an overview (flow chart) of the algorithm. Once
the node is characterized the minimization approach requires a
radiative transfer model. It was decided to use the state-of-the-
art LMEB model [11] with some modifications, improvements,
or adaptations. (Figs. 2 and 3)

A. Radiative Transfer Equation

The signal measured at the antenna consists of 4 main com-
ponents. Combining these four components gives the general
radiative transfer equation (RTE) [26]:

TBp = TBatu + TBsp exp(−τatu)

+ (TBatd + TBsk exp(−τatd)) rsp exp(−τatu). (1)

All the terms of the above equation are functions of fre-
quency and incidence angle θ between the line of sight and
the local normal to earth surface; the “p” subscript indicates
the polarization. The “s” subscript refers here to combined
(surface + near surface) layers.

The upward and downward path atmospheric opacities τatu
and τatd depend on the gaseous and liquid droplet attenuating

Fig. 1. Flow chart of the level 2 soil moisture retrieval algorithm (from [5]).

Fig. 2. Contributions to TOA brightness temperature.

constituents (primarily oxygen, water vapor, and clouds) [26].
Considering that we are operating at L-Band, we can safely
assume that τatu and τatd are almost equal, as differences are
linked to differences in atmospheric temperatures and con-
stituents profiles between the two paths. They will be both
assigned as τatm.
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Fig. 3. HR(SM): roughness as a function of SM.

The surface reflectivityrsp is assumed to be dominated by
the specular component. This approximation is acceptable at
L-Band and for not too rough surfaces if nonspecular com-
ponents are neglected. This variable is the key to what we
need to retrieve. Its main influence over the overall brightness
lies in its indirect influence on the surface TBsp, since rp
is the complement to 1 of emissivity [(2)]. The atmospheric
radiation components TBatd and TBatu are dependent upon
the vertical profiles of temperature, gaseous constituents, and
liquid droplets in the atmosphere. Their computation takes
into account absorption and scattering. At L-Band, atmospheric
effects are small and TBatd and TBatu can be considered as
equal to TBatm.

At L-Band, the so-called Faraday rotation, linked to the
columnar electron content (TEC) of the ionosphere over the
path, causes the polarization plane to be rotated by, on average,
up to a few degrees. This factor has to be taken into account
when the TEC (hence the effect) is high (afternoon pass, high
solar activity/bursts).

Finally, TBsk is the sky background. At L-Band, several
sources are present; the galactic plane contains a number of
significant sources that might have to be accounted for. One
should not forget the Sun, which at L-Band is a very significant
source (100 000 to 300 000 K) and will have to be considered.

Surface variables such as temperature, roughness, vegetation,
snow, etc. . . enter the general RTE through their effects on
surface reflectivity rsp and surface TB TBsp:

TBsp = esp Ts (2)

where esp is the surface emissivity(esp ∼= 1− rsp) and Ts is
the effective (physical) surface temperature.

For bare soil surfaces, Ts reduces to a weighted sum Tg

of soil temperatures at subsurface levels accounting for the
penetration depth.

B. Aggregated Radiative Transfer Equation

At the SMOS scale (25–60 km), pixels are not uniform, and
we may have a variety of surface types, for instance, a rural area
with towns and roads, bare fields, fallow land and some crops,
thickets or woodland, the occasional river or pond, and again,
in the worst case, snow here and there with frozen grounds in
some places.

In such cases, the total TB comes from several classes of
emitters. This composite TB is obtained through an aggregated
forward model that combines each class of emitting sources
weighted by their intrapixel cover fractions.

To show clearly how this aggregation is done, for given
polarization and incidence angle and a homogeneous L1c
scene, we first rewrite (1) assuming that downwards and upward
atmospheric contributions are equal:

TBp =TBatm + exp(−τatm) [TBatm

+TBsk exp(−τatm)] rgp exp(−2τc)

+ exp(−τatm) [egpTg exp(−τc)

+Tc(1− ω) (1− exp(−τc)) (1 + rgp exp(−τc))] . (3)

The reflectivities and emissivities rgp and egp include both
smooth surface effects from the dielectric constant and rough-
ness effects. The method to build a single physical temperature
parameter from Tg and Tc is discussed below.

In the description of atmospheric contribution, we refer to
an equivalent physical layer temperature, linked very simply to
TBatm and τatm.

Many terms and factors in this expression depend on polar-
ization and incidence angle. This is detailed in forward models
below.

Consider now a mixed L1c scene with n = 1 to NF mean
(over incidence angle) fractions FMn. Of course, NF is ac-
tually a small number. For each L1c view, incidence angle-
dependent values FVn for fractions are to be computed.

For ease of writing, we rewrite (3) as follows:

TBp = TBatm + exp(−τatm) [TBatm

+TBsk exp(−τatm)]R1 + exp(−τatm)R2 (4)

where only the expressions R1 = rgp exp(−2τc)
(dimensionless) and R2 = egpTg exp(−τc) + Tc(1− ω)(1−
exp(−τc))(1 + rgp exp(−τc)) (in Kelvin) depend on the
fraction n. Then, the aggregated forward model, for each view,
is derived from (3) where:

R1 becomes :

R1 =

NF∑

n=1

((FVn R1n)

R2 =
NF∑

n=1

(FVn R2n).

C. Towards Elementary Radiative Models

In the following, elementary radiative models are described
whenever available. If no model exists (i.e., urban), it was
decided to put a placeholder with a proxy model (in this case
some sort of a bare soil). Then:

• The first goal is to retrieve SM over areas devoid of strong
topographic features, possibly covered by low vegetation,
for which volume surface moisture can be defined. This
will be called the nominal SMOS target (in short NO for
nominal, or LV for low vegetation). Forward models are
available.
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• It may happen that, although SM is in principle relevant,
forward models are poorly known or not validated. This is
e.g., the case for strong topography, snow cover.

• In some cases, SM is no longer relevant. Examples are
open water, ice.

We will now summarize the details of nominal models as
well as other cases.

The nominal case develops the way to model surface rough-
ness as well as the vegetation layer. Note that

• surface roughness is also present for other cases excepting
all water surfaces;

• vegetation layer is also present for other cases, excepting
free water surfaces but including wetlands

1) For the Nominal Case (Vegetated Soil): The modeling
approach used here relies on an extensive review of current
knowledge and previous studies. It accounts for, as much as
possible, emission from various land covers, from bare soil to
full vegetation-covered surfaces, snow-covered surfaces, open
water, and atmospheric effects.

The nominal case consists of “normal” soil with low veg-
etation, eventually a manageable amount of free water. The
“manageability” is expressed by thresholds for which values
are suggested in the decision tree section but will often require
confirmation.

We will consider several classes in the general approach
with two main parts: low vegetation (grassland, crops, etc.) and
forest vegetation (coniferous, and broadleaf).

a) Bare soil: Bare soils are quasi-opaque at 1.4 GHz, so
the radiative budget is mainly ruled by their emissivity e and
reflectivity r, for each polarization p, with:

egp + rgp = 1. (5)

The emission of microwave energy is governed by the prod-
uct of the soil effective temperature, Ts, and soil emissivity,
egp. At L-Band, the emissivity egp is in turn is a function of
the soil’s characteristics, i.e., moisture, texture, roughness, and
eventually salinity.

Bare soil is simulated using Fresnel laws with either
Dobson’s formulation for dielectric constants [39], [40] or
Mironov’s formulation [41]–[43]. The latter was implemented
as Dobson’s model is not fully adequate at low frequencies (1.4
GHz) particularly in the case hot sandy soils.

The quantities required for the model inputs are derived from
the soil’s map. As soils are typically rough, we used a modified
Wang Choudhury’s [44], [45] formulation for roughness with
a modification notably in relation to the exponent 2 replaced
by NRp as suggested by Escorihuela et al. [46]. Consequently,
as surface roughness increases, the angular signature of TB is
affected, requiring correcting the Fresnel law with the following
empirical phenomenological expression:

rgp(θ) = ((1− QR)rbp + QR rbq)

exp
(
−HR(SM) cosNR_p(θ)

)
(6)

where:
• Q is a polarization coupling factor, HR is an effec-

tive surface roughness dimensionless parameter: HR =

(2 k σ)2 where k is the wavenumber, σ is surface RMS
height;

• NRp is an integer used to parameterize the dependence of
the roughness effects on incidence angle;

• rbq designates the smooth surface reflectivity for alternate
polarization.

Even though empirical, this formula has been tested in vari-
ous occasions and found to work well, provided several precau-
tions are taken. At L-Band, the main issues are related to the fact
that soil roughness should rather be seen as a 1.4 GHz effective
soil roughness, i.e., probably more related to the distribution of
water in the top soil rather than a pure geometric soil surface
roughness as the latter can only occur when the soil is very
wet. Recent work indicates that HR is better modeled using
shallower penetration depth at L-Band [47], but a moisture-
dependent function [46], [48] was also tested with success and
is currently implemented in the algorithm. For this, a soil water
contribution is accounted for in HR. The principle is to have
HR as a function of SM with a simple law. Below a transition
moisture point, XMVT(C, S), the roughness is constant as well
as above the field capacity, FC(C, S), where it takes the classical
expression (HR_MIN(LC) = (2 k σ)2).

The HR value for dry soil can be set a priori and/or adjusted
from the data. This formulation proved to be efficient but may
still be questioned. As SMOS data are accumulated, we intend
to see whether a better formulation (not using SM) could be
found.

The two parameters XMVT and FC are function of the sand,
S, and the clay, C, fractions.

From S and C, the transition moisture XMVT can be com-
puted using the wilting point value. The value of NRp is found
to be between −2 and 2 from experimental data [49] Recent
results indicated that the NRp exponent is also polarization
dependent. Polarization coupling effects are generally found
to be rather weak at low frequencies. Therefore, it is often
considered that QR = 0 at L-Band and this value increases
slightly with increasing frequency [49].

b) Effective soil temperature: The effective soil temper-
ature Tg depends on the soil properties and moisture content
profile within the soil volume. A simple formulation devel-
oped originally by [50] and then validated and revised [13],
[51] is used in the algorithm. This formulation introduces
two soil temperatures Tsoil_surf and Tsoil_depth, to be selected
from the four values supplied as auxiliary data (ECMWF
fields).

The effective soil temperature is written as a function of the
soil temperature at depth (Tsoil_depth, approximately at 0.5 to
1m depth) and surface soil temperature (Tsoil_surf , approxi-
mately between 1 and 5 cm) as follows [50]

Tg = Tsoil_depth + Ct(Tsoil_surf − Tsoil_depth) (7)

where Ct is a parameter depending mainly on frequency
and SM. Wigneron et al. [49] computed Ct as a function of
surface SM

Ct = min
[
(SM/w0)

bw0, 1
]

(8)
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where the SM estimate SM is taken from auxiliary data; w0

and bw0 are parameters that depend mainly on the soil texture
and structure. To simplify, we will consider that

w0 = functiona (soil type)

bw0 = functionb (soil type). (9)

Obviously, for the global operational processor considered here,
such pieces of information are not necessarily available nor
really affecting the result as test done with the processor showed
the limited impact (needless to say texture has significant effect
on the emission though). We consider that the first layer and
either the deepest or next to deepest layer given by ECMWF
will give a good estimate of the surface and deep temperature.
The errors induced are no more significant than those derived
from using a crude interpolation scheme and have only impact
in the case of very dry soils.

c) Low vegetation (grassland, crop): When a vegetation
layer is present over the soil surface, it attenuates soil emission
and adds its own contribution to the emitted radiation. At low
frequencies, these effects can be well approximated by a simple
model based on the RTE, hereafter referred to as the τ − ω
model. This model is based on two parameters, the optical
depth τ and the single scattering albedo ω, that are used to
parameterize, respectively, the vegetation attenuation properties
and the scattering effects within the canopy layer. The reflection
at the top of the canopy (at the vegetation—atmosphere inter-
face) is neglected.

No study could demonstrate the interest of using more com-
plex radiative transfer models over rather low vegetation covers,
where phase coherent effects (neglected by the RTE) may
be significant [52]. Using the τ − ω model [26], [52], global
emission from the two-layer medium (soil and vegetation) is
for each polarization p the sum of three terms: 1) the direct
vegetation emission, 2) the vegetation emission reflected by the
soil and attenuated by the canopy layer, and 3) soil emission
attenuated by the canopy

TBP = (1− ωp)(1− γp)(1 + γprgp)Tc + (1− rgp)γpTg

(10)

where Tg and Tc are the effective soil and vegetation tempera-
tures, rgp is the soil reflectivity, ωp the single scattering albedo,
γp the vegetation attenuation factor (where the c subscript has
been dropped).

This last term can be computed from the optical depth τP as:

γp = exp(−τp/ cos θ). (11)

The above equation is a way to define a modified nadir
optical depth τ0p which is written as:

τ0p = τNAD ∗ function(θ, p)

where the nadir estimate of overall optical depth τNAD is
independent of both incidence angle and polarization and the
function (θ, p).

• Surface temperature: in most studies (forward modeling
and retrievals), it is assumed that effective soil (Tg) and

vegetation (Tc) temperatures are approximately equal to
a single value Tgc ≈ Tc ≈ Tg. In particular, the effects of
temperature gradients within the vegetation canopy should
not be accounted for. With an overpass around dawn, the
differences should be minimized and Tc can be expected to
be close to the air temperature, while Tg can be estimated.

An estimate of an effective composite temperature Tgc (in-
cluding both soil and vegetation media) could be roughly
derived from the τ − ω model and is given by the following
equation:

Tgc = At Tc + (1−At)Tg (12)

With

At =Bt (1− exp(−τNAD))

0 ≤At ≤ 1.

The rationale of this equation is that as the vegetation
biomass increases, both (i) attenuation of soil emission and (ii)
vegetation emission increase, making the effective temperature
closer to the vegetation effective temperature. Conversely, for
bare soil conditions (i.e., for LAI = 0), Tgc is equal to Tg. When
θ increases, Tgc becomes closer to the vegetation temperature
as attenuation by the vegetation increases due to the 1/ cos(θ)
dependence. The dependence on incidence angle θ was not
considered, simulations showing that this simplified equation
remains accurate for most applications.

In equation, Tgc is assumed to be a linear function of Tc

and Tg, and the weighting parameter At is assumed to depend
on τNAD. The coefficient Bt used to compute At is assumed
to depend on the canopy type. Simulations made with the
τ − ω model for a large range of values of optical depth, soil
and vegetation temperatures, and incidence angles, provided
an estimate of the default value of Bt : Bt = 1.7. As the
temperature difference (Tgc − Tg) is small over low vegetation
covers, we can use approximate τNAD values estimated from
default values.

• Scattering effects: at L-Band, the value of the single
scattering albedo ω is found to be rather low. For specific
crop types (such as corn), ω can reach a value close to 0.1,
but for most of low vegetation types, ω is lower than 0.05
and is neglected in most studies [53]. As the dependence
of ω on θ could not be clearly demonstrated to date in
the literature, it will be neglected in the algorithm. The
value of ω will be given in the algorithm as a function
of the vegetation type. The default value of ω, which was
found to be valid over most types of crops will be ωV =
ωH = 0 [53]. It is likely that the dependence of ωP on
polarization is rather low for most of low vegetation
canopies.

• Optical depth: To model the optical depth τP , we propose
accounting for the effects of the standing vegetation cover,
litter, and water intercepted by the vegetation cover after
rainfall or dew events as:

τP = τSP + τL + τIP (13)
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where τSP is the optical depth of the standing vegetation
cover, τL is the optical depth of all the vegetation mate-
rials laying at the bottom of the canopy (including litter
mainly), τIP is used to parameterize the increase in optical
depth due to intercepted water by the standing vegetation
canopy (water intercepted by litter is included in the term
τL). Note that, for the retrieval, we shall consider the nadir
value τNAD (i.e., for the incidence angle θ = 0), including
the contributions of the standing vegetation cover, litter
and water intercepted by the vegetation cover. The ac-
curate relationship between τp and τNAD is given in the
following.

1) τSP is the optical depth of the standing vegetation
cover and includes both green and senescent vegetation ma-
terials.

Several studies found that τSP could be linearly related to
the total vegetation water content VWC (kg/m2) using the
so-called bP parameter according to τp = bp VWC [7]. At
1.4 GHz, a value of bP = 0.12 + /− 0.03 was found to be
representative of most agricultural crops. However, it is very
difficult to provide estimate of VWC at global scale. Also, re-
cent studies found good correlation between τp and vegetation
indices (such as NDVI) or LAI.

Here, we propose to parameterize τSP as a function of
the LAI.

There are two main reasons for this: 1) it is much easier
to build global maps of LAI from spaceborne remote sensing
observations in the optical domain or from SVAT modeling with
interactive vegetation [54] than maps of VWC; 2) several recent
studies have also found good correlation between τSP and LAI
[21], [55] over a fallow; [11] over several crops [11] as first
shown in [7].

The following equation is considered in LMEB:

τSH(θ = 0) = τSV(θ = 0) = τS_NAD = b′S.LAI + b′′S (14)

where the vegetation parameters b′S and b′′S are function of the
canopy type.

To compute optical depth τSp, it is important to account for
the effects of the vegetation structure: it was found that τSp
depends on polarization and incidence angle, particularly for
vegetation canopies with a dominant vertical structure (stem-
dominated canopy such as cereal crops). Wigneron et al. [56]
proposed a simple formulation using a polarization correction
factor Cpol to parameterize this effect and compute the optical
depth for cereal crops:

ττH(θ) = τNAD (15)

ττV(θ) = τNAD

[
cos2 θ + Cpol sin

2 θ
]
. (16)

Within a large-scale SMOS scene, it is likely that the effects
due to the vegetation structure for a variety of vegetation types
are averaged, so that the dependence of τp on polarization and
incidence angle can be neglected over most pixels. However,
the possibility of accounting for this dependence should be kept
in the algorithm to be used possibly over pixels with rather
homogeneous vegetation cover. Thus, a generalization of these

equations valid only for crops with a vertical structure has been
developed.

Therefore, we chose to express τSV(θ) and τSH(θ) as a
function of only one variable, namely τS_NAD = τS(θ = 0),
(which is estimated as a function of LAI, as defined above)
according to:

τSH(θ) = τS_NAD

(
sin2(θ).ttH + cos2(θ)

)
(17)

τSV(θ) = τS_NAD

(
sin2(θ).ttV + cos2(θ)

)
(18)

where the ttV and ttH parameters are function of the canopy
type and account for the dependence of τSP on incidence angle.

These two equations are a generalization of the equation
based on the polarization correction factor Cpol which was
developed for vegetation with a vertical structure: applying
Cpol to the standing vegetation optical depth τSP corresponds
to the particular case: ttH = 1 and ttV = Cpol (Cpol > 1 for a
vertical structure).

In the above equations we will thus neglect the dependence
of b′S and b′′SS on 1) the canopy hydric status [57], [58] 2) the
change of the vegetation structure in relation with phenology
[24]. This dependence was shown to be relatively significant
over crops, particularly during senescence, but it is likely that it
has a low impact over large mixed pixels.

2) Litter:
Litter can be present in vegetation canopies, which are not (or

rarely) ploughed: prairies or nonagricultural canopies, natural
covers, forests, etc. Even though it is not well known, it is
likely the effect of litter can be very significant in some cases
[10], [21], [59], [60]. . . For instance, this effect was probably
the implicit reason for using very high bP values (bP ≈ 0.4)
over natural vegetation cover such as prairies. In L-MEB, litter
is assimilated to a dense vegetation layer overlying the soil
surface, characterized by the optical depth τL, assumed to
be independent on incidence angle and polarization. A rather
complex modeling approach in given in the SMOS ATBD and
is not detailed here. This modeling is still not used currently
as parameters have not been calibrated yet (studies are still
in progress on these aspects). It is assumed, as for dew, that
using the 2-Parameters approach (i.e., retrieving SM and TAU
simultaneously), litter effects can be partly accounted for by
increased values of the retrieved optical depth τ_NAD.

3) Interception:
τIP is the optical depth that parameterizes the effect of

intercepted water by the standing vegetation canopy, due to
rainfall or dew events. Recent results have shown that these
effects may be very significant: optical depth τ may increase by
a factor of two or three during and after rainfalls over a fallow
for instance.

Results obtained over a senescent wheat canopy showed that
for moderate amount of intercepted water (less than 1.5-mm
intercepted water), the L-Band measurements remained very
sensitive to SM, and simultaneous retrievals of both SM and
optical depth were possible [57]. An attempt to parameterize
τIP, requiring estimations of the interception reservoir (mm)
and of the fraction of intercepted water, depending on the
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intensity of the rainfall events and of evaporation fluxes, would
be very difficult.

Instead, it was decided to use an index flagging events during
which interception effects are very significant (and during
which it is very likely that SM cannot be retrieved). Preliminary
results [55] showed that one of the best indices that can be used
to flag interception at local scale is the polarization ratioPR =
(TBV − TBH)/(TBV + TBH) at rather large incidence angle
(θ ≈ 50◦). Significant interception events are associated to low
values of PR.

In summary, the vegetation type and the LAI (characterizing
the vegetation phenological stage and thus indirectly the vege-
tation structure) are the main parameters determining the values
of the parameters used in the τ − ω model: b′, b′′S, ttV, ttH,
ω and the intensity of specific effects such as litter and
interception.

2) Forests: A large fraction of land is covered by forests.
All efforts aimed at fully exploiting the potential of SMOS over
these areas must be done. The attenuation due to crown and
litter is strong, as confirmed by some experiments [59], [60].
However, an appreciable, although limited, sensitivity to SM
variations was observed in forests not too dense and with a thin
litter [61]–[63].

A pure empirical approach, based on τ and ω parameters
fitted over experimental data is not appropriate to forests,
because presently available radiometric measurements are lim-
ited. Moreover, multiple scattering effects are appreciable and
the application of a simple first-order approach is not straight-
forward.

In any case, the methodology adopted for forests was harmo-
nized with the general SMOS SM retrieval algorithm, and the
complexity of the operational procedure was kept limited. The
adopted approach is summarized below (details are available
in [64]).

• The simple first-order formulas based on “albedo” and
“optical depth” are kept.

• From land cover classes, three forest categories are ag-
gregated: needle leaf, broadleaf (including tropical forests
and woodland), mixed forest. The same general procedure
is applied for the three categories, although the output
parameters are specific of each single category.

• The values of albedo and optical depth are assigned by
a preliminary modeling work based on the software al-
ready available at Tor Vergata University, with suitable
refinements and adaptation to specific cases [65]–[68]. The
output of this basic direct modeling work consists of look-
up tables, relating sets of simulated emissivities (for the
SMOS configuration) to SM, for the three forest types in-
dicated above. Using allometric equations available in the
literature for the different forest categories, geometrical
and biophysical inputs required by the model are related
to LAIFmax, (maximum yearly value of arboreous LAI).
For an elementary surface of forest, LAIFmax is used
to compute the contribution of all arboreous components
(tree trunks, branches, and leaves in maximum develop-
ment) to the total optical thickness, while LAIV (LAI due
to herbaceous vegetation) is used for the time dependent

contribution of low vegetation understory to this total
optical thickness [64], [66], [67]. These two quantities,
which are available by ECOCLIMAP, partition the total
forest optical thickness into two contributions and do not
represent absolute LAI’s but fractional LAI’s.

Then, a standard RMS minimization routine is used to find
the equivalent values of the parameters (optical depth and
albedo) to be assigned to a simple first-order model, like
the one adopted for low vegetation, in order to behave most
similarly to the discrete multiple scattering model. This RMS
minimization is made by considering, for each forest scenario,
several sets of angles and SM values. This operation is named
parameterization. Details are given in [64] and [69]. The
output produced after this step consists in estimating the albedo
and relating the nadir optical depth to LAIFmax, and LAIV ,
with coefficients depending on forest type. These two forest
parameters (equivalent nadir optical depth and albedo) are
indicated by τF_NAD and ωF , respectively. It is found in [64]
that, due to the wide range of orientation angles of branches and
leaves, τF_NAD and ωF can be assumed to be independent on
polarization.

• With the two values obtained by the previously described
parameterization, the successive algorithm steps are sim-
ilar to the low vegetation case. The basic formulas of
Section IV-C1 are used also for forests, leading to a
unified approach. In particular, a simple formula is used
to compute the nadir equivalent optical depth τFNAD,
such as:

τF_NAD = τFA + bV.LAIV (19)

where:

τFA = b′FLAIFmax. (20)

b′F , and bV values, specific of the forest categories, are
obtained as a result of the parameterization. It is also assumed
that ωF does not depend on LAIFmax.

The TB may be finally computed as:

TBp = (1− ωF)(1− γ)(1 + γrgp)Tc + (1− rgp)γTg (21)

where Tg and Tc are the effective soil and vegetation temper-
atures, rgp is the soil reflectivity, ωF is the equivalent albedo,
and γ is the vegetation transmissivity, given by:

γ = exp(−τF_NAD/ cos θ). (22)

As previously stated, the basic algorithm for forests is similar
to the one used for low vegetation. The main differences are
listed below:

• A simple τF_NAD constant, without correcting factors
depending on polarization and angle, may be used in (22).
This is a result of the variability in orientation of branches
and leaves.

• ωF may be considered constant (i.e., independent on angle,
polarization and time). However, it is not negligible, since
its value is 0.08 (see [62], [64]).
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τF_NAD includes contributions due to crown, litter and un-
der storey [66], [67]. The contribution of litter is computed us-
ing the model of [70], which considers the litter as a continuous
layer overlying the soil [70]. Its thickness is related to the same
LAIFmax static parameter, while litter permittivity is estimated
by assuming a given ratio between SM and litter moisture [70].
The procedure is subdivided into these steps: 1) Compute the
permittivity of the soil; 2) Compute the permittivity of the litter
as a function of SM, dry weight matter density, and assumed
ratio between SM and litter moisture; 3) estimate litter layer
thickness as a function of LAIFmax and vegetation type; 4)
using simple formulas given in [69], compute the reflectivity
of the ensemble soil+litter for flat interface; 5) apply roughness
correction.

3) Other Surface Types:
a) Dry sand: In itself, sand is simply a soil type and could

be considered as a purely nominal case. However, due to its
own characteristics, it has almost no bound water and hence
has specific dielectric constant behavior. Moreover, sand has
specific water capacities and can be very dry, leading to large
penetration depths. Hence, the usual equations are bound to be
less and less accurate as sand proportion increases and should
be corrected.

It is often considered that the dielectric constant of sand can
be expressed at 1.4 GHz [71]:

εdry−sand ≈ 2.53− 0.05j. (23)

A specific model might be developed from this expression.
However, since it is not currently available, in the mean time the
one given using Dobson’s model [39], [40] with the Peplinsky
formulation [72], [73] was used for sandy areas. It is going to
be replaced by the Mironov model [41]–[43].

b) Open water: Most land surfaces include extended wa-
ter surfaces, which may be the ocean for coastal pixels, or
inland features such as rivers, canals, lakes, ponds, flooding,
etc. To derive a sensible value for SM, these contributions have
to be taken into account.

The emission by water bodies is estimated by assuming the
validity of the Fresnel equations and deriving the dielectric
constant of an assumed flat water body

The real (dominant) and imaginary parts of the complex
dielectric constant for free water εw = ε′w − jε′′w at a given ra-
diometer frequency f are given by the modified Debye equation
[74]. For saline water with a salinity S, the static dielectric
constant of water, εsw0, is derived using [75] and the relaxation
time of saline water, rτsw, is given by Stogryn [76].

c) Very dry soils, rocky out crops, and other specific
surfaces: Very dry soils do have a specific behavior linked to
the different roles of bounded versus free water. To account for
this, we can adapt the dielectric model with one caveat, that is
such models (Wang for instance) show a discontinuity in the
derivative which may pose problems. Otherwise, very dry soil
might exhibit extreme penetration depth and thus complicate
the estimation of the equivalent temperature. As very dry soils
are usually 1) without vegetation, 2) of little interest for water
fluxes, we believe this specific case should only be of concern
for very limited cases.

d) Rocks and rocky out crops: Rocks and rocky areas are
not well modeled for the time being and generally assumed
to behave as very dry soils. Field measurements do not show
significant effects from rocks [77]. It is also worth noting that
rocks and the like are usually on barren areas or in mountains,
etc. . . and thus of concern for only a limited number of cases.
Effectively, problems may arise only when a significant amount
of surface is covered with rocks (boulders, steep high moun-
tains, cliffs), or when the dry soils or rocky outcrops have very
specific signatures. In all those latter cases, the issue will only
complicate existing issues and such cases will probably have to
be flagged and the algorithm directed toward dielectric constant
values estimation.

In [74], permittivity values are given for rocks at 400 MHz
and 35 GHz. They range from 2.4 to 9.6. Approximate ex-
pressions do exist (see Weiner’s model for powdered rocks for
instance) for rocks, but it does not seem worth the effort to
implement in the level 2 algorithm for the reasons given above.
The retrieval algorithm considers

εrock = 5.7− j ∗ 0.074. (24)

e) Other specific soil surface cases: In some instances,
the surface will be affected by other factors such as mineral
deposits, salted residues (salt lakes for instance), or surface with
very specific dielectric constants.

With current knowledge, this can only be addressed with the
dielectric approach. Below 10 GHz, the ionic conductivity of
saline water has a marked effect on the loss factor and this is
used in SMOS for salinity retrievals. However, the exact form of
the dependence of the dielectric constant on soil salinity is not
well understood, due to the very sparse measurements available.

4) Urban: Urban areas are the most complex due to the
varying mix of earth vegetation areas, with buildings (i.e.,
similar to rock or earth depending on the material used for
roofing when old and metallic in new commercial—warehouses
industrial areas) more over the structure are organized in space
with geometrical shapes. And finally, roads (sometimes with
trees) and RFI might also influence the signal.

However, this is still a placeholder. Models are not yet
available for cities, so they are assumed to behave as barren
soil for a start, and the surface assumed to be similar to rocks.
As much as possible, the concerned areas will be restricted
to dense urban areas (including airports), while more sparsely
populated suburbs are considered as vegetated regions.

5) Topography: The process of retrieving SM and vegeta-
tion opacity relies on the use of angular signatures. Obviously,
it is necessary to have a reference angle, and an inclined surface
may behave quite differently as a function of azimuth viewing
wrt to the same but “horizontal” surface. At SMOS scales,
we will never encounter such inclined surfaces, but the pixel,
when corresponding to a mountainous area, will present various
facets of varying slopes and azimuths inducing effects which
may eventually render the inversion impossible. Added to this,
are the shadowing and adjacency effects.

Two previous studies [19], [78] tried to cover the point of
topography, and currently it seems that up to a certain level,
the almost ever present topography can be totally neglected
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(gently rolling hills), to premountains. There is then a range
of topography characteristics for which the algorithms should
be able to retrieve some values but with larger error bars
or little significance (old and eroded mountains, mountains
with plateaus, etc. . .). It corresponds to what we call “soft
topography.”

Finally, very rugged mountains (strong topography) will
cause the signal to be useless. The approach relies on provided
a topography index [20] which is then used to flag mountainous
areas as per their topography.

a) Rivers: Vector rivers data are available from ESRI’s
“Digital Chart of the World” data set [79].

For most rivers, there is no associated width, and indeed
any estimated width would be subject to local weather and
tidal conditions; however wide rivers are coded as lakes with
an associated area, and in these cases, the vector data can be
converted to raster to generate open water area estimates.

6) Time-Dependent Surfaces:
a) Water bodies: Abnormal retrieval in some areas may

allow flooding conditions to be flagged, if other conditions can
be discounted. Potential confounding environmental conditions
include:

• The seasonal behavior of large rivers.
• The presence of very flat beaches, which give rise to highly

variable areas of water coverage.
• Large rain events causing significant ponding.
• Areas of extended gravimetric irrigation and/or rice grow-

ing areas. . .etc. Finally, and this might turn out to be an
application area, wetlands will pose specific but related
issues.

While some water bodies are rather stable with time, others
do fluctuate significantly (some rivers (e.g., Niger) due to the
rainfall pattern or other factors (e.g., freezing for the Ob).
Some lakes are stable in dimension; others fluctuate with season
(e.g., Chad Lake). To go to the extreme, estuaries fluctuate
as well (tidal effects) as well as deltas (Okavango). This may
have a significant impact and cannot be addressed with a fixed
inland water/land map. It may be noted that ECOCLIMAP flags
tidal flats.

Coastal pixels might induce some errors (variable water/wet
sand/dry sand limits). This point is not currently covered in
the algorithm. Similarly flooding (area which are regularly or
seasonally flooded (not the special events) are considered here)
will have an impact.

To correctly take into account water bodies, an evolving
water/land mask is necessary, which has yet to be found or
established. There might be possibilities with MODIS data but
this will have to be addressed. The fall back option is to identify
areas prone to such events and flag them.

Pending further developments, a flood flag is set depending
on the amount of past local rain.

b) Frozen soils and ice: Frozen soils cover large areas at
high latitudes (and sometimes altitudes). At mid latitude, frozen
soil can also be expected in winter, particularly for the morning
orbit. Experience shows that the dielectric properties of frozen
soil are very close to those of dry soil, while vegetation is

almost fully transparent [16]. It is often considered that for
frozen soils the dielectric constant can be written [15]:

εfrz = 5− 0.5j. (25)

The algorithm thus delivers a “dry bare soil” output when soil
is frozen. The presence of frozen soil is identified by this “very
dry bare soil” result from the retrieval when other variables
such as air temperature, vegetation cover, and retrieved soil
temperature are consistent. It should also be borne in mind
that frozen ground often shows extreme spatial heterogeneity,
complicating the matter.

The areas of permanent ice/dry snow are known, and will
be masked out, so that only the dielectric constant is retrieved.
(e.g., Greenland, Antarctica. . .). For other areas or partial ice
(mountains, cold lakes), the idea is that above a given threshold
the dielectric constant could be retrieved.

It can be noted however that ice is rather transparent, with
ε′′ice being very small (ε′′ice = 0.1 in [80] for pure ice) as given
in [17]:

εice ≈ 3.17− jε′′ice. (26)

c) Snow: Snow covers up to about 40% of the North-
ern hemisphere land mass seasonally, but has very different
dielectric properties depending on its history. Fresh, dry snow
is transparent to microwave radiation; however, as snow melts
its dielectric constant increases dependent upon snow grain
size and liquid water content and may be totally opaque (at
Te

∼= 273 K) when wet. Consequently, the effects of snow are
too complicated to be incorporated into the currently proposed
algorithm, and areas with significant snow coverage other than
dry snow must be considered as retrievable only in terms of
an equivalent dielectric constant. The issue will be in identi-
fying and flagging the snow covered areas. For this purpose,
in the current version of the algorithm, the information is
obtained from ECMWF forecasts which give the information
on snow presence and temperature. The main caveat is that
the spatial resolution is much coarser than the required one
(0.25× 0.25◦). As a consequence, the ECMWF percentage of
snow cover is distributed on the most northern DFFG under
consideration. This is very coarse so the goal is to implement
the Interactive Multi satellite Snow and Ice System [81].

D. The Cardioid Model

In the cases of vegetated soil as well as open water, the basis
of physical modeling consists of writing the reflectivity (or
emissivity) for a smooth surface as a function of the complex
dielectric constant ε = ε′ − jε′′. In turn, the dielectric con-
stant is written as a function of physical parameters, including
surface SM for the vegetated soil or salinity for open water.
For cases where ε cannot be expressed in the same way (e.g.,
iced surfaces), it is still possible to retrieve, from SMOS data,
information about the dielectric constant. It has been shown
[82] that, to a very good approximation, ε can be written:

ε′ =A_card (1 + cos(U_card)) cos(U_card) + B_card

ε′′ =A_card (1 + cos(U_card)) sin(U_card). (27)
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When A_card is constant, this is the parameterized expres-
sion for a function that reduces to a cardioid when B_card is
taken equal to 0. Hence, the name of “modified cardioid.”

Or conversely:

A_card =m_card2/(m_card + ε′ − B_card)
U_card = tan−1 (ε′′/(ε′ − B_card)) (28)

with: m_card = ((ε′ − B_card)2 + ε′′2)1/2
The optimal value for B_card is very close to 0.8.
It turns out that these expressions are relevant because

angular-dependent radiometric data allow retrieving accurately
the value of the magnitude A_card, while, on the other hand, the
retrieval accuracy on the polar angle U_card is extremely poor;
indeed, the emissivity is almost independent of U_card, to the
extent that almost any a priori value can be stipulated for the
angle U_card. In this situation, while retrieving both ε′ and ε′′

would result in very large uncertainties, the modified cardioid
approach can be understood as a regularisation of the retrieval
problem. Therefore, in cases considered above, SMOS data can
still be used to derive an estimate for the magnitude A_card,
which will be referred to as the dielectric constant index.

This may be useful, as any additional independent informa-
tion on the dielectric constant might then be used to infer the
full complex ε. For the cases of vegetated soil or open water,
values for A_card and U_card may be computed readily from
the complex dielectric constant (which is available using the
retrieval when retrieved values for SM or SSS are introduced
in the direct model), using the above equations, if necessary.
They can then be used as initial values in case a complementary
retrieval using the modified cardioid formulation is attempted.

This model is a particular case in the sense that its implemen-
tation is not completely identical depending whether it is used
for direct simulation or retrieval.

E. Other Contributions to the Radiometric Signal

Corrective terms in the RTE refer to ionospheric (Faraday)
rotation and sky and atmospheric contributions. Faraday rota-
tion is taken care of in the geometrical transformation from
antenna to TOA. The atmospheric contribution is derived from
[26] and parameterized as in [83] to enhance speed. Other un-
wanted contributions are the RFI [84]. The retrieval algorithm
identifies RFI either through abnormally high or low values as
well as unexpected angular behavior.

Those outliers are suppressed before the retrieval process
begins but may lead to very few angles left and hence make
retrieval either very poor or not possible.

V. RESULTS AND DISCUSSION

Results are available elsewhere in this SMOS Special Issue
so it does not seem necessary to delve too much on them
here. We can only state that globally the retrieval algorithm
performs well in terms of coverage with the big caveat of
the RFI which affect Europe and Asia mainly. Although this
should be qualified since possible errors such as those due to
default contributions are not included, the quality of the results
is almost within expectations (0.04 m3/m3) which is encour-

Fig. 4. Overall statistics of the retrievals for year 2010. The top panel gives the
number of points available for retrievals the middle the number of successful
retrievals and the lower the percentage of success. The shaded part corresponds
to a running average over 3 days and the blue line over 18 days. In the
top panel, the colors correspond to magenta: points discarded because the
spatial resolution was to coarse, green discarded due to too high a brightness
temperature, black: anomalous angular behavior, red: the signal amplitude is
too large.

aging when you consider that the satellite has been operating
for only two years. Good results are obtained over RFI free
low vegetation and encouraging results over moderately dense
forests [85]. What needs to be tackled in the near future is the
vegetation opacity retrieval which is not always behaving as
expected. The values do oscillate a lot and do not always follow
the expected seasonal cycle. There could be several causes to
this problem such as: modeling errors, poor parameterization,
poor angular intercalibration of the instrument etc. . . Another
explanation could that opacity is not as simple as we would like
it to be. Only detailed analysis of results will enable to make
progresses on this point.

Globally SM retrievals are in the right range of values with a
general tendency to underestimate ground measurements. The
underestimation is strongly increased by RFI as could be ex-
pected. However, in some cases and after a heavy rainfall event,
the obtained SM values seem too high (sometimes exceeding
0.65 m3/m3). This may be due to ponding effects, saturation of
the upper soil layer, or retrieval errors.

Another point of concern is the way cold areas are pro-
cessed. If freeze thaw is easily detected (soil appears suddenly
dry when it freezes and vegetation becomes transparent when
frozen). The main issue at this level is the fact that a high spatial
resolution is required to monitor freeze thaw, particularly in the
transition areas. Snow cover is more complex. When dry, snow
is almost transparent, and SMOS is sensitive to the relatively
warm soil underneath. However, when the snow is wet, it is
rather opaque. All the intermediary cases (both in term of
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Fig. 5. Global map of soil moisture derived from SMOS data for the month of August 2010. Top panel 3 day composite, bottom panel monthly composite/color
scale is soil moisture expressed in m3/m3.

snow state and spatial distribution), make retrieval in transition
areas very difficult and the product is prone to be erroneous.
Another source of concern is linked to water bodies. There are
no available dynamic maps of water bodies at a fine enough
resolution. And water bodies do change with time, be it through
seasonal variations, floods or even tides. An error of 2% on the
water body surface can lead to an error in SM corresponding to
0.01 m3/m3.

The evaluation of the retrieval algorithm has been going
on since the onset of the commissioning phase. Most of the
algorithm evaluation is presented in this issue. At first, all
the efforts were concentrated in the Australian area where an
extensive campaign (AACES for Australian Airborne Cal Val
Experiment for SMOS [86], [87]) took place. It was then the
main area with active vegetation (it was winter in the Northern

Hemisphere), with the added advantages of being practically
RFI free while an intensive airborne campaign was taking place.
After, the focus shifted to other areas such as Africa (Niger and
Benin), the watershed sites in the US, the various Cal-Val sites
in Europe, and the SCAN sites. See this issue for details on all
these campaigns and related results.

The overall performances of the algorithm were established
by first looking at the overall statistics as shown in Fig. 4.

One can see that overall the algorithm performs reasonably
well except for the commissioning phase period when the
instrument was tuned and tested extensively, giving way to
data losses. In early May 2010, there was an electrical stability
test for instance which resulted in one week without data.
This figure also shows that there is room for improvement as,
even considering factors such as RFI, topography or any other
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Fig. 6. Performances of the algorithm on a ground site (SCAN network) the top panel gives the location of the site, a photograph of it and the scatter plot (ground
versus SMOS). The middle panel gives the SMOS data (blue dots) together with the ground measurements (green line) and the ECMWF estimates (magenta line)
the abrupt change on November 9, 2010 is linked to a model update at ECMWF).

perturbation, the average success rate is only slightly higher
than 60%.

This can be seen again on Fig. 5 where the top panel gives
an overview of a three-day composite (i.e., global coverage)
using only ascending passes. There are many gaps explained by
the lack of successful retrievals: RFI in many cases, erroneous
retrievals, or areas where SM retrievals were not attempted
(high topography index, permanent snow, and ice, etc. . .;)

The bottom panel shows that when data are accumulated over
a month, it is possible to achieve a much better coverage.

Another way to estimate retrieval quality is to compare the
data to ground measurements as shown on Fig. 6. For this site
located in SW US results are also rather satisfactory. Of course,
some areas do not behave so well with many cases showing a
higher correlation (partly due to a larger range of SM values)
but also a RMSE exceeding the 0.04 m3/m3 target.

It is also well known that sites are not necessarily representa-
tive of a SMOS like pixel, explaining some poor comparison re-
sults obtained in some cases (heterogeneous areas for instance).

Fig. 7. Results obtained over a site where the ground data were averaged
over an area to be comparable with satellite data. The site is the Little
Washita watershed in Oklahoma. Blue dots correspond to SMOS measurements
(descending pass) and magenta line to averaged soil moisture.

To check this point, data were also compared to area averaged
data obtained by merging several ground measurements [88].
Fig. 7 shows the results obtained when SMOS data is compared
to the Little Washita Site (descending orbits in this case. One
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can see that SMOS compares quite well with the spatially
average data.

Quantitative evaluation of the L2 algorithm is described in
several papers of this issue as well as in other publications.
Globally, the results are very satisfying for the low vegetation
cases in areas not too much affected by RFI such as in the US
or Australia. Conversely, in Europe, for instance, results so far
are degraded. Results are mediocre over forested areas currently
but intensive research is being carried to understand better the
reasons why. Over arid areas the results are very good. From the
range of results obtained, one can say that roughly depending
on area and RFI levels, the SM estimates accuracy range
between 0.02 and 0.06 m3/m3 with, in some cases, even higher
values, while correlations between ground measurements can
range from 0.5 to 0.85. More details on specific cases can
be found in papers in this special issue. Several studies also
compared SMOS retrievals to other sensors’ retrievals. Usually,
SMOS fares very well particularly when considering that it is a
new sensor while the other have much longer track records.

VI. CONCLUSION

SMOS was a new approach to new measurements. After
a year in operation and 1.5 year in orbit, the results are
outstanding. For SM, one of the main goals of the mission,
results are very promising. They are still not to where they are
expected to be but are already quite good for the simplest targets
homogeneous low vegetation, as shown in [89]. Good results
are also starting to emerge over forested areas.

The challenge to build before launch a retrieval algorithm
with experience of neither L-Band measurements, nor synthetic
aperture radiometer or even SM, proved to be successfully
taken up as, even though still in infancy, the combination of
satellite and retrieval algorithm gave results immediately after
switch on. The option taken (iterative Bayesian and physically
based models) proved to be satisfactory. The main issue en-
countered was the RFI pollution, but things are improving in
this domain as well [84], [90].

Now, the challenge will be to have the retrieval being first
more accurate and second over more and more surface type.
Another goal is to develop and make full use of the cardioid
estimates of the dielectric constant.

In parallel, investigating statistical approaches will be initi-
ated now that some insight of SM at 40-km spatial resolution is
available.
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