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Combination of AVNIR-2, PALSAR,
and Polarimetric Parameters for

Land Cover Classification
Hasi Bagan, Member, IEEE, Tsuguki Kinoshita, and Yoshiki Yamagata

Abstract—We evaluate the potential of combined Advanced
Land Observing Satellite Advanced Visible and Near-Infrared
(AVNIR-2) and fully polarimetric Phased-Array-type L-band Syn-
thetic Aperture Radar (PALSAR) data for land cover classifica-
tion. Optical AVNIR-2 and fully polarimetric PALSAR can pro-
vide both surface spectral information and scattering information
of the ground surface. The fully polarimetric PALSAR is partic-
ularly important for land cover classification because quad-po-
larization PALSAR data and its polarimetric parameters contain
additional surface information. As a consequence, by combining
optical AVNIR-2, PALSAR, and polarimetric parameters into a
single data set, land cover classification accuracy may be further
improved. For efficient and convenient handling of the combined
multisource data, we used a subspace method for the classification
and estimated its classification capability for various combinations
of optical, PALSAR, and polarimetric parameter data sets in the
Lake Kasumigaura region of Japan. We also compared the results
obtained using the subspace method with those obtained by the
support vector machine (SVM) and maximum-likelihood classi-
fication (MLC) methods. The classification results confirm that,
when the combined optical AVNIR-2, PALSAR, and polarimet-
ric coherency matrix data were used, the classification accuracy
of the subspace method was better than that when other data
combinations were used. The subspace method also performed
better than the SVM or MLC method in high-dimensional data
set classification. Moreover, the experimental results demonstrated
that the proposed subspace method is robust for data classification
when there is data redundancy and thus allows optimal feature
selection procedures to be avoided.

Index Terms—Coherency matrix, Phased-Array-type L-band
Synthetic Aperture Radar (PALSAR), polarimetry, subspace
method, supervised classification.

I. INTRODUCTION

THE RECENTLY launched Advanced Land Observing
Satellite (ALOS) carries both optical Advanced Visible

and Near-Infrared (AVNIR-2) and fully polarimetric Phased-
Array-type L-band Synthetic Aperture Radar (PALSAR) sen-
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sors. Each sensor collects a different type of surface information
and thus provides a new opportunity for characterizing and
mapping land cover types.

PALSAR is the first civilian spaceborne L-band fully po-
larimetric synthetic aperture radar (SAR) utilizing horizontally
(H) and vertically (V ) polarized electromagnetic waves in
both transmission and reception. Different from the optical
AVNIR-2, PALSAR measures the radar backscatter from both
point and distributed targets on the surface, which can then
be used to characterize structural properties of the surface
(e.g., slope, shape, and surface roughness) and geophysical
parameters (e.g., vegetation and soil moisture and salinity) [1].
Furthermore, when fully polarimetric PALSAR data are avail-
able, polarimetric target decomposition methods, including
those of Cloude and Pottier [2], Freeman and Durden [3], and
Yamaguchi et al. [4], can be used. These polarimetric target de-
composition methods were developed to separate polarimetric
radar scattering information into basic scattering mechanisms
for such purposes as geophysical parameter inversion and ter-
rain and target classification [5]. The different decomposition
methods transform the polarimetric information into different
types of scattering mechanisms [6]. The T3 coherency matrix
derived from the fully polarimetric PALSAR data has the
advantage of being suitable for simple averaging to increase
the equivalent number of looks and hence reduce speckle while
maintaining the polarimetric phase information [7]. Various
model-based decomposition methods that are exploiting the
fully polarimetric information of the coherency matrix have
been developed, although they are still unable to use the com-
plete polarimetric information of the coherency matrix [5]. For
minimal loss of the polarimetric information contained in the
coherency matrix, it is essential to incorporate the coherency
matrix directly into the classification procedure.

SAR data and optical data provide complementary informa-
tion, and their combination often leads to increased classifica-
tion accuracy [8]. Moreover, adding the coherency matrix to the
combined data set can potentially further improve the classifica-
tion accuracy. Therefore, the development of proper techniques
for efficiently and conveniently handling such multilayer imbal-
anced image classification is becoming increasingly important.

Various approaches have been used to examine polarimetric
SAR data for land cover classification: Examples include an
entropy/alpha decomposition-based classification scheme used
to classify different types of scattering behavior [9], a complex
Wishart classifier combining a physical scattering mechanism
with the statistical properties of pixels [10]–[12], a complex-
valued multilayer perceptron neural network for polarimetric
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SAR data classification [13], the support vector machine (SVM)
classification method [14], and segmentation methods [15].
Many studies have proposed the use of PALSAR data for
forest type characterization [16]–[18] and cropland mapping
[19] and combining PALSAR and optical data sets for land
cover classification [20], [21]. Very few studies have examined
the combination of fully polarimetric SAR data, polarimetric
features, and optical data for classification [6]. However, as for
our knowledge, the combination of fully polarimetric PALSAR
data, polarimetric coherency matrix data, and optical data for
classification has not previously received attention.

Recently developed subspace methods have been used to
solve remote sensing image classification problems and have
shown potential for efficient classification of high-dimensional
remote sensing data [22]. Subspace methods have become
popular both for dimensionality reduction and for building
classifiers [23] because, in real-world problems, patterns are
often distributed in high-dimensional nonlinear subspaces. Sub-
space methods aim at defining a low-dimensional subspace
for each land cover class that preserves the main properties
of the high-dimensional data set. Subspace methods reduce
data dimensionality by incorporating feature extraction into the
classification process, and they therefore have great potential
for solving combined multisource remote sensing image classi-
fication problems. In this study, to demonstrate the proposed
subspace classification method, we applied it to a combined
multisource remote sensing image and compared its classifica-
tion accuracy with accuracies obtained with two other classifi-
cation techniques: a recently developed SVM [24], which is a
promising machine learning methodology, and the widely used
maximum-likelihood classification (MLC) method [25].

In Section II, we briefly review the fully polarimetric
PALSAR data and their coherency matrix. We also present a
short overview of a recently proposed subspace remote sensing
data classification procedure in this section. In Section III,
we present the experimental materials and methods, and in
Section IV, we present and discuss the classification results.
Finally, in the last section, we present our conclusions and men-
tion some open questions to be addressed by future research.

II. METHODOLOGY

A. PALSAR Polarimetric Data

The PALSAR Level 1.1 product comprises single-look com-
plex (SLC) data, compressed in both range and azimuth direc-
tions. The pixel spacings are 9.6 m in the range direction and
4.49 m in the azimuth direction [26]. PALSAR Level 1.1 data
are composed of a real and an imaginary part (complex data)
and thus contain both amplitude information and phase infor-
mation of the backscattered signal from the ground surface.

In fully polarimetric PALSAR SLC data, the polarimetric
behavior of a target can be described by its 2 × 2 complex
Sinclair scattering matrix S defined by

S =

(
SHH SHV

SV H SV V

)
(1)

where the diagonal elements SV V and SHH are copolarized be-
cause they relate the same polarization state for the incident and
backscattered fields. The off-diagonal elements SHV and SV H

are cross polarized because they relate orthogonal polarization
states [1], [27].

In the monostatic backscattering case, the scattering matrix
S is assumed to be symmetrical (SHV = SV H), which means
that the same amount of backscatter energy is received with the
HV and V H polarizations. However, receiver noise in the radar
electronics is different between the HV and the V H channels,
so these channels are often averaged during data processing for
more accurate measurement of the cross-polarized energy.

The scattering target vector kp, which is preferred instead of
the scattering matrix S because physical interpretation of its
elements is easier (i.e., surface scattering, volume scattering,
and double-bounce scattering), can be calculated from the
symmetrical scattering matrix S as

kp =
1√
2
[SHH + SV V SHH − SV V 2SHV ]

T. (2)

From the scattering target vector kp, we can generate the
complex coherency matrix T3 as (3) [28], shown at the bottom
of the page, where 〈·〉 denotes the inner product and k∗Tp denotes
the Hermitian transpose of kp.
T3 is a Hermitian matrix that composed of nine independent

numbers: the three real diagonal elements and the three real
and three imaginary parts of the three complex off-diagonal
elements. These nine independent parameters are useful for
general target analysis without reference to any model, and each
of them contains real physical target information [1].

B. Subspace Method

The subspace method [29] has been shown to possess good
generalization ability, both in theory and practice, for pattern
classification [30], and modifications of the original model for
remote sensing data classification have recently been presented
[22]. The subspace classification procedure involves the fol-
lowing steps: definition of land cover classes, representation
of training and test samples, pattern normalization, feature
extraction to generate the subspaces, class subspace learning,
and performance evaluation.

T3 =
〈
kp · k∗Tp

〉

=
1

2

⎡
⎣

〈
|SHH + SV V |2

〉
〈(SHH + SV V )(SHH − SV V )

∗〉 2 〈(SHH + SV V )S
∗
HV 〉

〈(SHH − SV V )(SHH + SV V )
∗〉

〈
|SHH − SV V |2

〉
2 〈(SHH − SV V )S

∗
HV 〉

2 〈SHV (SHH + SV V )
∗〉 2 〈SHV (SHH − SV V )

∗〉 4
〈
|SHV |2

〉
⎤
⎦ (3)
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The subspace method is a supervised classification method in
which each pixel is represented in terms of d features or mea-
surements and is viewed as a point in a d-dimensional space.

Given a set of training samples from each class, the objective
is to establish subspaces in the feature space that separate sam-
ples belonging to different class subspaces. The effectiveness of
the subspace is determined by how well samples from different
classes can be separated.

Assume that labeled training samples {Xi,j} (i = 1, . . . , c;
j = 1, . . . , pi) belong to c categories ω1, ω2, . . . , ωc, where pi
is the total number of training samples in class ωi. Each sample
is a d-dimensional (= bands) vector.

In the preprocessing step, the training patterns are normal-
ized as follows: For a given pixel Xi,j = (x1, x2, . . . , xd)

T of
category ωi, the normalized pixel is computed as

Xi,j = (x1/L, x2/L, . . . , xd/L)
T (4)

where L =
√
x2
1 + x2

2 + · · ·+ x2
d is the norm (length) of the

vector that represents the given pixel Xi,j . For the sake of
brevity, we also use Xi,j to denote the normalized pixel.

Next, the normalized training data set is used to determine the
appropriate class subspace of dimensionality m (m < pi, with
i = 1, 2, . . . , c) in the original feature space of dimensionality
d (m < d). For example, in class ωi, the m largest eigenvectors
of the d× d correlation matrix of Pi d-dimensional patterns are
computed

Pi =

pi∑
j=1

XT
i,jXi,j (5)

where Pi is the d× d correlation matrix. Then, principal com-
ponent analysis is used to compute the m largest eigenvalues
and the corresponding eigenvectors of the class correlation
matrix. The m eigenvectors corresponding to the largest m
eigenvalues span the class ωi subspace.

Let the m largest eigenvalues of Pi be arranged in descend-
ing order and the corresponding eigenvectors be denoted by
{Vi,j |j = 1, . . . ,m} (m < d); here, m equals the subspace
dimension of class ωi.

The similarity of a normalized image pixel x to this class ωi

is computed as the weighted orthogonal projection length

gi(x) =
m∑
j=1

(
λ
(j)
i /λ

(1)
i

)ρ

[xTVi,j ]
2

(6)

where ρ is a small nonnegative constant value parameter and
{λ(j)

i |j = 1, . . . ,m} are the first m largest eigenvalues of the
correlation matrix in descending order. Pixel x is then classified
into the class with the largest projection length.

However, there may be some overlap between the initially
obtained subspaces, which decreases the classification accu-
racy. To separate patterns belonging to different classes, the
learning subspace method has been proposed to reduce this
subspace overlap.

The averaged learning subspace method (ALSM) is the most
commonly used learning subspace method. We briefly describe
the ALSM here. In ALSM, the class correlation matrices are
modified with each learning iteration, and then, the basis vec-
tors of the subspaces are updated.

In each iteration step t, all training samples are first classified
using (6) according to the currently existing subspaces. Then,
the misclassified training samples are divided according to the
misclassification type: A sample vector of class ωi may be
misclassified into another class, for example, ωj , or a sample
vector of another class, for example, ωk, may be misclassi-
fied into class ωi. Thus, we need to compute the following
two types of conditional correlation matrices P

(i,out)
t and

P
(i,in)
t (1 ≤ i ≤ c):

P
(i,out)
t =

∑
j

Y T
i,jYi,j (7)

when Yi,j (1 ≤ i ≤ c; 1 ≤ j ≤ pi) belongs to class ωi but is
mislabeled into another class, and

P
(i,in)
t =

∑
k �=i

∑
j

ZT
k,jZk,j (8)

when Zk,j (1 ≤ k ≤ c; 1 ≤ j ≤ pk) belongs to class ωk (k �=
i) but is mislabeled into class ωi.

Next, we generate a new correlation matrix of class ωi

P
(i)
t = P

(i)
t−1 + αP

(i,out)
t − βP

(i,in)
t . (9)

Here, P
(i)
0 = Pi, and α and β are the learning parameters,

which are usually set to two constant values that do not vary
during the iteration process. Then, the m largest eigenvectors of
P

(i)
t , corresponding to the largest m eigenvalues, are computed

to span the updated class ωi subspace. The iterations of the
learning procedure terminate when the predefined condition is
achieved.

Several parameters need to be set, namely, the learning
parameters α and β, the parameter ρ, and the number of
dimensions of each subspace. If the subspace dimensions for
each class are the same and the two learning parameters are
equal, the accuracy of recognition is optimized [31]. Thus,
we set the dimensions of the subspaces of each class to the
same value rather than set the dimensions of each subspace
independently. Furthermore, we set both learning parameters to
the same constant value. The optimal parameter values can be
easily determined by an automatic optimization system [32].

III. MATERIALS AND METHODS

A. Study Area

The study area was the Lake Kasumigaura region of Japan
(Fig. 1), approximately 70 km northeast of Tokyo near the
Japan Aerospace Exploration Agency (JAXA). The climate is
characterized by high humidity and warm temperatures. The
annual average air temperature is about 14 ◦C, and the annual
precipitation is 1250 mm. Most of the study area is almost flat
plain with altitudes between −2 m (reclaimed lands below sea
level) and 30 m above sea level, except for flat-topped Mount
Tsukuba in the northwestern study area, where the highest point
is about 870 m above sea level. This area has a large diversity of
land cover types, which have been extensively documented by
in situ survey. The main land use/land cover types represented
are forests, paddy fields, croplands, lotus fields, grasslands, golf
courses, parks, settlements (both urban and suburban areas),
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Fig. 1. False-color composite AVNIR-2 image (RGB = bands 4, 3, and 1) of the study area acquired on April 13, 2009, and its location in the Lake Kasumigaura
region, Japan. The square labeled “A” indicates the area shown in the images in Fig. 4.

and water (rivers and lakes). Rice in this area is grown on flood
plains, in coastal areas, and in narrow strips along small upland
rivers that become narrower upstream [33]. Paddy fields are
plowed using farm machines several times before being flooded
by shallow water at the end of April. In this region, the rice
seedlings are transplanted in the first week of May. Some parts
of paddy fields may be flooded by shallow water during April
if the water level in an adjacent river rises above the paddy field
elevation.

B. Remotely Sensed Data

1) AVNIR-2: An ALOS AVNIR-2 (three visible and one
near-infrared bands) image acquired on April 13, 2009, over the
study area was used in this work (Fig. 1). The spatial resolution
of the four AVNIR-2 bands was approximately 10 m, but these
data were resampled to 15 m using the cubic convolution
method done by JAXA. We rectified the ALOS AVNIR-2 image
by using ground control points (GCPs) from Digital Map 2500
(Spatial Data Framework; scale of 1:2500) published by the
Geographical Survey Institute, Japan. GCPs were well dis-
persed and yielded a root-mean-square (rms) error of 0.59 pixel.
The image contained no visible distortion, haze, clouds, or
shadows, excepting two small clouds and their corresponding
shadows over Mount Tsukuba (northwestern study area).

2) PALSAR: Full-scene L-band PALSAR Level 1.1 SLC
data were acquired on April 7, 2009, in quad-polarization mode
(HH,HV, V H, V V ) in an ascending orbit with an incidence
angle of 21.5◦.

The standard Level 1.1 product produced by JAXA was
converted to a normalized radar cross section as follows:

σ0
1.1product = 10 log10〈I2 +Q2〉+ CF −A (10)

where I and Q are the real and imaginary parts of the SLC data.
The conversion factor CF is −83.0, and A is 32.0 [22]. Here,
instead of (10), we used the following equation to convert the
four-channel PALSAR Level 1.1 data:

σ0
1.1product = 10 log10〈I2 +Q2〉+B. (11)

Here, we set B to 80 to avoid the negative value and make it
easy to tune the learning parameters in (9). This kind of linear
conversion does not affect the classification accuracy.

The coherency matrix T3 contains additional real physical
target information over that contained in the converted PAL-
SAR four-channel data. Therefore, we incorporated the nine
independent elements of the coherency matrix (i.e., the three
real diagonal elements and the real and imaginary parts of the
three off-diagonal elements) into the classification process in
order to achieve more meaningful land cover information.

The PALSAR data were processed using the ENVI
SARscape (ITT VIS SARscape) SAR processor and in-house
software. The PALSAR four-channel data and the nine elements
of the T3 coherency matrix were preprocessed as follows:
4 × 1 multilooking; reduction of speckle effects with a win-
dow size of 5 × 5 refined Lee filter; and geocoding and
terrain correction using the 90-m-spatial-resolution Shuttle
Radar Topography Mission (SRTM-3) elevation data. In ad-
dition, the PALSAR four-channel data processing also in-
cluded radiometric calibration and normalization. Finally, we
added 50 to the nine elements of the coherency matrix
T3 to avoid the negative value. All data were geocoded to
15 m to match the spatial resolution of the AVNIR-2 data
and coregistered with respect to the AVNIR-2 data in order
to achieve meaningful land cover information and minimize
misregistration errors. In particular, the PALSAR four-channel
data and the nine elements of the coherency matrix T3 were
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TABLE I
LAND COVER CLASSES AND PIXEL COUNTS IN THE LAKE KASUMIGAURA REGION OF JAPAN

TABLE II
FIVE DATA SET GROUPS USED FOR CLASSIFICATION

coregistered by using GCPs from the rectified AVNIR-2 data
and applying a polynomial transformation. The rms error was
0.68 pixel.

3) Ancillary Data: We conducted an extensive field survey
from April 6 to 15, 2009, and from September 21 to 24, 2010, in
order to gather field-based land cover observations. In addition
to the field survey data, the following remote sensing and
geographic information system (GIS) data sets were used for
determination of typical land cover classes and field training
sites: IKONOS satellite images acquired during 2004–2007;
GeoEye-1 satellite image acquired on April 23, 2009; ALOS
AVNIR-2 images acquired on October 16, 2008, May 20, 2009,
and August 29, 2009; and Digital Map 2500 (Spatial Data
Framework; scale of 1:2500) published by the Geographical
Survey Institute, Japan. Using the field investigation results,
the visual interpretation of the remote sensing and GIS data
sets, we designated 11 ground-cover types in this experiment
(Table I). The training and test samples were randomly selected
from separate local patch data by manual digitization in order
to ensure that they were spatially disjoint and to reduce any
potential correlation between the training and test data [34].

To evaluate how different source data sets contributed to
classification accuracy, we set up five data set groups designated
G1–G5 (Table II).

In these groups, T11, T22, and T33 denote the three real
diagonal elements; Re(T12), Re(T13), and Re(T23) denote the
real parts of the three off-diagonal elements; and Im(T12),

Fig. 2. Classification accuracy of the subspace method increased more rapidly
than those of the MLC and SVM methods as the number of bands increased.

Im(T13), and Im(T23) denote the imaginary parts of the three
off-diagonal elements, of the coherency matrix T3.

From (3), it can be seen that T33 has a high correlation
with PALSAR channels HV or V H , and T11 and T22 have
a high correlation with PALSAR channels HH and V V . G5
contains both the four PALSAR channels and the nine elements
of T3 to allow evaluation of the classifiers when there is data
redundancy.

IV. RESULTS AND DISCUSSION

The subspace, SVM, and MLC methods were each applied to
the five data set groups (Table II), and the overall accuracies of
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Fig. 3. Land cover classification maps obtained with (a) G1 by SVM, (b) G2 by SVM, (c) G3 by subspace, (d) G4 by subspace, and (e) G5 by subspace in the
Lake Kasumigaura area of Japan.

the methods with the different data set groups were compared
(Fig. 2).

As expected, classification performance clearly benefited
from multisource data fusion. The best classification result was
obtained with the subspace method when the full G5 data set
was used. With the subspace method, the classification accuracy
tended to increase with the use of more data source types
(Fig. 2). With SVM, the trend was similar, but the subspace
method classification performance was better than the SVM
performance with the G3, G4, and G5 groups. All three of the

classification methods achieved better classification results with
the G2 data set than with the optical-only G1 data set. With
the G1 data set group, either the three classification methods
could not separate urban and road classes or the accuracy was
considerably lower.

The parameters that were used to build the best classifiers
were provided. The number of subspace dimensions and the
optimal number of training iterations in the subspace were 4
and 747 for G3, 4 and 943 for G4, and 7 and 960 for G5,
respectively. The SVM classifier with Gaussian radial basis
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function (RBF) kernels in ENVI software (ITT VIS version
4.7) is used in this study. Although the RBF kernel function is
widely accepted in remote sensing applications, the SVM algo-
rithm with an RBF kernel was a significantly time-consuming
procedure for handling large data sets with high dimensionality
[35], [36]. Therefore, we chose trial-and-error testing instead
of an automatic parameter optimization technique for SVM
with an RBF kernel. For further information regarding the
parameter selection and optimization technique of the SVM
algorithm, please refer to [36]–[38]. The trial-and-error testing
showed that the best values for the gamma (width) and penalty
parameters were 0.2 and 120 with G1 and 0.1 and 150 with G2,
respectively.

Comparison of the three methods (Fig. 2) showed that, with
the G1 data set group (four bands) and the G2 group (eight
bands), the classification accuracy of the SVM method was
better than that of the MLC or subspace method. However, with
the high-dimensional G3 (13 bands), G4 (14 bands), and G5
(17 bands) data set groups, the subspace method results were
more accurate than those obtained by the SVM and MLC
methods. SVM tries to find an optimal hyperplane that maxi-
mizes the margin between classes, which then minimizes the
misclassification error on the training set. However, a previous
study reveals that the accuracy of a classification by an SVM
does vary as a function of the number of features used [24],
[37]. When the number of features is large, the highly correlated
features may have a negative impact on classification accuracy
[38]. Therefore, SVM had the highest performance for low-
dimensional G1 and G2, but it had difficulties in constructing
an effective classifier model from relatively high dimensional
data sets of G3, G4, and G5. In contrast, for the subspace
method of high-dimensional data classification, the overlap
between low-dimensional class subspaces is reduced enough in
the high-dimensional space, and thus, the performance using
the subspace method on G3, G4, and G5 made it outperform
relative to MLC and SVM, while the lower MLC results are
probably due to the MLC assumption of equal prior probability
(likelihood) of occurrence for each class [25] and the MLC
apportion of pixels into a class regardless of distance from class
mean. When the subspace method was used, the classification
accuracy was the highest with the combination of AVNIR-2
and PALSAR data and all nine elements of the coherency
matrix (G5), but the classification accuracy was nearly as high
when the AVNIR-2 and PALSAR data and six elements of the
coherency matrix (G4) were used. The classification accuracy
of the SVM method showed a similar trend, but the classifica-
tion accuracies obtained with the G4 and G5 data set groups
were considerably lower than those obtained with the subspace
method.

The confusion matrix (error matrix) tallies how the classifi-
cation process has labeled a series of test pixels at which the
correct land cover label is known [34]. To assess the quality
of the image classifications, confusion matrices comparing
test pixels (Table I) to the classification results obtained by
the MLC, SVM, and subspace methods were created, and
the overall accuracy, producer’s accuracy, user’s accuracy, and
kappa coefficient of agreement (or κ statistic) were generated
(Table III).

With the AVNIR-2 optical image (G1), the overall accuracy
was only 81.0%, and the corresponding κ statistic was 0.79

(Table III). However, the addition of the four PALSAR channels
to the optical image (G2) caused the overall classification
accuracy to increase rapidly to 86.0%, and the corresponding
κ statistic was 0.84; furthermore, the highest classification
accuracy of 90.3% (κ statistic of 0.89) was obtained when all
AVNIR-2 and PALSAR channels, as well as all nine elements
of the coherency matrix (G5), were used.

On the G1 group, the subspace method gives the lowest
overall classification accuracy (Table III). As we mentioned
earlier, the reason is mainly due to the overlap between class
subspaces in the low-dimensional data space (G1). One possible
solution is to map the data space into a higher dimensional
feature space by kernel-based methods in order to reduce the
overlap between subspaces while maintaining computational
simplicity of the subspace learning procedure.

Fig. 3 shows the best classification maps obtained by the
subspace or SVM method with G1–G5. As expected, the to-
pographic variations in the Mount Tsukuba area had limited
impact on the classification performance because this area is
almost entirely covered by forest.

Overall, the best classification results among the five data set
groups were obtained with G5. With subspace for G5 (Table III
and Fig. 3), the producer’s accuracies (reflecting errors of
omission) of majority land cover classes were notably increased
compared with the other data set groups. The lowest producer’s
accuracy with G5, for grassland (70.8%), was due to misclas-
sification of grassland into sparse or wheat. The producer’s
accuracy of lotus was 80.5% due to misclassification of lotus
into flooded paddy or water. The user’s accuracy (reflecting
errors of commission) of most classes, except lotus, grassland,
and road, was over 84% with G5. That of grassland was the
lowest (78.5%) due to sparse and wheat being misclassified
as grassland, and that of lotus was 79.8% due to the misclas-
sification of water and flooded paddy. The user’s accuracy of
road was just 78.4%, but this value was nevertheless notably
larger than the user’s accuracies obtained with the other data
set groups.

The combination of AVNIR-2 and PALSAR data (best clas-
sifiers for G1–G5) did not improve or decrease the accuracies of
grassland and lotus compared with G1 (Table III). The classifi-
cation errors of these land cover classes were caused mainly
by their spectral similarities on AVNIR-2 images and their
similar surface structural properties and physical parameters in
PALSAR data [8]. Further research is needed to develop better
rules to improve the classification accuracies of these classes
when AVNIR-2 and PALSAR data are used in combination for
the classification.

To visualize the differences in the classified regions more
clearly, we examined the land cover images at location A in
greater detail (see Fig. 1). Location A is a typical agricultural
region (Fig. 4), with a few built-up areas consisting mostly of
single-family houses and including some trees. We examined
six images of location A: GeoEye-1 with a spatial resolution of
2 m (RGB = red, green, and blue bands) and the five land cover
classification maps obtained with G1–G5.

Some land cover classes that were confused when G1
(AVNIR-2) was used were separated when G2 was used for
the classification. For example, with G1, urban and road classes
were confused with each other or were misclassified into paddy
or grassland. The two classes were easily separated from each
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Fig. 4. Images and classification maps of location A (see Fig. 1): (a) GeoEye-1, (b) G1, (c) G2, (d) G3, (e) G4, and (f) G5 data set groups.

other and from paddy and grassland with G2 because urban has
a very high backscatter and road has a very low backscatter.
Furthermore, the addition of the coherency matrix in G4 and
G5 markedly improved the discrimination between classes. The
urban and road classification accuracies in particular were very
impressively improved when additional polarimetric parame-
ters were taken into account, mainly because the coherency
matrix provided additional information about the backscatter
behavior (e.g., phase, etc.) of the surface targets.

The performance of the subspace method with the high-
dimensional G4 and G5 data set groups demonstrates that the
subspace method is robust when there is data redundancy. This
implies that the subspace method can avoid problems associated
with the optimal feature selection procedure.

Aside from the five data set groups (G1–G5), the following
three data sets were also evaluated in terms of the overall
accuracy. Those are 4-band (HH , HV , V H , and V V ) radar
data, 13-band (HH , HV , V H , V V , and T3) radar data, and
a composite 5-band image (4-band AVNIR-2 data combining
with AVNIR-2-derived Normalized Difference Vegetation In-
dex). We found that the overall classification accuracies of
both 4- and 13-band radar data were lower than 50% using
11 classes by MLC, SVM, and subspace, respectively. The
producer’s classification accuracies of the grassland and sparse
classes were lower than 20%. It indicates that only using the

radar data could not separate the two classes in this case. For
the composite five-band image, the best result obtained by
SVM on the five-band image was 81.36%, corresponding to
a slight gain of +0.32%, compared with that achieved by the
four-band AVNIR-2 data. As the classification accuracy was
not improved dramatically, the topic of combining NDVI into
the classification was not addressed in this paper but will be
investigated in the near future.

V. CONCLUSION

In this paper, we have examined the use of the combination of
AVNIR-2 and PALSAR data with polarimetric parameters for
land cover classification by a subspace classification approach.
Our results confirm that fully polarimetric PALSAR data im-
prove the accuracy of the land cover classifications and that
classification using the combined data sets has a clear advantage
over optical-sensor-based classification. These classification
results could be further improved by introducing optimal
image-derived vegetation indices, texture information, and
PALSAR-derived polarimetric decompositions into composite
products to better represent variability. Additionally, it may be
possible to improve the multisource combined data classifica-
tion by introducing a weight parameter of individual bands to
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better represent the influence of individual bands (or groups of
bands).

Our comparative analysis confirmed that the performance
of the subspace method was much better than that of SVM
or MLC when high-dimensional combined multisource remote
sensing images were used. Further research should improve
the subspace learning rules to allow the training procedures
to achieve more stable convergence. For example, turning the
learning parameter values of α and β into learning parameter
vectors corresponds to a respective weighing of each class that
also involves the class influences in the training process. In
addition, we can also expect a further improvement of subspace
classification by introducing nonlinear dimensionality reduc-
tion techniques [39] into the subspace training stage. These
were not the focus of our work for this paper. We, however,
are interested in collaborations with other researchers to further
develop these techniques.
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