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Foreword
ADP: The Key Direction for Future Research in

Intelligent Control and Understanding
Brain Intelligence

IN THE future, we may recognize that trying to build
or understand intelligent systems without exploiting the

Bellman equation is like trying to build hardware without know-
ing Maxwell’s laws. There are times when proper understand-
ing and use of one key equation is the key bridge that makes
it possible to connect valid large global goals to the world of
concrete mathematical reality, i.e., working designs and valid
models. New fundamental mathematics is also the key to cre-
ating a unification of understanding across disciplines, such as
engineering, psychology, neuroscience, and even social science.

It is great pleasure to introduce this special issue of the IEEE
TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—
PART B: CYBERNETICS, the journal that was, in a way,
the birthplace of the modern adaptive dynamic programming
(ADP) community, as I will discuss.

Back in the early 1960s, Minsky [1] proposed that we
could reverse engineer the intelligence of the brain by building
general-purpose “reinforcement learning systems (RLSs).” He
defined an RLS as a kind of universal black box.

At each time t, the RLS inputs a vector of observed vari-
ables X(t), outputs a vector of decisions or controls u(t),
and receives a global reward or punishment signal, which I
would denote as U(t). In artificial intelligence, it is more
common to refer to U(t) as a “reward” variable r because
of the strong connections between reinforcement learning and
animal psychology [2]. In the ADP approach, however, we are
interested in building powerful intelligent systems, which can
address well-defined mathematical tasks. We are focusing on
the goal of maximizing the expected future value of a “utility
function”—a concept that was made rigorous by the work of
Von Neumann and Morgenstern [3], which led to Bellman’s
later discovery of dynamic programming (DP). Previous work
on maximizing utility functions, by Hamilton and Jacobi and
Lagrange et al., focused on the case of deterministic systems;
von Neumann and Bellman achieved the great breakthrough of
developing more general mathematics for the stochastic case.

The Bellman equation is the fundamental equation for defin-
ing or deriving the optimal strategy or policy of action, in the
general case, for nonlinear stochastic dynamical systems. [4].

Minsky was very disappointed when he found that an early
“common sense” version of reinforcement learning could not
simply handle as much complexity as ordinary DP, let alone
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Fig. 1. Important future directions for research, of interest in NSF funding:
1) developing and combining adaptive brainlike optimal control and prediction
and 2) addressing key challenges in engineering for sustainability on Earth,
space development, and human potential. (Top left) Schematic of Bellman
equation.

the complexity that the brain can handle. In 1968, I was first
to suggest that we could overcome this problem by developing
adaptive approximations to the Bellman equation as a new
way to build RLSs [5]. In a sense, this was the birth or initial
formulation of ADP; but in 1968, it was only an idea. Even
today, the development of new ADP designs to handle ever
more complexity without losing their generality is the number
one challenge to research [6].

In 1971, for my Harvard Ph.D. thesis work [7]–[9], I pro-
posed the first consistent ADP design illustrated in Fig. 1.

To overcome the curse of dimensionality, I proposed that we
do what statisticians had been doing for centuries in learning
approximate statistical models of the world: develop and train
a parameterized model of the Bellman J function (the “value
function”). In order to converge to the correct value function in
the general case, we need to use some kind of universal non-
linear function approximator to serve as the “Critic.” Based on
the theorems of Barron [10], we know that neural networks can
fill that role with less error than more traditional approximators,
when there are many variables in the system.

How could we implement such a system? Where are the
equations to fill in the boxes? From the viewpoint of adaptive
control, I proposed that we adapt model and action networks
based on exactly the same derivatives that Narendra proposed
in his neural network design for indirect adaptive control
(IAC) [11]. What I proposed for Fig. 1 was the same as his IAC,
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Fig. 2. First ADP design. The dashed lines represent calculations of ordered
derivatives, or “backpropagation,” in order to calculate the gradient of J with
respect to control variables and parameters at minimum computational cost.
R represents an estimated “belief state,” which emerges as a byproduct of the
system identification component or “Model.”

except that I proposed the use of the “Critic” network in place of
the square position error used by Narendra. To adapt the Critic
network, I proposed the use of a method that I called “heuristic
dynamic programming” (HDP), which was later renamed as
the “TD(0)” temporal method by Sutton [12]. By replacing the
(arbitrary) square error measure with a Critic, we can converge
toward an optimal policy and also avoid the large transient
errors and common modes of instability that are found when
IAC is applied to complicated types of plants. For details, the
reader is urged to obtain the two key handbooks from National
Science Foundation (NSF) workshops on intelligent control
[13] and ADP [14]. Those workshops received support from
many parts of NSF, and the books and web site contain pointers
to NSF funding interests in that area.

Lewis et al. have made tremendous progress in extending
HDP and related methods to strengthen the guarantees of
stability, similar to the progress that Narendra made decades
ago in stabilizing ordinary adaptive control. There is more to be
done along those lines, of course, and that is another important
direction for future research. Lewis’s leadership in this area has
become essential to the field.

However, even in 1971, I realized that HDP still had certain
problems in scaling up to fast learning in large environments.
Thus, I proposed two extended methods for training Critic
networks, which I called dual heuristic programming (DHP)
and globalized DHP [15]–[18]. Finally, in 1987, in [19], I
proposed a more comprehensive ADP-based architecture for
intelligent control and for understanding of the intelligence of
the brain. That paper led to a meeting between Sutton and
myself that year, bringing together the ADP and the RL schools
of research for a time, to some degree.

The Critic in the DHP system outputs a vector of value
signals, which are essentially the same as what economists call
“shadow prices,” except that they are valid in the stochastic
case; this turns out to be very convenient in building an interface
between automated control systems and human market actors,
in the design of the “intelligent electric power grid [14].”

By now, the term “ADP” has become widely disseminated
across many disciplines, as we had hoped in organizing the
NSF workshops on ADP. Yet, we still need much more mutual
cooperation and understanding across disciplines, in order to
rise up to the full opportunities illustrated in Fig. 2. We need
to overcome the myth that ADP only includes model-free
methods, that it cannot handle complex problems, or that we are
stuck forever with the limits of lookup tables or linear methods.

We can use ADP to cope with the numerical challenges
of robust nonlinear control (which require solutions of the
Bellman equation), but we can also use it to make progress on a
new concept of resilient control, which is closer to what we see
in biology. Biological organisms, such as electric power grids
and aircraft in war, must somehow cope with environments that
are so challenging that it is impossible to guarantee survival or
stability, under a truly realistic model of the hazards out there
in the environment. The challenge is how to maximize the long-
term probability of survival, which is a stochastic optimization
problem that is well suited for ADP thinking and requires an
adaptive approach. ADP thinking turns out to be crucial even
in realms such as energy policy and space policy, but that is
beyond the scope of this special issue.
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