
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004 1299

Coordinated Problem Solving Through Resource Sharing
in a Distributed Environment

Umesh Deshpande, Arobinda Gupta, and Anupam Basu

Abstract—An important feature in a distributed problem solving system
is that the resources of different nodes can be shared through cooperation.
In this paper, the generalized partial global planning (GPGP) approach
used for multiagent systems is extended by providing a coordination mech-
anism for resource sharing across nodes. In our framework, multiple con-
flicting criteria (or objectives) like quality, cost, and duration may be as-
sociated with an input task. Preference ratings expressed subjectively may
be assigned to each of the criteria. Task assignment in this system, which
is a multiobjective decision making problem, is important for the satisfac-
tion of the criteria. It has to be done with imprecise information since the
system is dynamic and preference ratings are specified subjectively. A tech-
nique for task assignment using the fuzzy set approach is also presented in
this paper. Simulation studies for the coordination mechanism and the task
assignment have been performed to demonstrate their effectiveness.

Index Terms—Contract net protocol, distributed problem solving, fuzzy
logic, multiagent systems, multiobjective decision making.

I. INTRODUCTION

In a distributed problem solving system, agents at different nodes
(problem solvers) coordinate their individual problem solving activi-
ties to solve the complete problem [1]. One of the important features of
these systems is that the resources of the different nodes can be shared
through cooperation. Examples of such systems are a distributed health
care system [2], which is a consortium of hospitals cooperating with
one another, an e-University system [3] where different universities or
colleges collaborate to offer courses to the students, supply chain man-
agement systems etc. Often such systems have to work under real-time
constraints with deadlines (may be soft) associated with tasks.

Resource sharing at a single node has been dealt with in the gen-
eralized partial global planning (GPGP) ([4], [5]) framework of mul-
tiagent systems (MAS) in [6]. A coordination mechanism to handle
mutually exclusive resources has been added in a framework for task
analysis, environment modeling, and simulation (TAEMS) [4]. This
has been demonstrated with an application to a hospital patient sched-
uling system. This framework, however, does not handle the case when
different nodes (each a MAS in itself) have to coordinate for sharing
resources. We extend the GPGP approach by providing a coordination
mechanism to allow sharing of resources across nodes. This enables
the realization of applications like a distributed hospital system where
some hospitals may not have all the required resources.

Task migration is an important issue for resource sharing in a co-
ordinated problem solving environment. If a subtask T 0 of a task T
submitted to a node Ni requires a resource r that is not present at Ni

then T 0 has to be migrated to some other node of the system where
r is present. For example, in a distributed hospital system, a patient
may need an MRI scanner which may not be present at a hospital, then
the part of the therapy that requires the MRI scanner has to be done at

Manuscript received December 12, 2002; revised April 10, 2003. This work
was supported by a Research Grant received from the Ministry of Human Re-
sources and Development, Government of India. This paper was recommended
by Associate Editor F. Gomide.

The authors are with the Department of Computer Science and En-
gineering, Indian Institute of Technology, Kharagpur, West Bengal
721302, India (e-mail: uad@cse.iitkgp.ernet.in, agupta@cse.iitkgp.ernet.in,
anupam@cse.iitkgp.ernet.in).

Digital Object Identifier 10.1109/TSMCB.2003.818535

some other hospital. The time required for the migration, the loads on
the remote nodes, and the quality and cost of usage of the resources
at the remote nodes are important in making the migration decision.
In a practical situation, multiple conflicting criteria (or objectives) like
minimizing cost and time required, maximizing quality, etc. could be
associated with a task. In this paper, we first propose a coordination
mechanism that makes the subtask migration decision based on only
a single objective of minimizing the average waiting time for all the
tasks. A distributed hospital environment is simulated using a multi-
agent framework and comparison studies of our coordination mech-
anism with other commonly used schemes has been carried out. The
performance evaluation results show that our scheme performs better
than the other approaches.

In our system, an user could assign a preference rating to each of the
criteria. The preference ratings denote the relative importances for the
criteria. Task assignment, which is a multiobjective decision making
problem, is important for the satisfaction of the criteria. We address
this important issue in our framework.

At the time of the task submission, the user normally has only an
intuitive and imprecise notion of the preference ratings to be associ-
ated with the objectives. These could be expressed using subjective or-
dinal values or linguistic terms. For example, a patient in a hospital,
may want a fast response with good quality at a moderate cost. Im-
precision also arises since the system under consideration is dynamic
and distributed. The global system state is not available at any single
node and hence it has to be collected before the task assignment. Since
the utilization of the resources changes continuously, it is not possible
to get a precise system state. Hence, the decision making needs to be
done allowing for tolerance for the imprecision. In this paper, we adapt
the multiobjective decision making process using fuzzy logic for task
assignment in a distributed system. The earlier proposed coordination
mechanism is then extended to deal with multiple objectives and sub-
jective preference ratings. Simulation studies of the task assignment
demonstrate significant performance gains of our technique over the
crisp techniques of task assignment.

In distributed problem solving (DPS) systems, a widely used scheme
for task allocation is the contract net protocol (CNP) [7]. The objec-
tive function in this consists of a single parameter—the “utility” of the
overall system. Market based approaches, like the one mentioned in
[8] are also popular for task allocation, where a single measure “price”
drives the allocation process. Auctions are often used for pricing as in
[9].

In the present paper, we consider cooperative agents that strive to op-
timize an objective function consisting of several parameters for task
allocation. Moreover, the relative preferences over the parameters may
often be subjective. To the best of our knowledge, there is no previous
work where multiple criteria based objective function governs task as-
signment as is presented here. The contributions of the paper are as
follows.

1) A coordination mechanism for resource sharing across nodes is
first proposed for a single objective of minimizing the average
waiting time.

2) A technique for the assignment of a task to a node in the system
in the presence of multiple criteria with subjective preference
ratings is presented.

3) The earlier proposed coordinationmechanism is then extended to
incorporate multiple criteria with subjective preference ratings.

The paper is organized as follows. The system model is presented
in Section II. Section III explains the coordination mechanism. Simu-
lation study of the coordination mechanism is discussed in Section IV.

1083-4419/04$20.00 © 2004 IEEE

1300 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004

Fig. 1. Architecture of a node in a distributed hospital system.

Fig. 2. Model of an agent F at a functional unit.

The task assignment problem and its solution is presented in Section V.
The performance evaluation of the task assignment is presented in Sec-
tion VI. Section VII concludes the paper.

II. SYSTEM MODEL

There are n nodes N1; N2; . . . ; Nn in a distributed system which
communicate only through messages. Each node has a collection of
agents controlling the resources present at that node. The nodes are
logically completely connected. It is assumed that the communication
delay for sending/receiving messages between any two nodes Ni and
Nj can be estimated and is a constant 	ij . A special unit called the
liaison unit (LU), with an agent in it, is identified at every node that
is responsible for coordination across nodes for resource sharing. All
communication across nodes takes place through the LU. A task, spec-
ified in a manner similar to that of TAEMS, can be submitted to any
node with an appropriate deadline and preference ratings associated
with the different objectives.

As an example system, the architecture of a node (a hospital) in a dis-
tributed hospital system is shown in Fig. 1. Agents are present at each
of the nursing units, departments, sub-departments, functional units,
and the liaison unit. The figure shows a hierarchical organization with
the resources controlled by the functional units. In the following sub-
section, the modeling of the agent at a functional unit is explained. The
detailed explanation of the modeling of the other agents is presented in
[2].

A. Modeling of the Agent at a Functional Unit

Assume that the agent F (as shown in Fig. 2) at a functional unit
controls the resourceR which has a duration of usage�. F consists of
an input queue QI , a coordination module, and a scheduler that work
together to prepare schedules for the input tasks. The schedule queue
QSched contains the dispatch times of the tasks input to F . The agents
coordinate with one another using commitments [4]. The local commit-

ments (LC) for F are those which the coordination module of F passes
on to the local scheduler of F . The nonlocal commitments (NLCs) for
F are those which the coordination module of F exchanges with the
coordination module of some other agent. NLCI is the set of commit-
ments that are input from other agents to F and NLCO are the set of
output commitments passed on to other agents by F . The scheduler
uses the LC and the NLCI sets to generate schedules.

III. MECHANISM FOR COORDINATION ACROSS NODES

Themechanism is based onmodifications to the contract net protocol
proposed in [10]. The basic idea of the proposed mechanism is based
on the process of bidding. When a task at a nodeN requires a resource
that is not present locally, thenN finds out if there exists a node, called
the focused addressing node, where the request for the service of that
resource is most likely to be satisfied. In addition to this node, it also
asks for bids from a subset of the nodes present in the network. If the
request can be satisfied at the focused addressing node, all the bids by
other nodes are ignored. Otherwise, the node with the best bid is chosen
and the task is migrated to it.

A. Liaison Unit: Data Structures and Algorithms

The LU on each node Ni maintains the following two tables.

Local Resource Table (LRT)—The format and the contents are
discussed below.

Name Duration Surplus

Name is the name of the resource present locally at the node
Ni. Duration is the time required for the usage of the resource.
Surplus is the ratio of the time the resource was not used in a past
window of length WLk . WLk is chosen appropriately depending
on the duration for the usage of the resource rk . The surplus is
an indication of the load on a resource. Each agent of the node
sends the surplus to the LU with a period of the window length
for that resource. The surplus information is sent across nodes
periodically and it is also piggybacked with message exchanges
between nodes.
Remote Resource Table (RRT)—This table keeps information
about the resources at other nodes in the network as known by
Ni. The format and the contents are as follows.

Name Id Duration Surplus Delay Estimate

Id is the identifier for the node where the mentioned resource
with name Name is present. Duration is the time for the usage of
the resource at that node. Surplus is the one that was most recently
obtained from the remote node. For each resource, the entries are
ordered in the decreasing order of the surplus. Delay Estimate at
the node Ni is computed for every hNj ; rki pair where the re-
source rk is not present at Ni but is present at a remote nodeNj .
Let us say thatNj promised a bid for time t0 but the actual finish
time of the service of rk was t1. The difference t1� t0 is referred
to as the delay. This delay can be estimated for every resource
present at each remote node based on the previous history of the
hnode; resourcei pair. This is called the delay estimate. It is
calculated every time a remote node finishes servicing a request
for a resource. The delay estimate for the nth(n > 0) request
for a resource rk requested by a source node s and serviced at a
destination node d is calculated using exponential smoothening
described as

�n = �kd � tn�1 + (1� �kd) � �n�1

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004 1301

where �n�1 is the estimated delay for the (n�1)th request (�0 =
0), tn�1 is the difference between the actual finish time (the task
result arrival time) and the bid promised for the (n�1)th request,
and �kd is a value (0 � �kd � 1) chosen appropriately for the
hd; rki pair.

B. Bid Process

If a resource rk for a subtask T is not present at a nodeNi, a request
is made to the LU ofNi. Alongwith the request, the expected worst case
start time (EWCST) is also sent. Requests that are likely to be started
after EWCST are not good since the deadlines would be missed.

Request for bids (RFBs) are sent to those nodes from the remote re-
source table (RRT) for rk such that each such node Nj satisfies the
condition that 4�	ij + delay estimate+current time > EWCST. The
multiplication by four is used since there would be four communica-
tions betweenNi andNj (first for requesting the bid byNi, second for
sending the bid byNj , third for sending the task byNi, and the last for
sending the results by Nj). RFBs are sent at the maximum to the first
� nodes of the RRT where � is a system-wide parameter used to mini-
mize the communication overhead. If the first node of the RRT satisfies
the additional condition that its surplus > �k , then it is chosen for fo-
cused addressing.�k is a threshold and is a constant chosen depending
on the resource rk .

When a node, say Nh, receives a RFB message, it checks if it can
guarantee the request. If the request can be guaranteed, it sends the ear-
liest possible finish time (EFT). If the focused addressing node replies
that it can guarantee T , Ni will ignore bids by other nodes. Other-
wise, Ni would wait for bids from other nodes and would select the
best bidder. The best bidder is the one that returns the least value of
2�	ih+EFT. The multiplication factor is two here, since only the last
two communications of the four mentioned above would be required
after a bid is obtained.
Ni will wait for bids until it gets a favorable one or till (EWCST �

2�	max) whichever is earlier. The worst case delay	max is the max-
imum time required to communicate between any two nodes. Still, if
no favorable bids are available, the subtask T could be migrated ran-
domly to any node.

The coordination mechanism requires various parameters like
EWCST, EFT, and the guarantee routine which are provided by a
real-time scheduler. The design of the scheduler and the computation
of these parameters is presented in detail in [2].

IV. EVALUATION OF THE COORDINATION MECHANISM

A network of six nodes is simulated for carrying out the experi-
ments. In the simulation model of this environment, the focus is on
the number and distribution of the resources. A total of 43 resources
are distributed randomly across the nodes. The duration of the usage
of the resources is randomly chosen. The task arrival is modeled
as a Poisson process with different arrival rates at each node. Let
X denote the system wide arrival rate. The performance measures
are the average task waiting time (W) and the guarantee ratio
(G = number of deadlines guaranteed=total number of tasks).

Experiments are conducted for the following three cases of agents
present at the LU.

• randomNodeCase, where an agent selects a node randomlywhen
a required resource is not present locally.

• nearest Node Case, where an agent selects a closest node in the
network where the resource is available.

• contract Net Protocol (cnp) case, where an agent uses the coor-
dination mechanism proposed in Section III.

The average task execution time is 300 min of simulated time. Each
of the experiments is executed for a total simulated time of 30 days. The

Fig. 3. Guarantee ratio with four heavily and two lightly loaded nodes.

Fig. 4. Waiting time with four heavily and two lightly loaded nodes.

Fig. 5. Guarantee ratio with three heavily and three lightly loaded nodes.

Fig. 6. Waiting time with three heavily and three lightly loaded nodes.

G and W values in all the three cases with X varying from 50–500
tasks per day are noted. Let Gc, Gr , and Gn be the guarantee ratios
in the cnp, random node, and nearest node cases respectively andWc,
Wr , and Wn be the average waiting times in the cnp, random node,
and nearest node cases, respectively. Figs. 3–6 show the results.
The graphs indicate that the cnp case performs consistently better

than both the random node and the nearest node cases in all the sce-
narios. This is because the coordination mechanism in Section III takes

1302 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004

into account both the loads at the different nodes and the travel time re-
quired for migration. In the best possible case, the cnp case performs
about 18% better than the nearest node case and about 20% better
than the random node case for the guarantee ratio. It performs about
38% better than the nearest node case and about 45% better than the
random node case for the average waiting time. Thus we are justified
in spending more time in the cnp case for making a good decision for
task migration.

As observed, the nearest node case performs better, in general, than
the random node case. Specially, when the arrival rates are low, its per-
formance is close to the cnp case. This is because the nearest node case
is a more informed decision than the random node case since it takes
into account the travel times. When the load is low, the travel times
play an important role, but as is seen from Figs. 3 and 4, when there
are more highly loaded nodes in the system and the arrival rates are
high, the nearest node case performs worse than the random node case.
The reason is that the nearest node case would make many bad deci-
sions at high loads since its decision is solely based on the travel time
without giving any consideration to the node loads. The random node
case would spread over the migrated tasks across the system and hence,
would perform better.

When the system load is almost equally distributed across all the
nodes and when the arrival rate is high (above 350 in Figs. 5 and 6),
all the three cases perform almost equally well with the cnp case being
slightly better. In such a case there is very little to choose between the
nodes. The coordination mechanism does not have much gains since it
spends time in the bidding process itself. Still, the cnp case performs
about 6% better than the nearest node case and about 8% better than the
random node case for the guarantee ratio. It performs about 5% better
than the nearest node case and about 6% better than the random node
case for the average waiting time.

In this section, the simulation results of the coordination mechanism
proposed in Section III were discussed. In the next section, a technique
for assigning tasks to a node of the system in the presence of multiple
objectives and subjective preference ratings is presented.

V. TASK ASSIGNMENT WITH IMPRECISION

Task assignment in the system could be done by any of the nodes
of the system or by a special node used solely for that purpose. The
node where the decision is taken has to collect the global state first.
As discussed in Section I, there is imprecision in the state collection
because of the dynamic nature of the system.

This section is organized as follows. The multiobjective decision
making process using fuzzy logic is reviewed in Section V-A. In Sec-
tion V-B, the computation of the fuzzy sets for each of the objectives
is explained. The coordination mechanism is extended in Section V-C
to incorporate the multiple objectives and the preference ratings.

A. Multiobjective Decision Making Using Fuzzy Logic

The typical multiobjective decision problem involves the selection
of one alternative ai from a universe of alternatives containing
n elements, A = fa1; a2; . . . ; ang given a set of p elements,
O = fO1; O2; . . . ; Opg, of criteria or objectives that are important
to the user. In [11], each objective has been represented as a fuzzy
set over the set of alternatives fAg. Thus, the grade of membership,
�O (a) of the alternative a in the ith objective Oi denotes the degree
to which a satisfies the criteria specified by Oi. For a collection
of objectives, the decision function D = p

i=1
(Oi). The optimum

solution a� will be the alternative that maximizes D. According to
[12], a set of linear and ordinal preferences fPg can be introduced
along with the objectives. These preferences can be linguistic values
specifying the attribution of the user for the importances of each of the

objectives. If P = fb1; b2; . . . ; bpg, then the decision function will
be a joint intersection as follows.

D =

p

i=1

(bi ! Oi) =

p

i=1

�bi Oi :

The optimum solution a� is the alternative that maximizes D. Let us
defineCi = �bi Oi and hence, �C (a) = Max[��b (a); �O (a)], then
the optimum solution expressed in membership form, is given by the
following.

�D(a�) = Maxa2A min �C (a); �C (a); . . . ; �C (a) :

A special procedure, as explained in [12], needs to be followed in the
event of a tie between two or more alternatives.

B. Computation of the Fuzzy Sets

For task assignment, the alternatives, A, are the different nodes of
the system, i.e., A = fN1; N2; . . . ; Nng. There are four objectives
defined in this setup—time criticality (TC), quality (Q), cost (C), and
migration overhead (MO). The time criticality, quality, and cost ob-
jectives have the obvious meanings but the migration overhead is not
so obvious. When a task T is input to a node of the system, all the re-
sources required by T may not be present at that node. The migration
overhead, both in terms of time and cost, is incurred for the migration
of subtasks of T to the remote nodes since some resources required
for T may not be locally present. For example, in a distributed hos-
pital system, the migration overhead corresponds to the time and cost
required for shifting from one hospital to another. The user can give a
rating for the overhead depending on the number of migrations he can
tolerate.
The objectives O = fO1; O2; O3; O4g = fTC;Q;C;MOg are

defined for every node of the system. When a task T is input into the
system, the preference ratingsP associated with T are also input where
P = fb1; b2; b3; b4g. The four objectives O = fTC;Q;C;MOg are
defined using fuzzy sets as follows.

TC =
h11

N1

;
h21

N2

; . . . ;
hn1

Nn

Q =
h12

N1

;
h22

N2

; . . . ;
hn2

Nn

C =
h13

N1

;
h23

N2

; . . . ;
hn3

Nn

MO =
h14

N1

;
h24

N2

; . . . ;
hn4

Nn

:

In the fuzzy sets, a value hij , which is the membership value of a
nodeNi for an objective Oj , indicates how good Ni is with respect to
the criteria Oj . We refer to the hij value as the satisfaction measure.
In our case, all the satisfaction measures and the preference ratings are
from the unit interval [0, 1]. Other cases of specifying the preference
ratings like linguistic terms and ordinal values can also be mapped onto
the unit interval. The fuzzy sets of the objectives are computed when
a task T is input taking into account the current available state of the
system and coordination mechanism of Section III. The local state at
every node is available in the Local and Remote Resource Tables (LRT
and RRT) of the LU.
The computation of the satisfactionmeasures cannot be precise since

the parameters required for the computation are not available a-priori.
For example, the completion time for a task T at a node Nicannot be
known a-priori. Also, those subtasks of T that require a resource r not
present at Ni would have to be migrated. The destination node of the
migration is not known a-priori and has to be found out using the coor-
dination mechanism of Section III. In all the following computations,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004 1303

the destination node is assumed to be the best nodeNb. The best node
is the one having the maximum surplus (as known byNi from its RRT).

Using the satisfaction measures, the assignment of T to one of the
nodes NA of the system has to be done to optimize the average per-
formance measure. The performance measure, PT , for a task T is the
weighted average of the values obtained for each of the objectives after
the execution of T with the weights being the preference ratings. The
average performance measure is the average of PT over all the in-
coming tasks. The multiobjective decision process discussed in Sec-
tion V-A is executed and T is assigned to the node identified by the
process. In the following subsections, the computation of the satisfac-
tion measures for the various objectives is explained.

1) Time Criticality Satisfaction Measures: The values hi1 for all
values of i between 1 and n indicate the goodness of a node Ni with
respect to the time criticality factor. First, an estimate of the time re-
quired for T at Ni, TRi, is computed. To obtain this, first consider a
resource r present at Ni and required by T . The duration of r at Ni

is divided by the surplus of r at Ni (found from the LRT of Ni). This
gives an approximate measure of the time required for r. When the sur-
plus is very low, a bound on this measure is made. Summation Sum1

of this computation for all such resources is done.
Next, consider a resource required by T but not present at Ni. In

this case, the duration of r at the best nodeNb is divided by the surplus
of r at Nb. Moreover, we also have to consider the time for migrating
subtasks of T toNb. Hence the term 2 �	ib is added. The multiplica-
tion by 2 is there since two communications betweenNi andNb would
be required—one for sending the task by Ni and other for sending the
results by Nb. Summation Sum2 of this computation for all such re-
sources is done. The time required by T atNi, TRi, is estimated to be
the addition of the two summations Sum1 and Sum2.

In the following expression for TRi, the term 8r 2 T ^ r 2 Ni

denotes a resource r that is required by T and is present at Ni and the
term 8r 2 T ^ r =2 Ni denotes a resource r that is required by T but is
not present atNi. TRi for all values of i between 1 and n is calculated
as follows.

TRi =
8r2T^r2N

�r
i

Sri
+

8r2T^r=2N

�r
b

Srb
+ 2 �	ib

where�r
i is the duration of the usage for r atNi and�r

b is the duration
of usage of r at the best node Nb. Similarly Sri is the surplus at the
node Ni and Srb is the surplus at the best node Nb. Let TRmin =
MINi(TRi). Then, hi1 = TRmin=TRi.

2) Quality Satisfaction Measures: For finding hi2, first the values of
Qi are found using the following expression.

Qi =
8r2T^r2N

(Qr
i) +

8r2T^r=2N

(Qr
b)

whereQr
i is the quality of r atNi andQr

b is the quality of r at the best
node Nb. For resources that are absent, the quality of the best node is
chosen as before. Let Qmax = MAXi(Qi). Then hi2 = Qi=Qmax.

3) Cost Satisfaction Measures: For finding hi3, first the values ofCi

are found using the following expression.

Ci =
8r2T^r2N

(Cr
i) +

8r2T^r=2N

(Cr
b)

where Cr
i is the cost of r atNi and Cr

b is the cost of r at the best node
Nb. Let Cmin = MINi(Ci). Then hi3 = Cmin=Ci:

4) Migration Overhead Satisfaction Measures: The values hi4 are
computed as follows. First the estimation of the migration overhead,
MOi, for an input task T at a nodeNi is carried out. The time required

for the actual migration and the cost due to the migration are included
in the calculation ofMOi.

MOi =
r2T^r=2N

(2 �	ib) + MAX8j r2N Cr
b � Cr

j :

The first term in the summation, 2�	ib, represents the actual migration
time of the task. The second term indicates the cost overhead.Cr

j is the
cost of the resource r at a node Nj and Cr

b is the cost of r at Nb. The
maximum of the difference is chosen as a pessimistic estimate.MOi

is computed for all values of i. Let MOmin = MINi(MOi). Then
hi4 = MOmin=MOi.

C. Extending the Coordination Mechanism

The coordination mechanism proposed in Section III needs to be ex-
tended to incorporate multiple objectives and preference ratings. The
multiobjective decision making process has to be applied when a sub-
task T 0 of a task T has to be migrated since a resource r required for
T is not present locally. The preference ratings which the user had as-
signed for the various objectives for T should be used at the time of of
making this decision. The basic coordination mechanism, as explained
in Section III, remains the same but at the end of it all the nodes to
whom the request for bid (RFB) was sent have to be evaluated against
the preference ratings of the various objectives.
As explained in Section III-B, the bid returned by a destination node

is the earliest finish time (EFT). Hence, hi1 = EFTmin=EFTi where
EFTi is the EFT returned by a remote nodeNi and EFTmin is the min-
imum of all the EFT’s returned. hi2 = Qr

i =Q
r
max where Qr

i is the
quality of r atNi andQr

max is the maximum of the qualities of r across
all the nodes where the RFB was sent. Similarly, hi3 = Cr

min=C
r
i

where Cr
i is the cost of r at Ni and Cr

min is the minimum of the costs
of r across all the nodes where the RFB was sent. hi4 = 	min=	si

where s is the source node and Ni is a node where the RFB was sent.
	min is the minimum of 	si among all the remote nodes where RFB
was sent. hi1, hi2, hi3 and hi4 values are computed for all values of
i between 1 and n. As before, the approach in Section V-A is used to
find the target node.

VI. PERFORMANCE EVALUATION OF THE

TASK ASSIGNMENT ALGORITHM

The experiments are performed on the same setup as explained in
Section IV. The preference ratings for every task are randomly gener-
ated alongwith a task. When the task execution is over, a performance
measure—which is the weighted average of the duration required, the
quality accumulated, the cost, and the migration overhead incurred for
the task execution with the weights being the preference ratings—is
calculated. The performance measures for all tasks are summed up and
the average performance measure P=(sum ofperformance measures
for all tasks/total number of tasks) is calculated.
The fuzzy task assignment approach is compared with the two

baselines of random and round-robin task assignment algorithms. Let
Pfuz, Pran, and Prr be the performance measures using the fuzzy, the
random, and the round-robin approaches, respectively. Graphs for
P1 = Pfuz=Pran and P2 = Pfuz=Prr (which are the ratios of the
performance measure of the fuzzy technique against the random and
the round-robin techniques respectively) are plotted against the values
of the arrival rate X varying from 50 tasks/day to 500 tasks/day.
Each such experiment is performed for three different values of R,
the number of resources required by a task; the values being R = 5,
R = 10, and R = 15. Figs. 7 and 8 show the results. The graphs have
to be interpreted as follows. Any point on a curve is a ratio comparing
the fuzzy performance measure versus the random or round-robin

1304 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 2, APRIL 2004

Fig. 7. Comparison of fuzzy and random task assignment methods.

Fig. 8. Comparison of fuzzy and round-robin task assignment methods.

performance. For example, if the point is 1.2 then it means that the
fuzzy performance is 20% better than the random or round-robin per-
formance. If the point is 0.9 then it means that the fuzzy performance
is 10% worse than the random or round-robin performance. From the
observations the following conclusions can be drawn.

Foralargerangeofthearrivalrates(till350tasks/dayforR = 5, till300
forR = 10, andtill250forR = 15), thefuzzyapproachgivesconsistent
high gains (between 25% and 10%). The is because of the fact that the
random and round-robin algorithms assign tasks without consideration
of the goodness of a node and the preference ratings of the tasks.

When the arrival rate is high (between 350 and 400 for R = 5,
between 300 and 350 for R = 10, and between 250 and 300 for R =

15), the fuzzy technique has small gains (less than 10%). The reason
is that the system has reached the saturation point. Each node is highly
loaded in this case and the fuzzy performance is only slightly better.

Forveryhigharrivalrates(above400forR = 5,above350forR = 10,
and above 300 forR = 15), the fuzzy technique performance is worse
than others. At this point, the system is overloaded. The surplus values
required by the fuzzy technique are updated at a much less rate than the
veryhightaskarrivalrate.Henceitcannotmakeagooddecisionevenafter
spending a longer time. Recall that the graphs in Section IV indicate that
on overload, a large number of tasks miss their deadlines.

It is observed from the graphs that the performance with a lower R
value is better than that with a higherR value. This can be explained as
follows. In the computation of the fuzzy sets for the objectives, when-
ever a resource is not present at a node, we predict the target node for
the subtask migration as the one which has the maximum amount of
the surplus. This prediction could be erroneous for some of the tasks
and hence the performance goes down. For lower R values, the prob-
ability of the absence of a resource at a node is lower, and hence the
error would be introduced lesser number of times.

Based on the same argument as above, the overload point, i.e. the
point from which the fuzzy technique performs worse than the random
or the round-robin techniques also comes later, i.e. with higher arrival

rates, for lower values ofR. This gives an indication that for larger tasks
requiring higher number of resources, the arrival rate of the system
should be such that the system is not overloaded. The task mix and
the complexity of tasks should be used to control the arrival rate.

VII. CONCLUSIONS

In this paper, the GPGP approach for multiagent systems is extended
to support resource sharing across nodes in a distributed environment.
A coordination mechanism based on the contract net protocol is pro-
posed that would decide where a task should be migrated if the re-
sources required for the accomplishment of the task are not available
locally. Simulation studies have been performed to compare this mech-
anism with other commonly used techniques. It is observed that the
mechanism performs better under all circumstances.
In the system under consideration, multiple criteria or objectives

could be associated with a task and preference ratings may be assigned
to each of the criteria. The preference ratings may be imprecise since
they could be described in a subjective manner. The important problem
of the assignment of a task to a particular node in the distributed system
is addressed. A technique for the same using the fuzzy set approach is
presented. It is felt that this approach is appropriate since there is im-
precision in not only the specification of the preference ratings but also
in the global system state collected for decision making because of the
dynamic nature of the system. The effectiveness of the technique is
demonstrated through simulation studies.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers whose
insightful comments and suggestions have been incorporated in this
revised manuscript.

REFERENCES

[1] E. Durfee, “Distributed problem solving and planning,” in Multiagent
Sytems: A Modern Approach to Distributed Artificial Intelligence, G.
Weiss, Ed. Cambridge, MA: MIT Press, 1999, ch. 3, pp. 121–164.

[2] U. Deshpande, A. Gupta, and A. Basu, “Collaboration in a Dis-
tributed Hospital Environment,” Dept. Computer Science Engineering,
IIT-Kharagpur, India, Tech. Rep. IITKGP/CSE/AB/2002/I, July 2002.

[3] e-University Task Force, “The University of Texas at Austin e-Univer-
sity Initiative,”, [Online]. Available: http://www/utexas.edu/e-Univer-
sity/.

[4] K. Decker, “Environment Centered Analysis and Design of Coordina-
tion Mechanisms,” Ph.D. dissertation, Univ. Massachusetts, Amherst,
1995.

[5] K. Decker and V. Lesser, “Designing a family of coordination algo-
rithms,” in Proc. 1st Intl. Conf. Multi-Agent Systems San Francisco,
1995, pp. 73–80.

[6] K. Decker and J. Li, “Coordinating mutually exclusive resources using
GPGP,” Auton. AgentsMulti-Agent Syst., vol. 3, no. 2, pp. 133–157, June
2000.

[7] R. Davis and R. Smith, “Negotiations as a metaphor for distributed
problem solving,” Artif. Intell., vol. 20, no. 1, pp. 63–109, Jan. 1983.

[8] W.Walsh andM.Wellman, “Amarket protocol for decentralized task al-
location,” inProc. 3rd Int. Conf. Multi-Agent Syst. Paris, France, 1998,
pp. 325–332.

[9] C. Waldspurger, T. Hogg, B. Huberman, J. Kephart, and W. Stornetta,
“Spawn: A distributed computational economy,” IEEE Trans. Software
Eng., vol. SE–18, pp. 103–117, 1982.

[10] K. Ramamritham, J. Stankovic, andW. Zhao, “Distributed scheduling of
tasks with deadlines and resource requirements,” IEEE Trans. Comput.,
vol. 38, pp. 1110–1123, Aug. 1989.

[11] R. Bellman and L. Zadeh, “Decision making in a fuzzy environment,”
Manage. Sci., vol. 17, pp. 141–165, 1970.

[12] R. Yager, “A new methodology for ordinal multiobjective decisions
based on fuzzy sets,” Decision Sci., vol. 12, pp. 589–600, 1981.

