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However, the open-loop state responses may converge to two different
steady states.

IV. CONCLUSION

The approaches for guaranteeing the stabilizing and robustness of
the fuzzy time-delay systems have been derived by using the parallel
distributed fuzzy control. Moreover, the criterion for the system with
the same input matrix B; = Bj, i # j, have been also proposed.
These design methodologies are independent of size of the time de-
lays. The suitable control gains F; and perturbation bounds b;can be
obtained easily by using LMI’s tool. Furthermore, the design algorithm
shows that we can obtain the larger perturbation bounds b; by choosing
a suitable ¢;. Finally, a practical example has been illustrated to show
the effectiveness of the proposed control design method.
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Gray-Scale Image Enhancement as an Automatic
Process Driven by Evolution

Cristian Munteanu and Agostinho Rosa

Abstract—Image enhancement is the task of applying certain transfor-
mations to an input image such as to obtain a visually more pleasant, more
detailed, or less noisy output image. The transformation usually requires
interpretation and feedback from a human evaluator of the output result
image. Therefore, image enhancement is considered a difficult task when
attempting to automate the analysis process and eliminate the human
intervention. This paper introduces a new automatic image enhancement
technique driven by an evolutionary optimization process. We propose a
novel objective criterion for enhancement, and attempt finding the best
image according to the respective criterion. Due to the high complexity of
the enhancement criterion proposed, we employ an evolutionary algorithm
(EA) as a global search strategy for the best enhancement. We compared
our method with other automatic enhancement techniques, like contrast
stretching and histogram equalization. Results obtained, both in terms of
subjective and objective evaluation, show the superiority of our method.

Index Terms—Evolutionary algorithms, image enhancement, local en-
hancement method, objective enhancement criterion.

I. INTRODUCTION

Producing digital images with good brightness/contrast and detail is a
strong requirement in several areas like vision, remote sensing, biomed-
ical image analysis, fault detection. Producing visually natural images
or transforming the image such as to enhance the visual information
within, is a primary requirement for almost all vision and image pro-
cessing tasks. Methods that implement such transformations are called
image enhancement techniques. The task of image enhancement is a dif-
ficult one considering the fact that there is no general unifying theory of
image enhancement at present, because there is no general standard of
image quality that can serve as a design criterion for an image enhance-
ment processor [1]. Most of the enhancement techniques in existence
to date are empirical or heuristic methods, dependent on the particular
type of image [2]. More important, most of these techniques require in-
teractive procedures to obtain satisfactory results, and therefore are not
suitable for routine application [3]. Besides requiring the user interac-
tion, many such methods require specification of external parameters,
which sometimes are difficult to fine-tune [1]. Finally, the enhance-
ment methods most widely employed treat the spatial information in the
image in a global fashion, while in many cases itis necessary to adapt the
transformation to the local features within different regions of the image
[2]. Automatic enhancement, that is a method to yield enhanced images
without human (subjective) intervention is a notoriously difficult task in
image processing [4]. This is because automatic enhancement requires
specifying an objective criterion for enhancement, while evaluating the
quality of an image is done finally by the human interpreter. In what
follows we propose an evolutionary method for automatic image en-
hancement having the following advantages.

1) Ituses alocal enhancement technique based on a variation of the
statistical scaling method [1], [4].

2) It doesn’t employ any kind of interaction with the user, during
running stages of the algorithm.

3) It uses an objective evaluation criterion with no additional ex-
ternal parameters, that produces an objective quality score.
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II. EVOLUTIONARY ENHANCEMENT ALGORITHM—RELATION
TO CLASSICAL AND EVOLUTIONARY APPROACHES.
OBJECTIVES AND MOTIVATIONS

First, we will briefly review the basic strategies for image enhance-
ment. According to [4] image enhancement techniques fall into four
main categories: point operations, spatial operations, transform opera-
tions, and pseudocoloring methods. Point operations include contrast
stretching, window slicing, and histogram modeling. They are zero-
memory operations that remap a given input gray-level into an output
gray-level, according to a global transformation [1], [4]. These methods
have the disadvantage of treating the image globally, not being able to
differentiate between several areas of the image that might require dif-
ferent levels of contrast enhancement. One advantage is that some of
the point operations, such as histogram equalization and linear contrast
stretching, are automatic methods. Linear contrast stretching employs a
linear transformation that remaps the gray-levels in a given image to fill
the full range of values. Histogram equalization applies a transforma-
tion that yields a close-to-uniform histogram for the relative frequency
of the gray-levels in the image. Other classes of methods are spatial op-
erations that might suffer from excessively enhancing the noise in the
image or conversely by smoothing the image in areas that need sharp
details [3]. Next, we have transform operations that perform enhance-
ments only in particular spatial frequency domains [4], and pseudo-
coloring that artificially “color” the gray-scale image based on a color
mapping, with the disadvantage that extensive interactive trials are re-
quired to determine an acceptable mapping [1].

Evolutionary algorithms (EAs) have been previously applied to
image enhancement [5]—[8]. In [5], the authors apply a global contrast
enhancement technique using genetic programming (GP) [9] to
adapt the color map in the image as to fit the demands of the human
interpreter. Results reported with this method were unsuccessful [5].
In [6], we applied a real-coded genetic algorithm (GA) with a sub-
jective evaluation criterion to globally adapt the gray-level intensity
transformation in the image. A similar global technique was adopted
in [7], where the evaluation score was given by an objective criterion
proportional to the number of edges in the image and to a clumping
factor of the intensity transformation curve. In [8] we have attempted
a partial automatization of the evaluation process by employing a mul-
tiple regression technique to yield evaluations to novel enhancements
of a given image, based on previous subjective evaluations done by
the human interpreter. Evolutionary image enhancement techniques
used so far, have several drawbacks (some common to the classical
methods, as well).

1) The use of a global enhancement method that is incapable of
adapting to the local spatial content in the image [6]-[8], and
that in many cases yields poor results [2].

2) Requirement for time-consuming user interaction sessions [10],
[11], as each enhancement result treated as an individual in the
population of the EA, should be rated subjectively by a human
interpreter [7], [8].

3) Inclusion of additional external parameters in the objective eval-
uation criterion that makes the automatic image enhancement
strongly parameter dependent [7].

Our approach to image enhancement takes into account several
factors:

1) locality and adaptability of the method to the given image, as
opposed to global enhancement methods;

2) automation of the image enhancement process;

3) robustness, that is producing good enhancement results on a large
category of images.

Following the recommendations in [12], the problem, as we have de-
fined it, is amenable to application of a suitable heuristics. The first
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factor imposes the use of a local enhancement technique as the en-
hancement processor. The second and third factors impose the use of
suitable heuristics, capable of searching for the best configuration of
the enhancement processor, according to a predefined objective en-
hancement criterion. The complexity of the respective criterion implies
using a global search heuristics that finds good solutions of the best
enhancement processor configuration in relatively small time. Genetic
algorithms (GAs) are well known global search heuristics [13] proven
efficient in many image processing and computer vision applications
[14]. Therefore, the use of GAs is fully justified by the nature of the
task to be solved.

III. STRUCTURE OF THE ALGORITHM: IMAGE PROCESSING TASKS
A. Enhancement Kernel

Local enhancement methods apply transformation functions that are
based on the gray-level distribution in the neighborhood of every pixel
in a given image [2]. One such example of a local enhancement method
is the adaptive histogram equalization (AHE), which has shown good
results in medical imaging [15]. However, AHE uses an enhancement
kernel that is quite computationally expensive. Our method employs a
less time consuming enhancement kernel that is similar to statistical
scaling presented in [2]. Moreover, AHE might yield unsatisfactory
outputs: images with noise artifacts, false or over-enhanced shadows
[1]. These shortcomings are often due to a bad choice of the method’s
parameters values for a given image, turning AHE into a technique that
is difficult to automate.

The enhancement kernel we propose applies to each pixel at loca-
tion (x, y) a transformation 7 that takes the gray-level intensity of the
pixel in the input image f(x, y) and changes it to the value g(z, y)—the
gray-level intensity in the output image. Letting Hsi,. and Vi, denote
the horizontal, and vertical size of the image, respectively, the transfor-
mation 1 is defined as

glx,y) =T (f(x,y))

= ”L f(e,y) —ce-m(x,
= (h/g<w,y)+b> [F(29) = e m(e )
+m(z,y)"

forx =0...Hgjpe — land y = 0... Viie — 1. (1)

In (1), m(x,y) and o (x, y) are the gray-level mean and standard de-
viation computed for the pixels inside a neighborhood (window) cen-
tered at (z, y) and having n X n pixels (see Fig. 1). The global mean of
the image is M = Y Heize ™" Z;S:ige*l f(x,y).a,b,c, and x are pa-
rameters of the enhancement kernel, taken as: 0.5 < k < 1.5;a € ¥4,
b e Wy, c € ¥y, with ¥y, Uy, ¥35 C Ry the parameters’ domains.
The original method in [2] allowed only for a reduced range of pos-
sible output enhancements, as constants in (1) where taken as b = 0,
and ¢ = 1, while the last additive term of the expression in (1) was not
present.

We have broadened the spectrum of the transformation output range
by modifying the original method as shown in (1). In our modified
method, a nonzero value for b allows for zero standard deviation in the
neighborhood, while ¢ allows for only a fraction of the mean m(z, y)
to be subtracted from the original pixel’s gray-level intensity f(x,y).
The last term m(z, y)* may have a brightening and smoothing effect
on the image. Quantities m(«x, y) and o (x, y) depend on the neighbor-
hood of the pixel, therefore they are dependent on the local information,
meaning that the enhancement kernel itself is a local transformation.
The parameters of the method a, b, ¢, and « are the same for all pixels
in the image. The task for the EA is to find the best combination of the
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(H size~1, Vsize~1 )
Pixel (x, )
T &, )= T(flx, »))
n
r Neighborhood
0,0
Enhancement kernel—applying to each pixel in the image the operation

Fig. 1.
T'(e) in the neighborhood.

four parameters according to an objective criterion that describes the
quality of the enhancement.

B. Enhancement Evaluation Criterion

In order to apply an automatic image enhancement technique, which
does not require human intervention and no additional external param-
eters, an objective criterion for the quality of the enhancement method
should be chosen. Let us proceed by noting that a good contrast and
enhanced image has a high number of edgels (that are pixels belonging
to an edge [1]). Compared to the original image, the enhanced version
should have a higher intensity of the edges [7]. The number and inten-
sity of edgels are not enough to describe a valid enhancement criterion
for a more naturally enhanced image. The problem is that an image
can have an extreme contrast with sharp transitions from white to black
(or conversely, from black to white), and a relatively small number of
gray-levels (an extreme contrast image is a binary image containing
only black and white pixels). In this case the image will have a rela-
tively high number of edges and a very high intensity of edges. What
is additionally needed is a quantification of the number of gray-levels
present in the image. Without any prior information this number should
be evenly distributed across the image, which translates to having the
histogram of the image approach the uniform distribution, as in the
case of histogram equalization techniques. We first compute the his-
togram of the image: for images with 256 gray-levels the histogram
has 256 bins. The bounds of a bin indexed 7, are written as A; and B;,
fori € {1,...,256}. Based on the histogram, we introduce an “en-
tropic measure” of the enhanced image I, as

— Y w;log,(v;), forwv; #0
H(I)—{ Z 2(v3) 2)

B 0, forv, =0

with v; the frequency of pixels having gray-levels between bounds A;
and B;. Note that the measure in (2) is not an actual entropy, as v; are
frequencies, rather than probabilities.

The number of edgels and intensity of edges are deducted using a
simple and efficient edge detector algorithm, namely the Sobel’s edge
detector [1]. The Sobel detector is used as an automatic threshold de-
tector [16]. We are interested in computing the sum of intensities of
edges in I, that according to the Sobel’s transformation is E(I)[14],
[17]:

B(I) =Y " \/6hi(a,y)? + bvi(w,y)? 3)
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g(xy) = T(fx,y); a, b, ¢, %)
Individual x:

Fig. 2. EA’s individual representation.
where for each pixel (z,y)

bhi(z,y) =g(x — Ly +1)+2g(z,y + 1)
+glz+Ly+1)—gxz-1y-1)
—2¢g(x,y— 1) —gla+ 1,y —1)

Svi(z,y) =gz + Ly+ 1)+ 29(x+ 1,y)
+9(z+lLy-1)—glz-1y+1)
—2g(x = 1L,y) — gz — 1,y — 1).

In (3) g(«, y) denotes the gray-level intensity of the pixel at location
(,y) in the enhanced image I.

Finally, on the output of the Sobel detector, that is an image with
pixels 6hy (z, y)* +6vr(x,y)?, we count how many pixels have bigger
intensity than the threshold. Thus, we get the number of edgels in I, that
is n(I). The threshold is generated automatically using an estimation
of the signal-to-noise ratio in the image; more details can be found in
[16] and [1].

Our enhancement evaluation criterion Eval(I) for a given image I,
will be proportional to

H(I)

n(I) . (4)
E(I)

Eval(T) ~

The best enhancement is the one that maximizes the criterion in (4).
According to the proportionalities in (4), a maximal Fval(I) will cor-
respond to an image with maximal number of edgels 7(I), having
sharp edges (e.g. E(I) maximal), and a uniform histogram equivalent
to a maximal entropic measure: H (I). It means that when maximizing
H (I) we indirectly perform a histogram equalization [1], [4].

IV. STRUCTURE OF THE ALGORITHM: EVOLUTIONARY COMPONENTS

A. Representation of the Individual Within the Evolutionary
Algorithm

EAs are search and optimization methods that use a fixed size popu-
lation of individuals representing potentials solutions to the optimiza-
tion problem. The population undergoes successive iterations called
generations, in which according to a predefined evaluation criterion
called fitness, better individuals are selected to survive into the next
generation, in a process similar to natural selection. Subsequent to se-
lection, in each generation the information contained in the individuals
is modified using the so-called variation operators: crossover and mu-
tation [9].

Our choice for the specific implementation of EA, should take into
account the features of the enhancement problem. A real-coded GA [9]
with several operator modifications was the preferred choice, the rea-
sons being made clear in the following. The EA has to find the best
combination of parameters «, b, ¢, and &, that gives the best enhance-
ment for a given image. The parameters have real values, therefore the
simplest coding of the EA individual is a direct one to one coding: the
EA individual is as a string of four real numbers denoting the four pa-
rameters. The representation is described in Fig. 2, where T'(-) desig-
nates the operation in (1).
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B. Fitness Function

Eval(I) given in (4) is directly related to the fitness function of
the EA, that allocates to each individual x = (a,b,c, k) an utility
or quality value called fitness. The fitness of each individual x in the
EA’s population at each generation %, is calculated according to a fit-
ness function F'(x), that should obey all proportionalities of Fval(T)
in (4). The calculation of the fitness starts by applying the enhance-
ment procedure in (1) to the input image with the parameters of the en-
hancement kernel given by the individual x. Next, the resulted image
(enhancement), will be evaluated using F'(x). We take F(x) to be

n(I(x))

L JHU(x))
Hsize X Vvsize ¢ (5)

F(x)=In(ln(F(I(x))+e))-

where notations are clear from (1)—(4). By writing I(x) instead of 1,
we stress that the enhanced image was obtained using the parameters
in x; e is the Euler constant that avoids undefined points when the
edge intensity is 0. We used a log-log measure of the edge intensity
not to over-emphasize this parameter when compared to the others in
the fitness function. Empirical evidence shows that E(I(x)) typically
varies within three orders of magnitude. Large values for edge intensity
might produce extreme contrast and un-natural images, as discussed in
Section III-B. From empirical evidence we have noticed that H (I(x))
for different enhancements and different images, varies slowly in a run
of the EA. This variation is within one order of magnitude smaller than
the variation of the other fitness function components. To balance the
contribution of H (I(x)) with respect to the rest of the fitness function
components, we have chosen to take the exponential of the entropic
measure in (5).

C. Selection

Both the selection and crossover for the EA have been used to in-
sure a steady convergent behavior of the algorithm. The trade-off we
had to make is the well-known trade-off between exploration and ex-
ploitation present in any search method including EA. The convergent
exploitation assured by selection and crossover should well-balance the
wide exploration effect achieved by our mutation operator. The selec-
tion method was chosen as a combination between binary tournament,
which has a constant, and relatively high selection pressure [18], with
a K -elitist scheme [19] that assures the preservation of the K best in-
dividuals in the population.

D. Crossover and Mutation

The crossover operation has been taken to strengthen the correla-
tion between parents and children, again to assure an exploitative be-
havior of the search algorithm. We chose arithmetic crossover (AX)
[20], between several choices of real-coded GA crossover operators
like a-BLX [21], SBX [22], and UNDX [23], because in the case of
AX, offspring genes are close to the parents’ genes as they are pro-
duced inside the line connecting both parental genes [20]. Therefore,
AX assures the required “focused” and exploitative search behavior.
The population of the GA is paired at random, and for each pair of in-
dividuals (parents) ﬂf 1,2} We apply a linear combination and get the
offspring z{, o3

wf = grt + (1 —p)ag, 25 =(1- @i+ er) ©)
where ¢ is a sample drawn from an uniform distribution: U ([0, 1]).

Mutation operator has to insure high levels of diversity in the popu-
lation. We introduced PCA-mutation in [24], and shown that it has very
good capabilities in maintaining high levels of diversity in the popula-
tion. At each generation ¢, the population of the EA P(¢) can be viewed
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EVOLEHA (InputImage)

{
-t:= 0.
-Randomly initialize P(t) within specific bounds.
while (Termination criterion # true) do
-Compute fitness for all individuals x in P(t):

-OutputImage=T(InputImage;x), with T
given in Eq. (1).
-Calculate F(x), for I=OutputImage, with
Eq. (5).
-Perform binary tournament selection (see [9])
on P(t) = P’ (t).
-Perform AX crossover
rate P, = P”(t).
-Perform PCA-mutation (see [24])
rate P, = P”(t).
-Form P(t+l) by applying a k-elitist scheme
(see [19]) to P™(t)UP(t).
-t:=t+1.
od
}
BestOutputImage=T( InputImage;argn;ax{F(x;t)})

]

(Eq. 6) on P’(t) with

on P”(t) with

Fig. 3. EVOLEHA: pseudocode. P(t), P'(t), P"(t), P"'(t),and P(t 4+ 1)
are populations with the same size N.

as a cloud of NV points in an /-dimensional space, where N is the size
of the population and [ is the length of the individuals in the popula-
tion. It can be shown (see a detailed analysis in [24]) that when an EA
converges the number of principal components (PCs) decreases. PCs
are calculated with the principal components analysis (PCA) method
[25], [26] on the data cloud P(#). This reduction in the number of PCs
comes as a result of the loss of diversity in the population as the EA
moves on. Our PCA-mutation works directly on the components of the
data cloud P(#) to combat this loss of diversity by increasing the com-
ponents that tend to become small. As shown both theoretically and
empirically in [24], PCA-mutation can attain very high levels of popu-
lation diversity, and when counterbalanced with an exploitative selec-
tion and a focused crossover scheme, the strategy can be quite effective
in preventing genetic drift and premature convergence. One potential
disadvantage of PCA-mutation is the fact that it is computationally ex-
pensive when chromosomes are large. However, in our application this
is hardly the case, as [ is quite small (I = 4).

E. Summary

The proposed EVOLutionary EnHancement Algorithm (EVOLEHA)
is summarized in Fig. 3.

V. EXPERIMENTAL RESULTS

In order to evaluate EVOLEHA, we compared our method to two
automatic enhancement methods: linear contrast stretching and his-
togram equalization [1], on 12 images. Results for EVOLEHA were
given for typical runs of the GA. We found that suitable intervals in (1)
are ¥y = [0, 1.5], ¥» = [0,0.5], T5 = [0, 1]. Therefore, the chromo-
somes will be initialized within these bounds. The GA has population
size N = 40, chromosome length I = 4, K -elitism with { = 5,
generational type replacement [9], AX with . = 0.8, PCA-mutation
with P, = 0.3 and ¢max = 1 (see [24]). Table I lists the images and
the parameters specific to each image. The GA’s termination criterion
(see Fig. 3) is triggered whenever the maximum number of generations
(third column in Table I) is attained. Some images (see Table I) require
a higher maximum number of generations to assure a good convergence
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TABLE 1
IMAGE SIZE AND NUMBER OF MAXIMUM GENERATIONS FOR THE
GA RUN IN EVOLEHA
Image Size (pixels) | GA max no. of
generations

a) abdomen 256 x 256 40

b) airplane 512 x 512 50

c) cameraman | 256 x 256 40

d) eight 242 x 308 40

e) head 256 x 256 40

f) house 256 x 256 40

g) pout 291 x 240 50

h) tire 205 x 232 40

i) autumn 160 x 273 50

j) boat 168 x 291 50

k) galaxy 282 x 257 50

1) afmsurf 199 x 291 50

TABLE 11
RESULTS IN TERMS OF FITNESS SCORE
Image / fitness | Linear Histogram | EVOLEHA
stretching | Equalization

a) abdomen 1.5391 0.801 11.296
b) airplane 69.797 29.991 257.364
C) cameraman 33.070 8.917 100.975
d) eight 26.210 7.007 159.947
¢) head 25.578 10.666 140.837
f) house 47.037 19.271 230.031
£) pout 13.525 13.566 124.001
h) tire 0.899 0.380 2.394
i) autumn 53.085 37.953 229.409
i) boat 97.178 31.285 224.729
k) galaxy 1.281 1.885 17.416
1) afmsurf 27.475 19.153 121.543

of the GA. For a large category of images, experiments performed show
that a maximum number of generations equal to 50 suffice for the GA to
find good solutions. Moreover, a different termination criterion can be
employed, that is: stop the GA evolution when no substantial improve-
ment of the best solution is registered. Experimentally, we checked that
this event occurs around 40-50 generations, therefore we are assured
that 50 generations is a good estimation of the time required to discover
good solutions.

In Table II the fitness [see (5)] is given for each image and each
method employed. From this table it is clear that EVOLEHA scores
much better then the other methods. Histogram equalization scored
better than contrast stretching only on the pout and galaxy images.

A. Subjective Evaluation

To evaluate the performances of the image enhancement techniques
6 human interpreters (two of which were image processing experts)
evaluated subjectively the images produced by the three methods. Each
image had to be ranked by giving a score ranging 1-3, the best score
being 1, with no ties allowed. The subjective criterion was natural
brightness/contrast for the enhanced images. Results are given in
Table III. EVOLEHA ranks best when globally ranked (see the “total
rank” row in Table III), and ranks best for each image, but the airplane
and tire images. Even if the brightness/contrast appears good for these
images (see Fig. 4 and 5), the fact that our method adds an averaging
effect on the image seems to have biased the human evaluators into
not favoring EVOLEHA. The subjective fitness evaluation gives credit
to EVOLEHA in favor of the other methods. However, an objective
criterion should also be employed to rank the methods. The objective
evaluation results are given in the next section.
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TABLE 1III
SUBJECTIVE EVALUATION RESULTS (LOWER RANK VALUE IS BETTER)
Method Linear Histogram EVOLEHA
Stretching equalization
Rank 1{2{3[Av [1[2|3|Avg|[1]|2]|3 AV
a) 112(3(23[(0(3|3|25(5]1]|0]1.1
b) 313[0[15(3(1/2]18(0]|2]4][26
c) 213[1[18[0(2|4|26(4|1]|1]15
d) 11412001 [5/28|5]1[0]1.1
e) 113(2(21(0(2/4|26([5]1[0]1.1
f) 113(2(21(1({1/4|/25(4]|2]|0]13
£) 3(1(2]18|1(2]3]23]|2[3[1]1.8
h) 412|013 [0]1[5]/28(2[3|1]1.8
i) 112(3(23[0(4|2]25(5]|0]1]13
i) 113)2(23[0(2[4]26|5]1[0]1.1
k) 115(0(18[0]|0|6]| 3 [S5]1]0]1.1
1) 21212 2 [0]2]4|26(4]|2]|0]13
Total 2 (31119 |5(1]3(25 |3 |1 [8]15

(e)

Fig. 4. Enhancement results, part I. Result sets (a)—(f) correspond to test
images (a)-(f) listed in the first column of Table I. Result set comprises:
upper left—original image; upper right—EVOLEHA; lower left—histogram
equalization; lower right—linear contrast stretch.

B. Objective Evaluation

The objective evaluation criterion was taken to be the Detail Variance
(DV) and Background Variance (BV) from [27]. DV and BV values
are obtained firstly by computing the variance of the gray-levels in the
neighboring pixels of each pixel in the image. Next, the pixel is clas-
sified to the foreground when the variance is more than a threshold;
otherwise it is classified to the background. The averaged variance of
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(e)

Fig. 5. Enhancement results, part II. Result sets (a)—(f) correspond to
test images g)-1) listed in the first column of Table I. Result set comprises:
upper left—original image; upper right—EVOLEHA; lower left—histogram
equalization; lower right—linear contrast stretch.

all pixels included in the foreground class is DV, and the averaged
variance of all pixels included in the background class is BV. One
achieves efficient contrast enhancement, when the DV value of the re-
sulted image increases while BV is not changed much compared to the
original image [27]. The DV-BV criterion is far from being perfect,
it merely gives an indication of how to evaluate the images in a more
systematic way [27]. Results are given in Table IV, where the threshold
was chosen to be 0.01 and the n X n neighborhood has n = 3. From
Table IV, the results indicate a good behavior of EVOLEHA, better than
the other methods for most images. However, for the airplane and pout
images results might indicate otherwise, though from Figs. 4 and 5 the
same images appear to have more detail in the case of EVOLEHA. A
more objective explanation can be found by calculating the number of
edgels as detected with the Sobel automatic edge detector. The image
having the highest number of edgels will be rated as having higher de-
tail content. From Table V it is clear that EVOLEHA achieves the best
detail content for the airplane and pout images when compared to the
other methods.

C. Robustness

Robustness of EVOLEHA is related to the repeatability of the
results. To evaluate the robustness ten independent runs of EVOLEHA
were performed for each image. Fig. 6 gives the equivalent gray-level
transformation between the input image and the output (enhanced)
image for each run. Only the graphs for four images have been given,
however conclusions hold for all tested images. To evaluate the
repeatability of the experiments we should see that for each image
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TABLE IV
DV AND BV VALUES FOR ENHANCEMENT METHODS
Image | Original Linear Histogram | EVOLEHA
stretch equalized
DV| BV |DV| BV |[DV| BV |DV| BV
a) 0.12] 0.02 |10.13| 0.02 [0.20] 0.02 [0.22| 0.01
b) 0.13] 0.02 [0.18| 002 [0.21]| 0.03 |0.18| 0.04
c) 0.15] 0.02 [0.18| 002 [0.21]| 0.03 |0.17| 0.02
d) 0.17 0.01 [0.19| 0.02 [0.16| 0.04 |0.20| 0.04
e) 0.13] 0.03 [0.12| 0.03 [0.13]| 0.06 |0.13| 0.04
f) 0.17] 0.02 |0.18] 0.02 [0.18| 0.04 [0.19| 0.04
g) 0.18] 001 |0.15] 0.02 [0.15] 0.04 |0.14]| 0.01
h) 0.14] 001 |0.16] 001 [0.38] 0.00 |0.17| 0.01
i) 0.05]<0.01 | 0.06| <0.01 |0.08] <0.01 |0.14| <0.01
i) 0.04]<0.01 |0.06] 0.01 [0.06] 0.01 |0.07| 0.01
k) 0.02 { <0.01 | 0.07 | <0.01 [0.06| <0.01 | 0.07 | <0.01
1) 0.02 | <0.01 ] 0.03| <0.01 {0.05] <0.01 |0.12 | <0.01
TABLE V
THE NUMBER OF EDGELS IN AIRPLANE AND POUT IMAGES
Image Original | Linear | Histogram | EVOLEHA
stretch | equalized
b) airplane | 3067 3067 3008 3261
g) pout 1492 1492 1937 2039
Cameraman image Tire image
250 250
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100 // E 100
3 3

g
]
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°
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Fig. 6. Input-output gray-level transformation for EVOLEHA.

all the curves have the same shape and are clustered together (i.e.,
they are similar). Improvement of robustness may be achieved by
increasing the maximum number of generations the GA is let to run.

D. Discussion of Results

Summarizing the results obtained, our GA-based method proved to
be efficient in image enhancement. Both human subjective evaluation
and objective criterions like DV-BV and “number of edgels,” point out
that our method produces better images than the classical linear con-
trast stretching and histogram equalization techniques, for a diverse set
of images. On several images like abdomen, head, eight, tire, autumn,
and galaxy, our EVOLEHA method achieved spectacular results. In
terms of robustness EVOLEHA obtains similar results on different in-
dependent runs for one given image. Thus, we conclude that besides
being efficient EVOLEHA is also robust. In terms of computational
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complexity, for the moment, EVOLEHA is a heavy algorithm. This is
mainly because the GA requires making a series of trial enhancements
until producing the final good result. Typically, EVOLEHA runs be-
tween 10—15 min on a computer with a 600 MHz processor and 512 MB
RAM, while the other two methods run bellow one minute on the same
computer. A substantial gain in speed can be attained by distributing
the individuals of the GA (enhancements/evaluations) on several pro-
cessors working in parallel. This is in agreement with the modern view
that fast GAs can be implemented as parallel algorithms [9].

VI. CONCLUSIONS

In this paper we propose a new approach to automatic image
enhancement using real-coded GAs. Results obtained indicate that
EVOLEHA outperforms the classical point operations (linear contrast
stretching and histogram equalization), which are also automatic
methods, in terms of high effectiveness on a large category of images.
The method applies a real-coded GA with significant modifications
like PCA-mutation, in order to attain better explorative behavior.
The search is well-balanced and robust due to a more exploitative
crossover and selection scheme. Automatic behavior was achieved
by specifying a suitable objective evaluation function proportional to
the number and intensity of edgels and to the entropic measure of the
image. The GA evolves the parameters of a local enhancement method
(i.e., enhancement kernel) that better adapts to the local features in
the image, in comparison to linear contrast stretching and histogram
equalization that treat the image globally.

EVOLEHA achieves a combined goal (e.g. efficiency, robustness,
wide applicability) that is not attained by other known enhancement
methods. EVOLEHA can be viewed as the best choice for a first-step
preprocessor on virtually any kind of gray-scale images.

The proposed algorithm may be extended in several ways, such as:
fine-tuning the GA parameters in order to reduce the population size
and the maximum number of generations required. A more substantial
extension is to be researched, in which the chromosome will code local
parameters of the method that applies to each neighborhood. Another
possible extension of EVOLEHA would be introducing specialized cri-
teria into the evaluation function in order to better enhance specific cat-
egories of images, such as: biomedical images, satellite images, images
that appear in print. The tradeoff between efficiency and computational
cost will be further investigated, and a parallel version of EVOLEHA
will be tested.
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