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Introduction to the Special Issue on
Human–Robot Interaction

I. INTRODUCTION

THE growing importance of human–robot interaction (HRI)
is clearly demonstrated by the growing number of individ-

uals focusing their research in this area, the inclusion of paper
and panel sessions at nonrobotics focused conferences such as
the IEEE International Conference on Systems, Man, and Cy-
bernetics and Human Factors meetings, as well as this being the
third special issue on the topic in the last two years [1], [2]. In
addition to the existing annual IEEE Workshop on Robot and
Human Interactive Communication (RO-MAN), the First An-
nual Conference on Human–Robot Interaction (HRI’06) will
take place in March 2006 [3]. HRI’06 seeks to create an inher-
ently interdisciplinary venue for experts in HRI, human factors,
ergonomics, and human–computer interaction.

HRI research is not new. Initially, the work was driven
by the need to handle hazardous radioactive materials [4].
Human–robot interfaces began in the form of teleoperation of
robotic arms that were mechanically intricate but limited by the
lack of sensing and reasoning capabilities. Through a one-way
communication using a hand controller, the robot was viewed
as an extension of the human body. It provided the equivalent
of a long arm that could safely reach into the hazardous area
without harming the operator. In industry applications, robotic
manipulators were directed using teach pendants. This form of
teleoperation was used to store a control program by directing
the robot through a sequence of positions and actions, such as
pick up an object here and place it there. In both cases, it was
assumed that the human operator provided the intelligence nec-
essary to perform the activity. The robot was merely following
(blindly) the actions directed by its operator.

In the case of teleoperation for manipulation of objects,
often critical in the handling of hazardous materials, opera-
tors noted the lack of feeling in the controls. The lack of touch
and kinesthestic feel limited the ability to perform manipula-
tive tasks. Researchers addressed the limitation by developing
hand controllers that incorporated force reflection back to the
operator in an effort to make the teleoperation easier and more
natural [5].

Over the years, many related fields have influenced the nature
of human–robot interfaces. As research advances were made in
sensing techniques, increased computational capabilities, new
control paradigms, new methods in artificial intelligence, as
well as advances in human–computer interaction and computer
graphics, the human–robot interface changed to accommodate
the new possibilities. These outside influences have given the
field an inherently multidisciplinary feel.
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In the 1960s, supervisory control was introduced as an alter-
native control method to the direct manipulation of teleoperation
[6], [7]. The robot was given some autonomy in being able to
automatically control some aspect of its own operation. The op-
erator could then issue a few discrete, high-level commands that
were translated into a series of low-level joint commands. This
relieved the operator from the demands of continuously driving
the robot.

In the paradigm of shared control (e.g., used in [8]), the robot
could be assigned control of one or more degrees of freedom
while the operator directed the rest of the motion. Today, we
see evidence of this type of control in the cruise control of cars,
which controls the speed of driving, while the driver controls
the steering. A sophisticated form is also used in the autopilot
of airplanes, which can control altitude, attitude, vertical speed,
and heading.

Work in computer graphics has facilitated a different kind of
interface. Using graphical models and simulation, virtual envi-
ronments have been created as a front-end interface for control-
ling a robot [9], [10]. These graphical interfaces provided visual
cues and constraints and also allowed the operator to try out a
trajectory in a virtual setting before sending it to a real robot for
execution. The display could be used to show a different view,
or the display could be used to show predicted motion of the
operator’s commands, as a means of overcoming transmission
delays, e.g., from ground control to robots in outer space [11].
Later, virtual environments provided a sophisticated method to
program the robot by showing the desired actions in a simulated
environment [12]. The physical robot was not even required.
(See, for example, [13] in this issue.)

As new sensors became available, they were added to the
robot and provided the opportunity to convey additional infor-
mation back to the user. In particular, force sensing and touch
sensing have been studied for integration into human–robot
interfaces. Much work has been done to study haptic sensing
in the human perceptual system and to develop devices that
measure force and contact of both rigid and deformable objects
[14]–[17]. Haptic information has also been used in Program-
ming by Demonstration systems for both physical and virtual
environments [18]–[20]. Today, haptic information is being
studied for medical robots [21]–[23].

As work progressed on robot manipulators, parallel research
was addressing the challenge of mobile robots. Initially, much
of the research on mobile robots was guided by the goal of
achieving autonomous robots. Although progress was made in
this endeavor, researchers gradually began to realize that semi-
autonomous mobile robots, guided in part by human operators,
could provide useful and more realistic functionality. Adams
[24] developed the multiple agent supervisory control system
and the underlying mediation hierarchy for a multiple mobile
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robot system designed for indoor material handling tasks [25].
Since this early work, a compelling application has emerged in
the urban search-and-rescue (USAR) context. Mobile robots are
teleoperated (using a remote display of the robot camera) into
disaster areas of fallen buildings to search for victims and sur-
vivors [26]. More recent work has focused on developing col-
laborative interaction [27], shared control [28], and supervised
autonomy [29].

The addition of autonomy into robots, as well as new interface
modalities has opened the door to more interactive, two-way
communication with robots. New interface modalities include
the use of speech [30]–[32], gestures [33], sketches [34], [35],
and emotions [36]. Adding intelligence techniques into robots
has now opened up the possibility of social robots with more
human-like interfaces which may interact in subtle ways using
typical nonverbal human communication, such as an exchange
of facial expressions, the tilt of the head, or a shift in gaze which
directs the focus [37]–[39].

One might argue that the most effective HRI research has
been motivated by a specific application and was addressed as
a systems-level effort. Much of the early work took an engi-
neering perspective on the robot and the interface mechanics
instead of a user perspective. The human factors field has repeat-
edly shown the importance of starting interface design and de-
velopment from the user perspective rather than the engineering
perspective. This implies that the interface is developed based
upon application needs of the user while considering limitations
such as cognitive or mental workload, situational awareness, de-
cision making, fatigue, and stress [40].

In addition to understanding the user perspective and con-
sidering the associated limitations, continuous user feedback is
required throughout the design and development phases. Since
many novice users have unrealistic expectations of robot capa-
bilities, users must be educated to understand the limitations of
robotic systems, and such limitations must also be considered
in the interface design. These additional considerations require
a systems-level approach to HRI development.

The need to move the development focus from the en-
gineering perspective to the system and user perspectives
inherently imply that evaluations based on human factors
are necessary. Adams’ early work has been cited as “ one
of the earliest formal usability studies conducted on robotic
software ” [41]. However, until recently, few formal evalua-
tions have been conducted.

Since the late 1990s, the HRI field has gained momentum;
however, evaluation techniques and the application of the tech-
niques have been slow to emerge. Thus, the focus of this special
issue is on papers that either present new evaluation methodolo-
gies (see [42] and [43]) or has employed qualitative (see [44]
and [45]) or quantitative (see [13] and [46]–[50]) user feedback
and evaluation methods.

II. SPECIAL ISSUE

In total, 47 papers were received in response to the call for
papers, almost twice as many as anticipated. These contribu-
tions came from around the world and ranged from teleoper-

ation-based systems to robot-assistive technologies. The large
number of papers created an arduous review task. Initially, the
papers were reviewed to determine which papers address the
issue’s focus on user evaluation methodologies and application.
Each of the remaining papers received three reviews (one from
a human factors expert and two from HRI experts). The results
of the review process are the ten papers you find in this spe-
cial issue. Two of the papers are focused on methodology de-
velopment, and two papers are focused on qualitative evaluation
techniques. The remaining six papers each employ quantitative
evaluations focused on multiple robot systems, visual-based in-
terface augmentation, and teleoperation.

Crandall et al. [42] present a validation of their neglect toler-
ance methodology for multitasking environments. The neglect
tolerance methodology focuses on the amount of time a robot
can be ignored before the associated performance begins to fall
(neglect time) and the required time that the human must interact
with the robot to return it to peak performance (interaction time).
The authors are exploring the use of neglect tolerance for deter-
mining the maximum number of robots that can be managed,
feasible multiple robot configurations, and predicting multiple
robot team performance under certain conditions.

Many methods have been developed in human factors that
measure situational awareness; however, Scholtz et al. [43]
focus on developing a methodology specific to robotic systems.
The author’s intent is to develop a tool that can be applied
across robotic systems to ensure accurate comparisons between
interfaces. This tool will permit a comparison of the user’s
situational awareness. The paper presents the initial assessment
tool as well as revisions to the tool based upon three user
evaluations.

The first qualitative evaluation by Trafton et al. [44] fo-
cuses on understanding human perspective-taking, employing
cognitive modeling and applying the results to human–robot
interaction. They evaluate perspective-taking in a natural en-
vironment based upon astronaut interactions and incorporate
the results into their perspective-taking cognitive architecture,
Polyscheme. The authors also present robot experiments em-
ploying Polyscheme.

Michaud et al. [45] have focused on developing a spherical
robot for child development, in particular, for very young
children. The authors have developed an autonomous spherical
robot, Roball, that provides motion, messages, sounds, and il-
lumination to interact with young children. The authors present
the Roball design and the qualitative evaluation they conducted
with children between the ages of 12 and 24 months. It is
hypothesized that Roball can improve a young child’s motor,
intellectual, social, affective, and language skills.

Parasuraman et al. [46] present a series of three quantitative
experiments that investigate the effects of delegation-type inter-
faces for simulated, multiple unmanned vehicles. The presented
interface is a simplified version of Playbook. The evaluations
spanned various levels of autonomy and compared delegation
interfaces to more restricted interfaces. The primary result is ini-
tial empirical evidence representing the efficacy of employing
delegation-based interfaces for supervising multiple robots.

Bruemmer et al. [47] describe a mixed-initiative HRI for in-
door search and exploration tasks with corresponding evalua-
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tion results. The authors have developed the INL Robot Intelli-
gence Architecture that permits multiple robots to have multiple
behaviors and levels of autonomy. An associated HRI has also
been developed. The initial HRI has a two-dimensional (2-D)
interface, but the authors also introduce and test a three-dimen-
sional (3-D) interface. Three evaluations were conducted that
required participants to interact with a robot in a remote search
environment that included office dividers, mannequins, a dis-
abled robot, and a simulated explosive device. The evaluations
were designed to assess operator workload and error along with
overall performance.

The papers provided by Kanduri et al. [48] and Hughes and
Lewis [49] both focus on understanding imagery and its appli-
cation to HRI. Kanduri et al. focus on providing the operator
with accurate and understandable geometry and scale informa-
tion from the robot’s environment. The authors present an eval-
uation focused on measuring an observer’s ability to estimate
height of distant objects when provided with an accurate local
model of the robot, a panoramic image and a physical mock-up
of the local terrain. Two estimation techniques were incorpo-
rated into the evaluation.

Hughes and Lewis [49] are also concerned with the presenta-
tion of imagery to the operator. In particular, they focus on as-
sessing the effectiveness of existing and potential teleoperation
controls for cameras. Most camera systems are poorly placed on
the robot with a narrow field of view. Camera properties can also
significantly impair the operator’s ability to perceive the envi-
ronment. One important finding from their work suggests that
controlling the camera independently from the vehicle orienta-
tion may provide benefits.

Tsuji and Tanaka [50] analyze the changes of the tracking
control properties of a human–robot system with regard to robot
impedance, operator proficiency, and the impedance properties
of the human arm. The paper explores the control characteristics
of the human operator according to robot impedance properties.
An evaluation was conducted to demonstrate humans’ ability
to constantly maintain the dynamic properties of the system by
adjusting their own impedance properties.

The final paper by Aleotti et al. [13] investigates various types
of virtual fixtures for a programming by demonstration interface
for teleoperation. The system evaluations employ peg-in-hole
tasks. The authors evaluate the effectiveness of color, sound, and
tactile fixtures for teleoperation. The interface employs a Cyber-
Touch VR glove coupled with the virtual environment display.
The authors found that tasks that were perceived as difficult but
included virtual fixtures of any type lead to longer times but re-
sult in more successful task completions.

As can be seen from these short summaries, the special issue
covers a broad spectrum of topics but the underlying theme is
the evaluation of HRI systems. The evaluation papers present
some interesting and important HRI development insights. The
methodology papers take important steps toward defining tools
that can be applied to accurately assess HRI techniques and
methodologies.

The guest editors of this special issue wish to thank all the
reviewers for their careful reviews and helpful feedback. They
also thank the authors who were required to meet some very
tight deadlines in order to ensure this issue would appear as

scheduled. Finally, they thank Editor-in-Chief D. Brown and his
assistant A. T. Scheman-Moje for their assistance in bringing
this special issue to publication.
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