
564 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 34, NO. 4, JULY 2004

Correspondence________________________________________________________________________

Analysis of Lip Geometric Features for Audio-Visual
Speech Recognition

Mustafa N. Kaynak, Qi Zhi, Adrian David Cheok, Kuntal Sengupta,
Zhang Jian, and Ko Chi Chung

Abstract—Audio-visual speech recognition employing both acoustic and
visual speech information is a novel extension of acoustic speech recogni-
tion and it significantly improves the recognition accuracy in noisy envi-
ronments. Although various audio-visual speech-recognition systems have
been developed, a rigorous and detailed comparison of the potential geo-
metric visual features from speakers’ faces is essential. Thus, in this paper
the geometric visual features are compared and analyzed rigorously for
their importance in audio-visual speech recognition. Experimental results
show that among the geometric visual features analyzed, lip vertical aper-
ture is the most relevant; and the visual feature vector formed by vertical
and horizontal lip apertures and the first-order derivative of the lip corner
angle leads to the best recognition results. Speech signals are modeled by
hidden Markov models (HMMs) and using the optimized HMMs and geo-
metric visual features the accuracy of acoustic-only, visual-only, and audio-
visual speech recognition methods are compared. The audio-visual speech
recognition scheme has a much improved recognition accuracy compared
to acoustic-only and visual-only speech recognition especially at high noise
levels. The experimental results showed that a set of as few as three labial
geometric features are sufficient to improve the recognition rate by asmuch
as 20% (from 62%, with acoustic-only information, to 82%, with audio-vi-
sual information at a signal-to-noise ratio of 0 dB).

Index Terms—Audio-visual speech recognition, feature fusion, lip geo-
metric features.

I. INTRODUCTION

Speech recognition will play an important role in future
human–computer interfaces. In general, the field of speech recognition
is a part of the ongoing research effort in developing computers
that can hear and understand spoken information. However, current
automatic speech recognition (ASR) systems’ recognition rates de-
crease significantly in common environments where the ambient noise
level is high. This presents a problem because speech recognition is
desirable in realistic settings as in store fronts, offices, airports, train
stations, vehicles, and mobile outdoor settings.

Humans on the other hand, often compensate for noise degradation
and uncertainty in speech information by integrating multiple sources
of speech information, such as visible gestures from the speaker’s face
and body [1]. Thus, human perception systems use visual and acoustic
(audio-visual, bimodal) information to recognize speech. This is
demonstrated by the “McGurk effect” [2]. When a subject is presented
with contradicting acoustic and visual signals, the perceived signal
can be completely different from both the acoustic and visual signals.
For example, when subjects were shown a video where a speaker
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mouthed “gah,” but the video was dubbed with a voice saying “bah,”
most people usually heard the sound “dah.” However, when viewers
turn their backs to the video, they heard the sound “bah” correctly.
McGurk also discovered that viewers could not force themselves to
hear the correct vocal sounds when it is told that they were being fed
with the wrong visual information.

Modeling the bimodal characteristics of speech perception and
production systems of human beings is one of the possible approaches
to solve the noise problem of ASR systems. The most important
source of additional speech information is the visual information from
a speaker’s face [3]. Speech perception can be improved significantly
by watching the face of the speaker [1]. For example, hearing impaired
people use only the visual speech information from the visible speech
articulators (spread all over the face [4], [5]) to recognize the speech
signal.

The primary advantage of the visual information is that it is not
affected by acoustic noise and cross talk among speakers. Another
advantage reported in [1] and [6], is the complementary structure of
phonemes and visemes, which are the smallest acoustically and visu-
ally distinguishing units of a language, respectively. According to these
studies, the acoustic and visual components of the speech signal are
not purely redundant; they are complementary as well. Certain speech
characteristics that are visually confusable are acoustically distinct,
while those characteristics that are acoustically confusable are visu-
ally distinct. For instance, phonemes /b/ and /k/, which are produced in
visibly distinct manners, have similar acoustic characteristics. In con-
trast, phonemes /p/ and /b/, which are visibly indistinguishable, can be
acoustically differentiated by voicing [6].

Thus, the motivation of audio-visual (bimodal) speech recognition
can be summarized as follows. The more speech information we have,
the higher will be the potential recognition. Furthermore, studies in
human perception system have shown that visual speech information
allows people to tolerate an extra 4 dB of noise in the acoustic signal
[7].

However, one of the fundamental problems in bimodal speech recog-
nition is to determine which visual features are most advantageous to
use. In previous research, different types of visual features were used.
Petajan developed one of the first audio-visual speech recognition sys-
tems [8], [9] using the mouth area, perimeter, height, and width derived
from binary mouth image as the visual features. In [1], the pixel values
of a reduced area of interest in the image centered around the mouth
were used as the visual features. In [10], the temporal variations of
the mouth parameters were used as the visual features. In [11], both
the shape and intensity information from the lip contours were used as
the visual features, and active shape models were employed to extract
these visual features. In [12], acoustic features were combined with ei-
ther geometric visual parameters, such as the mouth height and width,
or nongeometric visual parameters, such as the wavelet transform of
the mouth images. In [13], gray-scale parameters associated with the
mouth region of the image were considered but, first, principal-compo-
nent analysis was used to reduce the dimension of the feature space. In
[14], the intensity of each pixel in an image sequence was considered
as a function of time and one-dimensional wavelet and Fourier trans-
forms were applied to this intensity-versus-time function to model the
lip movements. In [15], point-distribution models were used to track
the lips, and the shape parameters obtained from tracking results were
used as the visual features.
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It can thus be summarized that previous bimodal recognition studies
have used two major types of visual speech information:

• geometric features (such as measures of height, width, area);
• image and shape features (such as pixel colors, lip outline).
The disadvantage of using image- and shape-based features is that

they require complex algorithms and are computationally expensive
[16]. Furthermore, in [17], it is shown that, for speech recognition, there
is little point in utilizing the fine detail of the lip, as gross detail appears
to provide almost the same information. Thus, even very simple geo-
metric visual features may improve the recognition rate when used with
the acoustic signal. In addition, less complex geometric features allow
the development of more practical and real-time bimodal speech-recog-
nition systems.

Nevertheless, in previous works, a rigorous comparison of suitable
geometric features, both singly and in combination, has not been given.
Hence, the purpose and the motivation of the work described in this
paper are as follows:

• analyzing the importance of each lip geometric feature in bimodal
speech recognition;

• determining the best combination of geometric visual features for
both visual-only and bimodal speech recognition;

• comparing the accuracy of acoustic-only, visual-only, and
bimodal speech recognition experimentally using the optimized
HMMs and geometric visual features.

The experimental results are obtained for digit recognition, in order
to provide a simple but rigorous example for comparison purposes.

This paper is organized as follows. First, the audio-visual database
is introduced, and acoustic hidden Markov modeling is given in Sec-
tion II. In Section III, geometric visual features are analyzed and the
visual hidden Markov modeling is explained for both single and com-
bined geometric visual features. In Section IV, the audio-visual speech
recognition experimental setup is given and then the results are re-
ported. Finally, the paper is concluded in Section V.

II. STATE OF THE ART

A. Audio-Visual Database and Automatic Database
Processing Toolkit

To conduct research on bimodal speech recognition, a fully seg-
mented and labeled audio-visual database is required. For this pur-
pose, we generated an audio-visual database and developed an auto-
matic audio-visual database-processing toolkit to process the database.
In the following subsections, the audio-visual database and the toolkit
are introduced briefly.
1) Audio-Visual Database: For our research, we generated an

audio-visual database. Since the main focus of our research is on the
determination of the relevant visual features, in order to extract the
visual features accurately, blue fiducials were placed on the speakers’
faces as shown in Fig. 1. Blue was used for highlighting because
humans seldom have natural blue-color elements on their skin, thus,
it is easy to detect blue color on the face. The markers on the nose
and chin were used to normalize geometric visual features so that
the extracted visual features are invariant to the distance between the
camera and the speaker.

The generated English audio-visual database1 contains over twenty
hours of continuous and isolated utterances from 22 nonnative English
speakers having European, Chinese, Singaporean, and Indian accents.
In this research, 77 samples from nine speakers were used to train the
HMM of each digit, 24 samples from ten speakers were used to test

1The database and the automatic segmentation toolkit are available for re-
search purposes. Please go to http://speech.ece.nus.edu.sg to download the data-
base and the toolkit.

Fig. 1. Speaker with six fiducials.

Fig. 2. Input–output file structure of the segmentation software (*.avi = video
file; *.wav = audio file; *.bmp= bitmap picture file; *.phn = phoneme label text
file; *.wrd = word transcription text file; and *.mat = matrix file.).

the digit models for speaker independent case, and 19 samples from
nine speakers were used to test the digit models for speaker dependent
case. The recordings were done in a silent isolated room using a digital
camera with an IEEE 1394 (Firewire) output to produce high-quality
video signal.
2) Automatic Audio-Video Segmentation Software Toolkit: To

process the database, we developed a software package [18] in Matlab.
The software is user friendly with a graphical user interface (GUI).
To process the video avi files, the toolkit first extracts the bitmap
and sound wave files from the avi file. Then, it calls tcl scripts from
the CSLU Toolkit [19], [20] to do phoneme and word partitioning in
the audio domain. Using the segmentation results in audio domain,
the toolkit does the segmentation in the video domain. It then saves
bitmap files corresponding to every phoneme of the digit into carefully
labeled folders.

Then, the toolkit detects the markers in each frame of the corre-
sponding bitmap files by convolving each frame with a blue mask. The
local maximal points in the result of convolution correspond to the blue
markers. Then, these markers are tracked automatically and results are
saved into a matrix showing the movements of the markers in relation
to the corresponding phonemes and digits. Finally, the tracking results
of the markers are used to calculate the basic geometric visual features.

After running the software, the user obtains soundwave files seg-
mented into phoneme level, bitmap files sampled at 25 frames/s from
the original avi file, a word label text file, a phoneme label text file
(which contains the phonemes of the uttered word), an audio domain
segmentation file and two Matlab files containing the tracking results
of the six markers for every video frame, and the basic geometric vi-
sual features. The input-output file structure of the toolkit is shown in
Fig. 2. All these results are saved into separate folders, according to
the folder structure based on the results of segmentation. The bitmap
and wave files are saved and grouped at the phoneme level. The user
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Fig. 3. Typical left-right HMM (a is the state-transition probability from
state i to state j, O is the observation vector at time t, and b (O ) is the
probability that O is generated by state i).

can display the fully segmented audio signal and the bmp files corre-
sponding to each phoneme using a GUI.

We note that the toolkit requires that the speakers in the database
face the camera. If the speaker rotates his face, the toolkit should be
modified to compensate the rotation. One possible approach is to use
pose-independent visual features [21].

B. Hidden Markov Modeling for Bimodal Speech Recognition

For the speech-recognition engine, neural networks (NN), fuzzy
logic, and hidden Markov models (HMMs) have been used. However,
among these, HMMs have been the most widely used algorithm for
speech-recognition studies for the last decade because of their success
in modeling both acoustic and the visual speech signals. HMMs [22]
are stochastic models and are widely used for characterizing the
spectral properties of frames of patterns. The underlying assumptions
of using HMMs in speech recognition are that speech signals can
be well characterized as a parametric random process, and that the
parameters of the stochastic process can be determined (estimation) in
a precise, well-defined manner (training). Fig. 3 shows the structure
of a typical left-right HMM. To model the speech signal, usually
a left-right HMM is used because the underlying state sequence
associated with the model has the property that as time increases, the
state index increases or stays the same.

For our research we developed an HMM code in Matlab, and for
comparison the Microsoft HTK2 version 3.0 HMM code was used as a
benchmark. For the developed HMMcode, the Baum–Welch algorithm
was used for training signal models by taking into account the practical
implementation issues, such as scaling, multiple observation sequences
and initial parameter estimates, which are explained in [23]. To prevent
overtraining of the HMMs, when the highest accuracy is obtained for
the validation data recognition, the training is terminated automatically.

C. Acoustic HMM

In this section, hidden Markov modeling of the acoustic speech
signal is discussed and a comparative study is carried out between the
developed and HTK HMM codes. As mentioned above, all speech
signals are modeled with left-right HMMs and in order to present
rigorous comparisons of the recognition results of acoustic-only,
visual-only, and bimodal speech recognition, the optimum HMM is
selected for each type of signal.

For the acoustic speech-recognition experiments, 13 dimensional
Mel frequency cepstral coefficients (MFCC) were used as the standard
audio features [23], [24]. The original dimension of the acoustic
feature vector was 14, however, since zero-order coefficient is
approximately equivalent to the log energy of the frame, and energy
is directly computed on the time signal, we discarded the zero-order
cepstral coefficient and obtained a 13 dimensional acoustic feature
vector. Please note that the MFCC coefficients were extracted from 25
ms windows with 10 ms overlapping.

2HTK web site: http://htk.eng.cam.ac.uk/

TABLE I
ACOUSTIC SPEECH RECOGNITION FOR SPEAKER-INDEPENDENT CASE

TABLE II
ACOUSTIC SPEECH RECOGNITION FOR SPEAKER-DEPENDENT CASE

In the experiments, white noise was used to obtain noisy speech
signals and the SNR was calculated as the ratio between the average
powers of the speech and noise signals. To find the optimum HMM, in
terms of the highest recognition accuracy, many different models were
experimentally examined.

For each digit model, the state number,N, was fixed to four and five;
and eight, 16, and 32 Gaussian mixtures, M, were used repeatedly in
order to find the optimummodel. For training each digit model, 77 sam-
ples from nine speakers were used and for evaluating the performances
of the digit models for speaker independent and dependent cases, 24
samples from ten speakers and 19 samples from nine speakers were
used, respectively.

Tables I and II show the average recognition results of the different
types of HMMs for speaker independent and dependent cases. As ex-
pected, speaker-dependent results are better than speaker-independent
results, especially at low noise levels. However, the difference between
the speaker dependent and independent results is not very significant
especially at high SNRs. From the tables, we also observe that as the
number of Gaussian mixture components increases, the performances
of the HMMs improve. Among the six different digit models tested
for both speaker-dependent and -independent cases, HMMs with 32
Gaussian mixtures and four states are the best ones. Thus, to model the
acoustic speech signals HMMs with four states and 32 Gaussian mix-
tures are used. We note that, since the difference between the recog-
nition rates of 16 and 32 Gaussian mixture models is not statistically
significant, HMM with four states and 16 Gaussian mixtures can be
used as well.

An important conclusion from Tables I and II is that, even though
the vocabulary used for this research is limited to ten digits, as the
noise level increases, the recognition decreases to very low levels. This
conclusion reveals that, in noisy environments, visual speech signal can
potentially be used together with the acoustic speech signal to improve
the recognition performance of the system.

For acoustic modeling, both the HTK HMM and developed Matlab
HMM were used. Tables I and II show the results obtained from the
developed Matlab-based HMM. Table III shows the comparison of the
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TABLE III
RECOGNITION ACCURACY COMPARISON OF HTK AND MATLAB HMMS

Fig. 4. Basic geometrical lip features.

recognition accuracy of the developed and HTK HMM codes using
four states and four Gaussian mixtures for speaker independent case.
Although HTKHMM outperforms the developed HMM by around 5%
at high SNR, the performance gap diminishes as SNR decreases. For
the rest of the experiments, developed HMM code is used in order that
the recognition results of acoustic-only, visual-only, and audio-visual
speech recognition obtained by the same code can be rigorously com-
pared.

III. ANALYSIS OF GEOMETRIC VISUAL FEATURES AND VISUAL

HIDDEN MARKOV MODELING

In this section, first single geometric visual features are analyzed and
then the combinations of geometric visual features are experimented
on to find the best performing visual feature combination for bimodal
speech recognition.

For visual hidden Markov modeling, left-right HMMs with contin-
uous observation densities and diagonal covariance matrices, implying
that statistically independent features were used. Another reason for
using diagonal covariancematrices is that more training data is required
to train the HMMs for full covariance matrices. The best performing
HMM was found for both the single and the combined visual features
for each digit through a series of experiments on different combina-
tions of the number of states and the number of Gaussian mixture com-
ponents. In the next section, single geometric visual features are ana-
lyzed for their importance in bimodal speech recognition. This analysis
gives a valuable insight into the best features that can be used for bi-
modal speech recognition.

A. Single Geometric Visual Feature Analysis

As explained previously, in order to have an accurate and noise-free
training, in the audio-visual database six blue markers were placed
on the speaker’s face as shown in Fig. 1. Different topologies of the
markers were reported in literature. In these studies researchers focused
on finding the most information carrying part of the face and they con-
cluded that, most of the visual speech information is carried around
the lip area [16]. We also experimented different topologies, however
the topology shown in Fig. 1 gave us the best performance in terms
of recognition and tracking accuracy. After automatically detecting the
centers of the dots using a convolution-based approach, four geomet-
rical lip parameters were extracted. These were the outer-lip horizontal
aperture (X), the outer-lip vertical aperture (Y), the outer-lip area (�)
defined as the inside of the ellipse, and the angle of the outer-lip corner
(�), shown in Fig. 4. The vertical distance between the points on the
chin and nose was used to normalizeX andY, in order that the features
became invariant to the distance between the speaker and the camera.

It should be noted that not only the shape of the outer-lip contour, but
also the movement of the lip contour are important for distinguishing
the digits. Therefore, the first-order derivatives of the four basic lip
features are also considered for the experiments.

A systematic study was carried out to determine the most relevant
visual features for speech recognition. We analyzed ten different visual
features, namely, X, Y, �, �, Y=X, and the first-order derivatives of
these five parameters.

The analysis was carried out in two stages. At the first stage, the
best single visual features were determined and at the second stage the
best visual feature combination was determined. In order to determine
the optimum HMM for each digit and each single visual feature, six
HMMs having four, five states with four, eight, and 16 Gaussian mix-
tures were trained. The recognition performances of the trained models
were evaluated against the validation data using the forward backward
algorithm.

Table IV shows the experiment results for the ten single visual fea-
tures. In this table, “ 0 ” denotes the derivative over time and the average
recognition rates are calculated for every single visual feature over all
the digits. Note that in the table, the recognition results are shown for
each single visual feature alone (with no other visual feature or audio
features being used). From these results, it can be concluded that the
geometric visual features along the vertical directions, such as Y and
Y0, are more important than the ones along the horizontal direction,
such as the feature X. This is justified by the higher recognition rate
for the vertical direction features. The single visual feature �0 repre-
sents not only the coordinative lip movements along the vertical and
horizontal directions but also expresses the velocities of these move-
ments, thus it is an important feature.

From Table IV, it can also be concluded that by taking into account
the best average recognition rates, X, Y, �, Y0, �0, and (Y=X)0 per-
formedwell for almost all digits so they are the most relevant geometric
visual features for bimodal speech recognition to optimize the recog-
nition rate.

B. Combined Visual Feature Analysis

Now that the best single visual features have been determined, the
question is to decide which combination of these six geometric visual
features should be used for bimodal speech recognition for an accept-
able recognition rate. In order to determine the best visual feature com-
bination, further experiments were conducted on seven different com-
binations of the visual features, namely,X-Y,Y-Y0,X-Y-�,X-Y-Y0,
X-Y-�0, X-Y-�-�0, and X-Y-Y-(Y=X)0. These visual feature com-
binations are selected in an empirical manner among the single geo-
metric visual features with higher average recognition rates in Table IV.
For selecting the visual feature combinations, factor or principal com-
ponent analysis (PCA) can be used to obtain optimal combinations
from a statistical point of view.

For these visual feature combinations, for each digit six different
HMMs, with four and five states and eight, 16 and 32 Gaussian
mixture components were trained by using 77 samples from nine
speakers. Then performances of these HMMs were evaluated against
the validation data for both speaker dependent and independent cases.
For speaker independent case 24 samples from ten speakers, and for
speaker dependent case 19 samples from nine speakers were used
as the validation date. The results are shown in Tables V and VI for
speaker independent and dependent cases, respectively. According to
both of these tables, the best visual feature combination is X-Y-�0

and the best model for this combination is HMM with five states and
32 mixtures.

A very important conclusion from the results reported in Tables V
and VI is that although single visual features do not perform very well
when used singly (as expected due to the relatively small information
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TABLE IV
VISUAL SPEECH RECOGNITION FOR THE SINGLE VISUAL FEATURE EXPERIMENT

TABLE V
VISUAL SPEECH RECOGNITION BASED ON COMBINED VISUAL FEATURES FOR

SPEAKER-INDEPENDENT CASE

TABLE VI
VISUAL SPEECH RECOGNITION BASED ON COMBINED VISUAL FEATURES FOR

SPEAKER-DEPENDENT CASE

content from each single visual feature), when they are combined to
form a visual feature vector, the recognition performance improves sig-
nificantly; the recognition rate almost doubles and the system becomes
more robust to noise. For the bimodal speech-recognition experiments,
we will use X-Y-�0 as the visual feature vector due to higher recogni-
tion accuracy of this combination.

IV. AUDIO-VISUAL HIDDEN MARKOV MODELING

Since acoustic speech signal is susceptible to acoustic noise, in noisy
environments the acoustic speech signal-based recognition may not be
accurate enough to identify speech. Our experimental results reported
for acoustic speech recognition confirmed this argument. The visual
speech recognition experiments detailed in Section IV showed that the
visual signal carries relevant information for speech recognition. In this
section the audio-visual speech recognition experiments and the fusion
of the acoustic and visual data streams are detailed.

For the experiments, we used X-Y-�0 and 13 dimensional MFCC
as the visual and acoustic feature vectors, respectively. An important
problem for bimodal speech recognition is the fusion of the acoustic
and visual speech information. Some of the previous studies on audio-
visual speech recognition have focused on the optimal integration of

Fig. 5. Early integration, feature fusion system.

the speech information from the acoustic and visual channels. There
are two widespread beliefs about how humans integrate acoustic and
visual speech information [25]: 1) early integration (feature fusion or
direct identification) and 2) late integration (decision fusion or separate
identification).

The former approach uses one recognition engine for both the visual
and acoustic features, while the latter approach uses two recognition
engines; one for the visual signal, and one for the acoustic signal, and
then integrates the recognition results of each recognition engine.

In this research, an early integration system through the direct iden-
tification (DI) strategy was developed (Fig. 5). By this approach, fea-
tures from acoustic and visual channels should be concatenated to form
a joint feature vector. However, acoustic and visual feature vectors are
not synchronous, because the acoustic features are extracted from 25
ms windows with 10 ms overlapping; on the other hand, visual fea-
tures are extracted from 40 ms frames without any overlapping. Hence,
for the same speech signal, there are different numbers of feature se-
quences for visual and acoustic features. Thus, merging the acoustic
and visual signals raises a problem of the nonsynchronism between the
acoustic and visual channels. In order to solve this problem, first, each
single visual feature signal was resampled at a higher rate using low
pass interpolation. Then, from these up-sampled visual signals, new
visual features were obtained from 25 ms windows with 10 ms over-
lapping, by averaging the samples inside each window. This way, the
visual and acoustic feature sequences produced have the same number
of samples.

After obtaining the audio-visual feature vector, for each digit six dif-
ferent HMMs having four and five states, and 8, 16, and 32 Gaussian
mixtures were trained. 77 samples from nine speakers were used to
train the HMM of each digit. Then, their performances were evalu-
ated against the validation data which included the clean and noise-cor-
rupted test data. For testing, 24 samples from ten speakers were used
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TABLE VII
AUDIO-VISUAL SPEECH RECOGNITION FOR SPEAKER-INDEPENDENT CASE

TABLE VIII
AUDIO-VISUAL SPEECH RECOGNITION FOR SPEAKER-DEPENDENT CASE

Fig. 6. Recognition rate using different speech information sources under
various acoustic SNRs for speaker-independent case.

for speaker-independent case and 19 samples from nine speakers were
used for speaker-dependent case. The evaluation results are shown in
Tables VII and VIII for speaker independent and dependent cases, re-
spectively. The results for the speaker-dependent case are slightly better
than speaker-independent case, but the difference is not significant.
From these results, for each digit, the optimum HMM was selected.
Among these different digit models, the HMM with four states and 32
Gaussian mixture components produced the best results for speaker-in-
dependent case and the HMMwith five states and 32 Gaussian mixture
components produced the best results for speaker-dependent case.

The best performing HMMs were used for testing the performance
of the bimodal speech-recognition system. The average recognition ac-
curacy of acoustic-only, visual-only and audio-visual speech recogni-
tion are shown in Figs. 6 and 7 for speaker independent and depen-

Fig. 7. Recognition rate using different speech information sources under
various acoustic SNRs for speaker-dependent case.

dent cases. As noise increases, audio-visual speech recognition pro-
duced much better results than the acoustic-only speech recognition
for both speaker-dependent and -independent cases. Thus, the higher
the noise is, the more the recognition rate is improved compared to the
acoustic-only speech recognition.

From recognition results of audio-visual speech-recognition experi-
ments, the most important conclusion that can be drawn is that, when
visual speech information is used together with acoustic speech infor-
mation, speech recognition becomes more robust to noise and, fur-
thermore, the bimodal speech recognition system out-performs both
acoustic-only and visual-only speech-recognition systems by as much
as 20% and 8% at SNR = 0 dB, respectively.

During our research, we used HMMs to model the speech signal. In
the literature, fuzzy logic and NNs are also used to model the speech
signal. However, for the same database, the performances of fuzzy logic
and NN-based ASR systems were inferior to HMM-based ASR sys-
tems [16]. This inferior performance ismostly due to the fact that HMM
can successfully model the sequentially changing behavior of speech
by its dynamic state structure. However, for fuzzy logic and NN-based
ASR systems, it is not possible to include the time-domain information
to the recognition engine, so this makes the modeling of speech signal
difficult.

V. CONCLUSION

In this paper, we performed a rigorous analysis and comparison of
geometric features that can be used in an audio-visual speech-recog-
nition system. For this purpose, first, single geometric visual features
were experimented, and their importance for bimodal speech recogni-
tion was determined through experiments conducted on a visual speech
recognition system using optimal HMMs. Experimental results showed
that geometric visual features along the vertical directions, such as Y
andY0, are more important than the ones along the horizontal direction,
such as the feature X. We then experimented the combined visual fea-
tures using optimized HMMs and found that the visual feature vector
formed by X, Y, and � results in high recognition accuracy.

For bimodal speech-recognition experiments, early integration algo-
rithm is used to form a joint feature vector from acoustic and visual
features. Experimental results showed that for limited vocabulary digit
recognition, the audio-visual speech-recognition system significantly
improved the recognition rate, especially at high noise levels and out-
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performed both acoustic-only and visual-only speech recognition sys-
tems for both speaker independent and dependent cases. It is important
to note that a set of as few as three labial geometric features is suffi-
cient to improve the recognition rate by as much as 20% (from 62%,
with acoustic-only information, to 82%, with audio-visual information
at SNR = 0 dB).

Finally, we note that, although we used markers to extract the geo-
metric visual features, geometric visual features can be extracted in real
time accurately without using any markers [26], [27].
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A Note on the Robust Stability of Uncertain Stochastic
Fuzzy Systems With Time-Delays

Zidong Wang, Daniel W. C. Ho, and Xiaohui Liu

Abstract—Takagi–Sugeno (T-S) fuzzy models are now often used to de-
scribe complex nonlinear systems in terms of fuzzy sets and fuzzy reasoning
applied to a set of linear submodels. In this note, the T-S fuzzy model ap-
proach is exploited to establish stability criteria for a class of nonlinear
stochastic systems with time delay. Sufficient conditions are derived in the
format of linear matrix inequalities (LMIs), such that for all admissible pa-
rameter uncertainties, the overall fuzzy system is stochastically exponen-
tially stable in the mean square, independent of the time delay. Therefore,
with the numerically attractive Matlab LMI toolbox, the robust stability
of the uncertain stochastic fuzzy systems with time delays can be easily
checked.

Index Terms—Fuzzy systems, linear matrix inequality (LMI), nonlinear
systems, robust stability, stochastic systems, time-delay systems.

I. INTRODUCTION

Stability analysis of stochastic systems has been well investigated
in the past three decades, since stochastic modeling has come to play
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