
An Exploratory Study of How Developers
Seek, Relate, and Collect Relevant Information

during Software Maintenance Tasks
Amy J. Ko, Brad A. Myers, Senior Member, IEEE, Michael J. Coblenz, and Htet Htet Aung

Abstract—Much of software developers’ time is spent understanding unfamiliar code. To better understand how developers gain this

understanding and how software development environments might be involved, a study was performed in which developers were given

an unfamiliar program and asked to work on two debugging tasks and three enhancement tasks for 70 minutes. The study found that

developers interleaved three activities. They began by searching for relevant code both manually and using search tools; however,

they based their searches on limited and misrepresentative cues in the code, environment, and executing program, often leading to

failed searches. When developers found relevant code, they followed its incoming and outgoing dependencies, often returning to it and

navigating its other dependencies; while doing so, however, Eclipse’s navigational tools caused significant overhead. Developers

collected code and other information that they believed would be necessary to edit, duplicate, or otherwise refer to later by encoding it

in the interactive state of Eclipse’s package explorer, file tabs, and scroll bars. However, developers lost track of relevant code as these

interfaces were used for other tasks, and developers were forced to find it again. These issues caused developers to spend, on

average, 35 percent of their time performing the mechanics of navigation within and between source files. These observations suggest

a new model of program understanding grounded in theories of information foraging and suggest ideas for tools that help developers

seek, relate, and collect information in a more effective and explicit manner.

Index Terms—Program investigation, program understanding, program comprehension, empirical software engineering, information

foraging, information scent.

Ç

1 INTRODUCTION

MOST useful software undergoes a brief period of rapid
development followed by a much longer period of

maintenance and adaptation to new contexts of use [6], [31].
During this period, software developers spend much of
their time exploring unfamiliar parts of a software system’s
source code in order to understand the parts of the system
that are relevant to their current task [47]. Because these
parts are typically distributed throughout a system’s
components and modules [18], [30], this exploration can
be both time-consuming and difficult. Therefore, an
important challenge in software engineering research is to
invent tools that help software developers understand and
reshape software more efficiently and effectively.

A central concept in the design of such tools, recently
proposed by Murphy et al. [34] (and independently in
our earlier work on this topic [26]), is that of a task
context: the parts and relationships of artifacts relevant to
a developer during work on a maintenance task. A
number of important contributions have been built
around this concept, including ways of representing task
contexts [41], [43], tools that enable developers to

manually build a task context by selecting program
elements [42], and methods of automatically inferring
the relevant task context based on a developer’s investi-
gations in a development environment [44], [46].

Although all of these ideas show promise in improving a

developer’s effectiveness on maintenance tasks, a more

detailed understanding of how developers form their task

contexts and how software development environments

(SDEs) are related to this formation could lead to even

greater gains, whether through improved tools, more

rigorous processes, or other means. There are several

unanswered questions in this regard:

. How do developers decide what is relevant?

. What types of relevant information do developers
seek?

. How do developers keep track of relevant
information?

. How do developers’ task contexts differ on the same
task?

To begin to answer these questions, we performed an

exploratory study of 10 developers using the Eclipse 2.1.2

software development environment (www.eclipse.org) to

work on five maintenance tasks on a small system with which

they were not familiar. Our central goal was to investigate

developers’ strategies for understanding and utilizing

relevant information and discover ways in which Eclipse

and other environments might be related to these strategies.

Because we wanted to understand the natural flow of

information between developers and their workspace,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006 971

. A.J. Ko and B.A. Myers are with the Human-Computer Interaction
Institute, School of Computer Science, Carnegie Mellon University,
5000 Forbes Ave., Pittsburgh, PA 15213. E-mail: {ajko, bam}@cs.cmu.edu.

. M.J. Coblenz can be reached at mcoblenz@andrew.cmu.edu.

. H.H. Aung can be reached at hhaung@gmail.com.

Manuscript received 4 Mar. 2006; revised 1 June 2006; accepted 13 Sept.
2006; published online 14 Nov. 2006.
Recommended for acceptance by W.G. Griswold and B. Nuseibeh.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0053-0306.

0098-5589/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society Updated 22/10/21

developers could complete their tasks in any order and
had access to any tool or documentation they desired.

This paper extends our work presented at the 2005
International Conference on Software Engineering [26] by
taking a closer look at variations in developers’ task
structures, task contexts, and perceptions of relevance. We
also present a new model of program understanding as a
process of searching, relating, and collecting information of
perceived relevance, in which the development environ-
ment plays a central role in influencing developers’
perceptions. This model is consistent with existing models
of program understanding, while explaining the structure
and sequence of developers’ actions in more detail. We also
found several ways in which development environments
help, hinder, and ignore developers’ strategies for seeking
and managing relevant information. For example, devel-
opers spent, on average, 35 percent of their time with the
mechanics of redundant but necessary navigations between
relevant code fragments. Furthermore, failed searches for
task-relevant code began with developers observing mis-
leading information cues in Eclipse. We use these findings
to discuss the design of current software maintenance tools
and also to motivate the design of new tools.

In the next section, we review related work in the area
of program understanding and investigation. In Section 3,
we describe the design and methodology of our study. In
Section 4, we investigate Eclipse’s relationship to devel-
opers’ work both qualitatively and quantitatively. In
Section 5, we discuss the limitations of our method and
analyses, and in Section 6, we present our model of
program understanding and its relationship to prior
theoretical work. In Section 7, we conclude with implica-
tions of our results on the design of software develop-
ment environments.

2 RELATED WORK

There is a long history of studies of program under-
standing, investigating a variety of factors. Many studies
have investigated the strategies that developers use to
understand programs. Some have discovered that devel-
opers ask questions about the structure, intent, and
behavior of software when asked to verbalize their thoughts
during maintenance tasks [27], [32], [49]. There is a general
consensus that these questions lead to informal hypotheses
[8], [24], which are then tested using two kinds of strategies.
Developers’ “systematic” strategies involve forming a
concrete plan and performing guided navigations of a
program’s dependencies. Developers’ “as-needed” strate-
gies tend to be more ad hoc, unplanned, and opportunistic
[29]. It has been shown in a variety of contexts that the
systematic strategies are more productive than the as-
needed strategies [7], [32], [37], [45], but that developers
generally use a combination of the two [4]. There is also
evidence that successful developers (of varying definitions)
write explicit implementation plans, including notes about
relevant information as they find it during a task [30], [45].

Another line of research has considered the knowledge
that developers form while understanding programs. For
example, studies have shown that developers often deter-
mine the statements that could influence a variable (a

backward slice) [50] and that automated tools for helping
developers determine these statements improve developer
success on debugging tasks [20]. Other studies suggest that
developers form mental models of the structure, intent, and
relationships in code, which guide their decision making
[35], [51]. Some studies found that developers have a
quickly degrading memory for such information [1], [17],
explaining why developers rely so extensively on external
memory sources, such as digital or paper notes and
whiteboards [16], [39].

Many studies have considered the influence of the
representation of various aspects of code on program
understanding. For example, a number of factors can
influence the speed and correctness of comprehension,
including the typographic appearance of code [3], the
indentation style used [33], the language in which a
program is written [23], and naming schemes of identifiers
[48]. Although these effects can be quite profound when
comparing developers of different expertise, studies have
shown that many of these effects disappear with increasing
experience [11], [12].

A number of studies have explored the influence of
collaboration on program understanding. This work has
focused on workplace interruptions, finding that devel-
opers are interrupted, on average, every three minutes by
themselves or others [22], [38] and that developers fre-
quently interrupt others in order to obtain difficult to find
or undocumented information about software [5], [30].

The study presented in this paper differs from the prior
work in several ways. Our study is the first to explore the
relationship between interactive aspects of modern SDEs
and program understanding. Studies that have investigated
similar issues have focused on other aspects of software
development and have involved older tools that differ in
their interactive nature from modern SDEs. Many of the
studies cited above also placed numerous restrictions on the
developers’ work in order to isolate the measurement of a
single variable. For example, some required developers to
separate their work into reading phases and editing phases
[45], despite evidence that developers frequently edit code
for the sole purpose of understanding (for example, by
inserting debug statements to understand a program’s
execution) [15]. Other studies disallowed the use of
debuggers and other tools, again despite evidence of their
common and essential use during maintenance tasks [30].
Our study relaxed these constraints, allowing us to study
maintenance work involving multiple tasks, multiple tools,
and developer-selected orderings.

3 METHOD

The developers in our study were asked to correctly
complete as many of five maintenance tasks over a 70-
minute period as possible, while responding to intermittent,
automated interruptions. Three of the tasks were debugging
tasks, requiring developers to test the program and
diagnose a particular failure. The other two tasks were
enhancement tasks, which required developers to under-
stand some portion of the system and modify it in order to
provide a new feature. We included interruptions because
of recent evidence that interruptions are frequent in

972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

software engineering workplaces [22], [38] and we wanted
to see in what ways development environments could help
developers manage and recover from them. Our decision to
study developers in the lab instead of in the context of
developers’ actual work was driven by our interest in
comparing developers’ strategies on identical tasks. Had we
studied developers working on different code, as would
have been the case in a more realistic context, we would not
know whether differences in developers’ work, if any, were
due to variations in their strategies, in their code, or more
likely, some combination of these and other factors.

3.1 Participants

We recruited 31 developers with experience with Java from
the local community, including both undergraduate and
graduate students and staff programmers. Analyses of
various subsets of these developers’ data have appeared in
other publications [19], [25], [26]; our analyses in this paper
focus on the 10 developers most experienced with Java,
based on a pretest, self-report survey: seven described
themselves as “Java experts” and the remaining three
described themselves as having “above-average” Java
expertise. All reported using either Eclipse or Visual Studio
“regularly,” and reported programming a median of
17.5 hours a week (the distribution was bimodal, with
developers programming either less than 20 hours or more
than 35). Although all claimed some degree of Java
expertise, we did not expect nor want a strictly uniform
sample because we were interested in seeing a variety of
approaches to completing the tasks that we designed. We
did, however, want to avoid analyzing novice Java pro-
grammers’ work because of the high variability in their
knowledge and decision making [14]. The 10 developers we
studied were all male, had ages ranging from 19 to 28, and
included six senior computer science students, two doctoral
students in computer science, and two MS students in
computer engineering and information systems.

3.2 The Paint Application

All of the tasks involved a program called Paint (shown
executing in Fig. 1). This was a Java Swing application,
implemented with nine Java classes across nine source files
and 503 noncomment, nonwhitespace lines (available at
http://www.cs.cmu.edu/~marmalade/studies.html). The
application allowed users to draw, erase, clear and undo

colored strokes on a white canvas. Its implementation was
based on the PaintObjectConstructor class, which
created a single PaintObject for each list of mouse
locations accumulated between mouse down and up events.
The canvas consisted of an ordered list of PaintObject
instances, which was rendered from least to most recent.
The application declared two subclasses of PaintObject:
PencilPaint and EraserPaint. The PencilPaint

class painted itself by iterating through the list of mouse
coordinates and drawing beveled line segments between
consecutive pairs. The EraserPaint class subclassed
PencilPaint, overriding its getColor() method to
return the color of the canvas, simulating the effect of an
eraser. Developers were given no documentation about the
implementation and the code was not commented.

Although the program was reasonably complex given its
small size and the lack of documentation about its design, it
was not as complex as programs that have been used in
other recent studies [45], which were on the order of tens of
thousands of lines long. Our primary reason for studying a
smaller program was that it allowed us to investigate
developers’ work on several different tasks and detect
variations in developers’ strategies on these different tasks;
most prior studies have focused on a single task on a larger
system.

3.3 Tasks

The developers were given a sheet of paper with the text in
the middle column of Table 1, which describes five invented
user complaints and requests. The task names in Table 1 are
used throughout this paper but were not given to
developers. The descriptions explained the requirements
for each task, so that each developer would have a similar
understanding of the functional requirements. The last
column of Table 1 describes a solution to each problem,
including the minimum number of lines that had to be
added, removed, or modified, and in how many files. These
solutions were deemed by the author of Paint to be most
consistent with the program’s design. Because there were
many valid solutions for each task, we accepted any
solution that led to appropriate behavior (developers’
actual code was verified later before our analyses). The
errors for the debugging tasks were not artificial, but
emerged during the creation of Paint.

3.4 Tools and Instrumentation

The developers were given the Eclipse 2.1.2 IDE (released in
March of 2004) and a project with the nine source files. They
were allowed to use debuggers, text editors, paper for
notes, and the Internet. The only resource they were not
allowed to use was the experimenter, who was only
permitted to answer clarifying questions about the func-
tional requirements described in the task descriptions. The
browser’s default page was the Java 1.4 API documentation.
Developers used a PC with Windows XP, a keyboard, a
mouse with a scroll wheel, and a 1700 LCD. Because our
analyses would involve a careful inspection of the devel-
opers’ actions, even at the level of mouse cursor move-
ments, we recorded every detail of developers’ work with
full screen-captured videos at 12 frames per second in 24-bit
color, as well as audio. The display was limited to a
resolution of 1;024� 768 to prevent any impact of the
recording on the PC’s performance.

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 973

Fig. 1. The Paint application.

3.5 Interruptions

Interruptions came from a server on the experimenter’s
machine and appeared on the developer’s machine as a
flashing taskbar item with an audible alert, as shown in
Fig. 2a. The interruptions were designed to require the
developers’ full attention, mimicking real interruptions
such as requests from coworkers for help on unrelated
projects [38]. Thus, when clicked, a full-screen dialog
appeared with a 2-digit multiplication problem and a text
box for the answer, as shown in Fig. 2b. Although the
developers were told that they were not allowed to use any
external resources to solve these problems, most found
them so difficult that they used the text field to store
intermediate results while the experimenter was not
looking. The server sent interruptions every two and a half
to three and a half minutes. The order of the multiplication
questions was fixed and identical for all developers. Each
question was unique and did not contain 0 digits.

3.6 Procedure

The developers worked alone in a lab and began by
completing a survey on their programming expertise. They
were then told that they would be given five user
complaints and requests for an application and would have
70 minutes to complete as many as possible (the 70 minute
limit was made to keep the full session under two hours).
Developers were told they would be paid $10 for each
request correctly completed. They were then told that a
flashing taskbar item would occasionally interrupt them
and that they should click it “when they were ready” and
answer the arithmetic problem presented. The experimenter
then explained that they would lose $2 for each interruption

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

TABLE 1
The Five Maintenance Tasks

Fig. 2. (a) The flashing taskbar notification and (b) one of the arithmetic

interruption tasks.

ignored or answered incorrectly (this was used to give the
interruptions some cost during the study, but was not
actually enforced when developers were paid). Developers
were then told that their work would be recorded with
screen capturing software and were then given the user
complaints and requests and asked to begin. Afterward, the
experimenter tested the developers’ solutions for correct
behavior on the five tasks, paid the developers accordingly,
and then answered any questions about the study.

4 RESULTS

In this section, we provide both qualitative and quantitative
evidence for a number of patterns, based on about 12 hours
of screen-captured video across 10 developers’ work. Our
method for analyzing the videos involved two phases. In
the first phase, we looked ahead in each developer’s video
to find what code they inspected and modified and what
behaviors they tested. Because there were only five tasks,
this was enough information to determine the task they
were working on. Once we determined the task, we
scanned backward in the video to find the moment when

the developer began the task. This was obvious from pauses
in activity after the developer tested the behavior they were
modifying or implementing in their previous task. Once we
had the sequence of tasks that a developer worked on, we
then observed each task in detail, studying developers’
individual actions, navigations, and choices, attempting to
infer their high-level goals, and noting any interesting
patterns regarding information seeking and management.
While we did this, we also generated a list of the developer
actions that we felt were important to understanding their
behavior. These are listed in Table 2. Two of the authors
performed all of these observations together over about
40 hours.

In the second phase, we used the actions in Table 2 to
create a log of each developer’s work to facilitate our
analyses. The same two authors, on separate computers,
stepped through the video, cooperatively creating a single
log of each action, its start and stop time, and, if relevant, a
description of the code that was operated on and the user
interface that was used to perform the action (for example,
static dependencies could be followed using the Eclipse
Open Declaration command, using one of the commands in
the Java Search dialog, or manually). In addition to the
actions in Table 2, we also recorded our inferences about
developers’ questions and hypotheses, based on the
information they investigated. To help us detect navigations
of dependencies in the program, we enumerated the Paint

application’s static dependencies prior to transcription.
Each 70 minute video took about 3 to 4 hours to transcribe,
resulting in 2,870 actions (shown by task and developer in
Table 3). During this process, there were never disagree-
ments about whether a developer action had actually
occurred, but there were many cases where one author
missed an action that the other found. This synchronized
logging allowed us to catch many actions that would have
otherwise been omitted.

Once we had created transcripts for each developer, we
set out to analyze the patterns that we had observed in the
first phase of our analyses. As we discuss our results in this
section, we will report per-developer averages for reason-
ably normal distributions, as average (� standard deviation)
and medians for other distributions. All time proportions
that we report exclude any time spent on handling the
interruptions, which accounted for an average of 22 percent
(� 6) of the developers’ time.

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 975

TABLE 2
Developer Actions Transcribed from the Screen-Captured

Videos and Examples of Events in the Videos
that Indicated the Action had Occurred

TABLE 3
Task Completion Statistics for the 10 Developers, Including the Average Time Spent on Each Task

and the Number of Actions per Task per Developer

4.1 Division of Labor

Table 3 lists the number of developers attempting and
completing each task and the average time spent on each.
Developers finished an average of 3.4 (� 0:8) tasks in
70 minutes. Almost everyone finished the YELLOW, UNDO,
and THICKNESS tasks but spent most their time on the
more difficult tasks, SCROLL and LINE. One developer
completed all five correctly.

The bar chart shown in Fig. 3 portrays developers’
average division of labor in terms of the actions in
Table 2. Developers spent about a fifth of their non-
interrupted time reading code, a fifth of their time editing
code, a quarter of their time performing textual searches
and navigating dependencies, and a tenth of their time
testing the Paint application. An average of 5 percent
(� 2) of each developer’s time was spent switching and
reorienting between Eclipse, the Web browser, interrup-
tions, and Paint. Of the 6 percent (� 4) of time that was
spent reading the Java APIs, nearly all of it was read in
the context of the Javadoc documentation within the Web
browser, despite evidence that each developer knew that
documentation was accessible within Eclipse. In a few
cases, developers used Google to search documentation
and examples. Of course, each developer had a unique
distribution of labor, as noted by the error bars. For
example, some developers spent more time editing than
others and correspondingly less time on other activities.

4.2 Task Structure

The activities in Fig. 3 were not independent: Before editing
code, the developers had to determine what code to edit,
and before determining this, they had to find it. Although
all of these low-level actions were interleaved to some
degree, our observations of developers’ work indicated a
higher-level sequence of choosing a task to work on,
searching for task-relevant information, understanding the
relationships between information, and editing, duplicat-
ing, and otherwise referencing the necessary code. Because
developers’ searches often failed and developers often

inserted errors that had to be fixed, portions of this
sequence were interleaved.

To attempt to illustrate this sequence with data, we
grouped the actions listed in Table 2 into four categories:
searching, navigating, editing, and other. In the first category
were textual searches and reading task descriptions; in the
second were static dependency navigations, switching
between files, and reading API documentation to under-
stand API dependencies; in the third were copying and
editing code and indirect dependency navigations (as
defined in Table 2), which occurred later in the task, once
the developer had comprehended the necessary code. The
remaining actions, such as testing and switching files,
were categorized as other, since they were activities that
seemed to occur throughout the developers’ work. We
then categorized each action from the THICKNESS and
YELLOW tasks (allowing us to compare an enhancement
task and debugging task that all developers completed).

Using these categorizations, we plotted each developer’s
action sequence, resulting in Fig. 4. The vertical axis is the
category of action (we exclude the other category for clarity),
and the horizontal axis is time, normalized between the
start and end of work on the task. Our categorization was
only an approximation: a textual search did not always
indicate that the developer was looking for task relevant
code, because in many instances, developers used textual
search as a navigational tool to get from one place in a file to
another. Within the plots, there were also several activities
interleaved. For example, while determining where to add a
declaration for a thickness slider, several developers also

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

Fig. 3. Developers’ division of labor in terms of time on activities. The

vertical bars represent one standard deviation above and below the

mean.

Fig. 4. The developers’ actions for the THICKNESS and YELLOW

tasks.

inspected the nearby slider event handler. Once developers
had implemented a solution in both of these tasks, they
often had to return and correct errors, which involved
further navigations and edits later in the task.

Despite the limitations of our categorization, the plots
reveal several patterns. For example, there were few early
edits for the YELLOW task, which was a debugging task.
One explanation for this may be that there was little to edit
on this task until the developer determined the cause of the
problem, whereas for the THICKNESS task, there were
several things developers could edit before having a
complete solution. For example, when we inspected these
early THICKNESS edits, they were all situations in which
the developers inserted a declaration for a new thickness
slider, and they knew to do this because they had already
worked on the YELLOW task and knew that a slider
declaration was necessary.

4.3 Searching for Task Relevant Information

For most tasks, developers began by searching: Of the
48 instances of a developer beginning work on a task, 40
began with a textual search for what developers perceived
to be a task-relevant identifier in the code, either manually
or using one of Eclipse’s textual search tools. The remaining
8 began by browsing the files, methods, and fields in the
Eclipse package explorer.

For the debugging tasks (SCROLL, YELLOW, and
UNDO), developers used symptoms and surface features of
the program’s failure to guide their searches. For example,
eight of the nine developers who attempted the SCROLL
task first resized the Paint window and noticed that the
canvas was only partially painted; thus, they searched for a
method with the name “paint” in it, which always resulted
in the paintComponent() method of the canvas, which
was not responsible for the bug. An average of 88 percent
(� 11) of developers’ searches led to nothing of later use in
the task. These failed searches were at least partially
responsible for the average of 25 (� 9) minutes of their
time (about 36 percent) spent inspecting irrelevant code.
That no one identifier in the code could fully represent the
code’s purpose is generally called the vocabulary problem
[21]. The cost of these incorrect guesses in the debugging
tasks demonstrates how much the developers’ early
perceptions of relevance impacted their work.

When developers began the enhancement tasks (LINE
and THICKNESS), their investigations of the source code
were driven by a search for extension points in the code. For
example, five of the developers began the THICKNESS task
by searching for how the other sliders were implemented,
and duplicating the code, three learned how to create an
action object for the thickness slider, and two began by
searching for how the stroke thickness might be set,
investigating the PaintObject and PaintCanvas classes. Of
the eight developers who attempted the LINE task, three
began by inspecting how the pencil and eraser tools were
implemented, eventually copying one of them, two began
by investigating how the application created paint objects
from the mouse events, two began by investigating the
Action objects defined by for the pencil and eraser tools, and
one began by investigating how to render lines.

4.4 Forming Perceptions of Relevance

The process that developers used to determine the
relevance of code or information involved several levels of
engagement with information and several types of cues to
which developers attended in order to decide whether to
continue comprehending some information. For example, a
common progression in our observations was as follows: A
developer would look at the name of a file in the package
explorer in order to judge its relevance. If it looked
interesting, he would hover over the file icon with the
mouse and possibly select (but not open) the icon. At this
point, if he thought the name seemed relevant, he double-
clicked on the icon to open the file, or expanded the node in
the package explorer in order to inspect its contents.
Developers who expanded the explorer node hovered over
the names of methods and fields, looking for relevant
identifiers, whereas developers who opened the file tended
to scroll through the file, skimming the code for identifiers
that looked relevant or comments that might explain the
intent of the file. If developers found a method or algorithm
of interest, they would inspect it more closely, sometimes
even selecting the text of the code repeatedly.

The user interfaces that Eclipse provided for summariz-
ing code, such as the package explorer and search tools,
determined the structure of these investigations. For
example, Eclipse’s package explorer allowed developers to
consider file names and identifiers before looking at more
detailed information. Had these interfaces not been avail-
able, developers would have had to open many more files
and look at more information before finding what they
believed to be relevant code. One problem with these
summaries was that they were often misrepresentative of
the content. The most glaring examples of this in our data
involved misleading names. For example, when developers
worked on the YELLOW task, half of them first inspected
the PencilPaint class, but the file that was actually
relevant was the generically named PaintWindow.

4.5 Types of Relevance

There were several types of relevant information. Devel-
opers found code to edit and returned to it after
referencing other information. In the enhancement tasks,
developers found code to duplicate, returning to it for
reference after they had made changes to their copy of it.
The developers also looked for code that helped them
understand the intent and behavior of some other relevant
code. For example, developers sought the documentation
on the constructors of the JSlider class because they
did not know how the various integer arguments would
be interpreted. The developers spent time investigating
helper classes, such as PaintObjectConstructor, to
help them understand the purpose of other code they had
to duplicate or modify. The developers also looked for
code to reference, to help determine the appropriate design
for some implementation. For example, when working on
the THICKNESS task, all of the developers examined the
way that the author of the Paint application had
instantiated and added existing user interface components
in order to guide their own implementation. Of course,
there may be other types of relevance that we did not
observe in our study.

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 977

4.6 Navigating Dependencies of Relevant
Information

After reading a segment of code, developers explored the
code’s incoming and outgoing dependencies. During this
exploration, developers generally followed the static rela-
tionships listed in Table 4. Overall, each developer
navigated an average of 65 (� 18) dependencies over their
70-minute sessions; these were inferred during our tran-
scription process, since few of them used Eclipse’s naviga-
tion commands. There were two types of dependency
navigations that we transcribed. Some were direct depen-
dencies that could be determined by static analyses, such as
going from a variable’s use to its declaration, or from a
method’s header to an invocation of the method. The other
type of navigation was of indirect dependencies, such as
going from a variable’s use to the method that computed its
most recent value. These were program elements that were
indirectly related by two or more static dependencies.
Developers tended to make these indirect navigations later
in each task, as seen in the “editing” phases in Fig. 4.
Developers’ proportions of each type of dependency
navigation are given in Table 4.

An average of 58 percent (� 20) of developers’
navigations were of direct dependencies. Though every
developer used Eclipse’s support for navigating these
direct dependencies (the Open Declaration command and
Java Search dialog) at least once, only two developers used
the tools more than once, and only then for an average of
4 (� 2) navigations. Instead, they used less sophisticated
tools such as the find and replace dialog. There are several
possible reasons why they chose to use these less accurate
tools. Using the Java Search dialog required filling in many
details and iterating through the search results. Then, in
using both the Java Search and Open Declaration tools, new
tabs were often opened, incurring the future cost of
visually searching through and closing the new tabs if the
files they represented did not contain relevant informa-
tion. The developers used the find and replace dialog for an
average of 8 (� 6) of their navigations of direct relation-
ships, and spent an average of 9 (� 5) seconds iterating
through matches before finding a relevant reference. Also,
in the six cases of using the dialog, developers did not
notice that “wrap search” was unchecked and were led to
believe that the file had no occurrences of the string. One

developer spent six minutes searching for a name else-
where before finding that there were several uses in the
original file.

Many of the developers’ direct navigations involved
navigating between multiple code fragments. We inspected
each developer’s transcript and video and flagged each
direct navigation that returned to a recently viewed
location. Overall, an average of 27 percent (� 13) of the
developers’ navigations of direct dependencies returned to
code recently navigated from. When inspecting these
returns in the videos, some were comparisons, in which
developers went back and forth between related code
multiple times. Of course, since all developers used a single
editing window, developers had to navigate back and
visually search for their previous location, costing an
average of 9 (� 7) seconds each time accumulating to
2 (� 1) minutes per developer overall. Eclipse support for
navigating back to the previous cursor position rarely
helped, because developers rarely went directly back to the
most recent location, but to some less recent location.

An average of 42 percent (� 20) of the developers’
navigations were of indirect dependencies (this proportion
may be even higher, given the difficulty of detecting them
in the videos). Because Eclipse’s support for navigating
direct dependencies was unhelpful for these, the developers
used the scroll bars, page up and down keys, the package
explorer and the file tabs instead. When navigating within a
file using the scroll bars, scroll wheel, or page up and down
keys, the developers had to perform visual searches for
their targets, costing each developer, on average, a total of
10 (� 4) minutes. Three developers avoided this overhead
by using Eclipse’s bookmarks to mark task-relevant code
but then always ended up having more than two book-
marks to choose from and could not recall what code each
one represented. This required clicking on each bookmark,
which was no faster than their average scrolling time.
Bookmarks also incurred the “cleanup” costs of their later
removal when starting a new task. To navigate indirect
relationships that were between files, the developers had to
use the package explorer and the file tabs. When several tabs
were open (as in Fig. 5), developers could not read the file

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

TABLE 4
Types of Dependencies Navigated, the Average Percent of

Each Type for a Developer, and the Tools
that Developers Used to Perform Each

Fig. 5. The package explorer, file tabs, and scroll bars of Eclipse.

names because they were displayed in abbreviated form and
many shared the common prefix of “Paint” in their name. If
the package explorer had several expanded nodes (as in
Fig. 5), the developers had to scroll to find their targets.
Overall, this overhead cost each developer 5 (� 1) minutes.

An average of 34 percent (� 23) of developers’ naviga-
tions of indirect relationships returned to a code fragment
that was recently inspected. When investigating these
navigations in the videos, nearly all seemed to be for the
purpose of juxtaposing a set of code fragments while
editing many dependent fragments. In each of these cases,
the developers searched for an average of 10 seconds (� 14)
before finding their target, costing an average of about
2 (� 1) minutes of visual search per developer. Although
Eclipse supports viewing multiple files side by side, placing
any more than two files side by side would have incurred

the interactive overhead of horizontal scrolling within each
of the views.

4.7 Representing Task Contexts

The developers kept track of relevant code and information
in numerous ways. They used the package explorer and file
tabs to keep track of files that contained relevant informa-
tion. Each file’s scroll bars and text caret helped temporarily
mark the most recent relevant segment of code. Two of the
10 developers used bookmarks to mark a line of code. In
some cases, the developers even used the undo stack in
order to access earlier versions of code they had since
modified. Outside of Eclipse, the developers also used the
Windows taskbar to keep track of running applications, and
the Web browser’s scroll bars to mark relevant sections of
documentation. Two of the developers used paper notes to
write down important information, such as method names.

These interfaces essentially “cached” the efforts of devel-
opers’ prior navigations by keeping track of the relevant
information they had found, helping a developer to collect a
set of relevant information (their task context).

Although these interfaces were helpful, they were far
from perfect. The scroll bars only helped developers
remember the most recent relevant section of code in a file,
and as soon as they moved it, the mark was lost. Five
developers temporarily left the LINE and SCROLL tasks to
work on easier tasks, but because part of their task context
was represented by the open file tabs and the state of the
package explorer (see Fig. 5), they often lost their task
context when closing tabs or package explorer nodes to
make space for information relevant to the new task. When
developers returned to their earlier task, they spent an
average of 60 seconds (� 28) recovering their task contexts.
Furthermore, tabs opened during previous tasks made it
more difficult to find relevant tabs, because the tab names
were truncated (as seen in Fig. 5). One problem with the
package explorer was that developers often found a
relevant method or field in a file, but to use the explorer

to navigate to it, they had to keep the whole file expanded.
For example, the developers used the explorer to navigate
to pencilAction for reference during the LINE task
(shown in Fig. 5), but in doing so, they also had to show all
of the irrelevant code in Action.java.

4.8 Variations in Developers’ Task Contexts

It was unlikely that the developers in the study would all

find the same code relevant to a task, since each of the

developers did the tasks in different orders and had

different levels of experience with Java and the Swing

API. This led to several questions:

. What information did all developers find relevant,
and how did it relate to the code that was actually
relevant to a task?

. How did developers’ task contexts differ?

. How often did developers return to code they
perceived as relevant?

. What granularity of information did developers
deem relevant?

To answer these questions, we needed to know what

code developers thought was relevant and what code

they did not. Because we did not have this information

—and developers may not have even explicitly formed

this knowledge—we decided to approximate it by looking

for developer actions that might indicate a developer’s

decision that some code or information was relevant.

Because of evidence that there were several stages

involved in forming perceptions of relevance, we chose

to ignore the more preliminary decisions of relevance,

such as opening a file or reading a method, and instead

focus on more final indicators: 1) editing a code fragment,

2) navigating a dependency from a particular line of code,

and 3) dwelling on API documentation found as a result

of reading a particular identifier in a particular line of

code. Although each of these indicators are not without

uncertainty, they allowed us to approximate the set of

code fragments that each developer may have thought

relevant. Unfortunately, we do not know what developers

would have actually chosen, and so we cannot assess the

error in our approximation.
We used these three indicators to select a subset of

actions from developers’ THICKNESS and LINE tasks that

suggested decisions of relevance. We chose these two tasks

because they required the greatest amount of code to write

and modify in order to successfully complete, but also

because most developers finished them. By looking for

indicators such as the text caret and mouse cursor move-

ment and text selections in the video, we determined the

source code lines or other information that the developer

may have decided were relevant. In most cases, this

information was just a single line, but others were

sequences of lines and, more rarely, a whole method. After

this analysis, we had approximations of each developers’

task contexts for the THICKNESS and LINE tasks, and the

sequence of their formation.
The resulting sets of relevant information are shown for

all 10 developers in Table 5. The first column is the

developer ID, and the second and fourth columns contain

the number of relevant lines for the THICKNESS and LINE

tasks, respectively, the files they were in (in order of

decreasing number of relevant lines), and also the number

of times relevant code was returned to. The third and fifth

columns list the amount of time each developer spent on the

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 979

tasks. The minimum number of lines to successfully
complete each task was 12 for THICKNESS and 15 for LINE.

What information did all developers find relevant, and
how did it relate to the code that was actually relevant to a
task? In general, successful developers’ relevant informa-
tion included the parts of the program that were part of the
solutions described in Table 1. For example, everyone found
similar segments of the PaintWindow class’s constructor
method relevant, because that was the place where the user
interface was constructed and, thus, where the thickness
slider would be added. Everyone who was successful at
creating a line tool found the Actions class relevant,
because that class had to be modified to include an action
for the line tool radio button.

How did the developers’ task contexts differ? One way
was in how much information they deemed relevant. For
the THICKNESS task, the developers deemed an average
of 33 (� 9) lines relevant, and for LINE, a median of
14 lines, not including the LinePaint class that each
developer wrote, which was generally about 20 lines. For
both of these tasks, this was about 7 percent of the 508
lines in the whole program. Note that this is less than the
standard 40 lines visible in an Eclipse editor or other

standard code editor, but in none of these editors is it
possible to show these exact lines together in a single
view. The developers also differed in the kind of
information they found relevant. For example, many
developers consulted documentation on the JSlider

class, and many looked for examples on how to use the
class. Other differences seemed due to strategy. For
example, the developers differed on which lines of
PencilPaint were relevant to the THICKNESS task
because some noticed the setThickness() method, but
those that did not changed the rendering algorithm instead.
Other differences were due to prior understanding of the
program; for example, some developers on the THICKNESS

task only looked at the few files necessary to modify,
possibly because they learned about other information in
earlier tasks. Others indicated part of almost every file
relevant, possibly because they needed or wanted to
understand more about how the strokes were being
generated and rendered.

How often did developers return to code they perceived
as relevant? For the THICKNESS task, developers returned
an average of 18 (� 9) times to code that we transcribed as
relevant, and for the LINE task, an average of 12 (� 9) times.

980 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

TABLE 5
An approximation of Developers’ Task Contexts for THICKNESS and LINE, Derived from Edits,

Dependency Navigations, and Searches for Text Strings

Not only does the magnitude of these numbers give some
validity to our measurements of perceived relevance, but it
also reinforces our earlier findings of navigational bottle-
necks in the Eclipse user interface (Section 4.6). There was
no linear relationship between the time that a developer
spent on a task and the number of relevant lines of code
deemed relevant. There was a linear relationship between
time on task and the number of returns on the THICKNESS
task (R2 ¼ :65, F ¼ 17:8, p < :005), but not for LINE. This
difference may be explained by that fact that the most of the
new code required for the LINE task was contained within a
single method, unlike the THICKNESS task.

Although our method of deciding what code a developer
deemed relevant biased the granularity of the relevant
information, we can infer from the videos the higher level
structures that developers may have thought relevant. Most
of the developers’ relevant information were single state-
ments or pairs of statements; however, there were also
several small subsections of the PaintWindow constructor
that developers indicated as relevant. The developers
indicated several whole methods as relevant, but these
were generally getters, setters, and other simple methods.
The developers rarely indicated the whole body of more
complicated methods as relevant.

4.9 Impact of Interruptions

In order to understand the impact of interruptions, we
analyzed all of the situations in which developers were
interrupted and compared what the developers were doing
before the interruptions to what they were doing after.
Interruptions had an impact on the developers’ work only
when two conditions were true: 1) an important task state
was not externalized into the environment at the time of
acknowledging the interruption and 2) developers could
not recall the state after returning from the interruption. The
developers were very careful to externalize important task
states before acknowledging the interruption. For example,
in every case where a developer was interrupted while he
was performing an edit, whether large or small, the
developer always completed the edit before acknowledging
the interruption. This was even the case when one
developer had just copied the entire PencilPaint class
in an effort to convert it into a new LinePaint class: Before
acknowledging the interruption, he modified the class
name, constructor name, commented out the old rendering
algorithm, and wrote a comment about an implementation
strategy for the new algorithm. In other cases where the task
state was stored implicitly in Eclipse, developers forgot to
externalize the state. For example, seven developers were
interrupted just after repairing a syntax error but just before
saving the changes. If they had saved, it would have caused
Eclipse to incrementally compile and remove the syntax
error feedback. Because they did not save, when they
returned from interruptions, they often saw the underlined
syntax error, and tried to repair the already valid code. In
these seven cases, developers spent an average of 38 seconds
before they realized that Eclipse’s feedback about the syntax
errors was out of date because they had not invoked the
incremental compiler (more recent versions of Eclipse have
rectified this problem).

5 LIMITATIONS

5.1 Measurement Error

Many of our findings were based on subjective interpreta-
tions of the developers’ behaviors, so it is important to
characterize the sources of error in our measurements and
their impact on our findings. All of the data reported in this
paper was based on our transcription of developers’
actions. To assess the error rate in this transcription, we
randomly sampled three task sequences from different
developers and carefully compared them to the videos. This
revealed three omitted dependency navigation actions and
three transcription errors out of 108 actions. Therefore, one
estimate of the error rate in our data would be about
5 percent. In general, these errors were not due to
disagreements about whether an action had occurred or
what type of action it was, but rather to the high level of
difficulty of coding particular actions. For example, it was
easy to identify application switching and code editing, but
more difficult to identify dependency navigations.

This error rate affects a number of our results. The
statistics in Fig. 3 would likely be impacted. For example, if
we missed 5 percent of dependency navigations, there
would probably be an average of 68 navigations per
participant instead of 65. This would then impact the
estimate of the time spent reading code, which was
generally the default category when we observed no other
actions. Our transcription error rate also impacts our
proportion estimates of kinds of navigations (Table 4),
and likely increases the number of navigations that were
coded as returns (Section 4.6), which would increase the
amount of time we estimated developers spent doing visual
searches and scrolling. Because our transcription errors
were omissions, most of the raw numbers we reported
would simply increase, so our interpretations remain the
same.

Another source of error are the time measurements,
which were coded from time stamps in the videos, which
were recorded by the second. Therefore, the time spent on
each task could change slightly, and the durations that we
reported would then have an error of � 2 seconds, which
could cause minor changes in our estimates. Despite this
source of error, the error is likely to be distributed
throughout our measurements, and so it likely impacts all
of our data equally.

The estimates of code that developers deemed relevant
in Section 4.8 are another potential source of error. These
estimates were conservative in the sense that they were only
based on explicit actions taken by the developers; we did
not attempt to identify code that developers may have
thought relevant but made no explicit action to indicate.
Therefore, developers may have deemed many more lines
relevant, but probably not fewer. Furthermore, relevance is
not necessarily discrete; if asked, developers may just
indicate a general area of a source file.

5.2 External Validity

Because this was a lab study, there are obvious limitations
on our study’s external validity. First, the size and
complexity of the Paint program is not representative of
most heavily maintained software systems. This may have

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 981

led us to observe work strategies that are dramatically
different from those when developers face hundreds of
thousands of lines of code, rather than hundreds. Our
hypothesis is that the general strategies that developers
used in our study would still be present in these situations,
but particular activities, such as searching for relevant code
and navigating dependencies, might require different tools
and occur at different time scales (for example, developers
would probably not use the package explorer to navigate
among thousands of items). This is partially confirmed by
some of the findings of Robillard et al.’s study of the
medium-sized JEdit application [45], but it should be further
investigated in larger systems. In addition to the program
itself, the tasks that we designed could be called “quick fix”
maintenance tasks, which may have a different character
than other methods of software maintenance, such as agile
methods or methods based on impact analysis. The tasks
were also primarily GUI tasks and it is unknown whether
developers’ strategies differ for less visual programs. The
lack of comments in the source code in our study are
another limitation, especially given the importance of
information cues suggested by our results. Had these cues
existed, we may have seen more successful searches and
less navigation.

The limited size of our sample and the limited experi-
ence of the developers in the sample both limit our study’s
generalizability. It may be the case that even within this
population, there are variations in strategies that we did not
observe because of our small sample. The developers with
more experience in industry may be different because of
their work context and depth of experience. The developers
who work in teams may have different strategies for
maintaining code that do not involve the sequence of
high-level activities that we observed in our study. For
example, it may be the case that, rather than searching to
find relevant code, developers seek out a colleague they
know to be more experienced for a particular aspect of the
software and obtain hints about relevant code. Furthermore,
because developers were unfamiliar with the code, our
results may not generalize to collaborative situations in
which developers are quite familiar with the code they are
responsible for maintaining. Further studies of maintenance
work are required to verify the generalizability of our
findings in these contexts.

Our investigation only considered one programming
language and one development environment. Some of our
findings would obviously be different if other languages
and environments were used. For example, the dependen-
cies that developers navigated depended on the types of
dependencies expressible in Java (although most widely
used languages are quite similar). The user interfaces that
developers used to represent their task context would likely
differ in command-line environments. For example, per-
haps developers who use command-line tools are better
able to keep their task context in memory and are less
reliant on their tools. Or perhaps they use different tools as
memory aids, which have a different influence on the
developers’ work.

The time constraints we imposed were also somewhat
artificial. For example, there may have been little incentive

for developers to deeply investigate any problem on the
Web or with a debugger because they may have felt
pressured to complete all of the tasks in the 70 minutes.
Furthermore, they may have felt unable to leave their work
and focus on some other nondevelopment task, such as
learning about the Swing API for future use; this may have
impacted their problem solving efficacy, given evidence
that time away from difficult problems can help people
change their mindsets and conceive of new solutions [2].
The interruptions in the study were also artificial in several
ways. No interruption was more or less useful to acknowl-
edge than another; in reality, some interruptions are
beneficial [22]. Furthermore, no interruption was more or
less valuable socially; interruptions by friends and family
may have caused developers to acknowledge interruptions
without first externalizing important task state, possibly
leading to errors. Finally, all of the interruptions took a
similar amount of time; in the real world, some interrup-
tions can be hours or days long.

Our limitation of the screen resolution to 1;024� 768
could have been the source of many of the interactive
bottlenecks that we observed in our data. It is possible that
with a larger screen resolution, many of these effects would
disappear or be lessened. However, while more space
would leave more room for file tabs and result in fewer off-
screen code fragments, this could have easily introduced
issues with screen real estate management, replacing one
interactive bottleneck with another.

6 IMPLICATIONS FOR THEORY

We believe that our findings about developers’ search
strategies (Section 4.3), the importance of the user interface
in perceptions of relevance (Section 4.4), the frequency with
which developers returned to certain fragments of code
(Section 4.6), and the variation in developers’ task contexts
(Section 4.8) call for a new model of program under-
standing. Our model describes program understanding as a
process of searching, relating, and collecting relevant informa-
tion, all by forming perceptions of relevance from cues in
the programming environment.

To help explain this model, suppose we consider a
program and its metadata such as comments and docu-
mentation as a graph consisting of individual fragments of
information as nodes, and all possible relationships
between information (calls, uses, declares, defines, etc.) as
edges. In this representation, the code relevant to a
particular task will be one of many possible subgraphs of
this graph, with the particular subgraph for a developer
depending on the implementation strategy, the developer’s
experience and expertise, and other factors. Using this
representation, we can think of a developer’s program
understanding process as described in Fig. 6. A developer
begins a task by looking for a node in the graph that seems
relevant (searching). To do so, they use cues throughout the
development environment, such as identifier names, com-
ments, and documentation, to form perceptions about the
relevance of information. Once a developer has found what
is perceived to be a relevant node, the developer attempts to
understand the node by relating it to dependent nodes
(relating). Because each node in the graph could have a vast

982 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

number of related nodes, the developer uses cues in the
programming environment to determine which relationship
seems most relevant. After choosing and navigating a
relationship, the developer may investigate nodes related to
the new node, and so on, or return to a previous node. If, at
any point in this cycle of relating, the developer believes
there are no more relevant cues, the developer drops out of
the relating cycle and goes back to searching for a new node
to comprehend. As this searching and relating continues,
the developer gathers any nodes that seem necessary for
completing the task, whether for editing, reference, or other
purposes (collecting). If, at any point, the developer believes
that the nodes that have been collected are sufficient to
implement a solution for the task, the developer drops out
of this understanding process altogether and focuses on the
information collected to implement a solution. Problems
during this implementation process then may lead to
further search, relate, and collect activities.

Within this model, two factors are central to a devel-
oper’s success: 1) the environment must provide clear and
representative cues for the developer to judge the relevance
of information, and 2) the environment must also provide a
reliable way to collect the information the developer deems
relevant. If an environment does not provide good cues, it
may lead to fruitless investigations; if an environment does
not provide an effective way to collect information, the
developer will have to retrace his steps to locate informa-
tion that has already been found.

Our model of program understanding is directly
informed by information foraging theory [40], which posits
that people adapt their strategies and environment to
maximize gains of valuable information per unit cost. It
proposes that a central mechanism of this adaptation is
information scent: the imperfect “perception of the value,
cost, or access path of information sources obtained from
proximal cues.” In general, these cues include artifacts such
as hyperlinks on a Web page or graphical icons in a toolbar.
In software development environments, they include the
names of program elements, comments, the source file
names, and so on. Information foraging theory may suggest
more rigorous explanations of how developers might form
their perceptions of relevance, so future work should
further investigate its relationship to our model.

With regard to existing models of program under-
standing, our model is largely consistent with their
predictions; the difference is that our model suggests a
lower-level explanation of developers’ actions than prior

work. For example, many models have argued that
developers begin with questions and form hypotheses [8],
[27], [49]; this corresponds to the searching part of our
model, in which developers ask “What is relevant?” and use
cues to both form and test hypotheses about what is
relevant. Other models have focused on high-level strategic
differences, such as whether developers understand pro-
grams from the top down or bottom up [12], [32], [49], and
whether they use systematic or as-needed strategies [29];
recent work on these issues tend to suggest that developers
do all of these [45]. Under our model, a top-down strategy
involves choosing a high-level node and following more
specific dependencies; a bottom-up strategy is just the
reverse. An as-needed strategy might involve many short
paths through this graph, whereas a systematic strategy
would likely involve longer and more consistent paths.
Our model allows for all of these possibilities and
predicts that the particular strategy chosen depends on
the cues provided in the environment. Models of knowl-
edge formation during program understanding [35], [51],
which have suggested that a developer’s mental model
consists of relationships between code elements and the
purpose and intent of these elements, are consistent with
our description of knowledge as the combination of paths
that a developer has traversed in a program over time and
their existing knowledge. Finally, because our model
describes a pattern of activity that is fundamentally driven
by cues offered by the environment and the developers’
perceptions of their relevance, it is also consistent with
research on the influence of the visual representation of
code on program understanding [3], [23], [33], [48].

7 IMPLICATIONS FOR TOOLS

While no single navigational problem in any of the devel-
opers’ activities incurred dramatic overhead, overall, navi-
gation was a significant component of developers’ time. The
total time developers spent recovering task contexts,
iterating through search results, returning from navigations,
and navigating between indirect dependencies within and
between files was, on average, 19 minutes (35 percent of the
time not spent answering interruptions). While much of this
navigation was a necessary part of the developers’ work,
some of it was simply overhead, and, as we have seen,
many of the navigations were repeated navigations that
might have been avoided had more helpful tools been
available. Although tools are only part of the complex

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 983

Fig. 6. A model of program understanding in which developers search for relevant information and relate it to other relevant information while

collecting information necessary for eventually implementing a solution.

nature of software engineering work, it is worthwhile to
discuss how they might impact developers’ day-to-day
efforts.

7.1 Helping Developers Search More Effectively

Much of the navigational overhead in our study was
caused by the developers’ use of inadequate or mis-
representative cues in the development environment to
guide searches (Section 4.3). One approach to alleviating
this is to provide better relevance cues. Some studies
suggest that the most important information in under-
standing code is its purpose and intent [30]. For example, a
method named paintComponent likely does something
close to what it describes. Although our data suggests that
names are an important way to indicate purpose, names can
also be misleading, causing developers to form invalid
perceptions of relevance. Comments are a common means
of conveying intent and, perhaps, if written well and kept
up to date, would be more indicative of purpose and intent.
Imagine, for example, if the Eclipse package explorer
annotated each file icon with a brief description of its
purpose, extracted from Javadoc documentation. Another
idea would be to annotate the icons with the number of
other files using the code in the file to help a developer
know how “important” the code is to a project, much like
ranking is computed in search engines. Future work should
investigate other types of information that correlate with the
relevance of information.

Another approach is to provide more layers of cues
before a developer has to read the code or information in
full. For example, rather than having to double-click an icon
representing a method in the package explorer in order to
see its code, hovering over the icon might show its header
comments or highlight all of the files in the project that use
the file being hovered over. These extra layers would help
developers decide that information was irrelevant earlier,
without having to inspect the information in full.

Tools such as Hipikat have tried to automatically find
potentially relevant code for developers to inspect [13].
However, because the recommendations are based on a
developers’ investigation activities or their current location
in the code, when the developer is investigating irrelevant
code, these tools may recommend more irrelevant code.
Furthermore, the relevance cues in these recommendations
can be misleading, since these systems present the names of
program elements. Recommender systems such as these
should be further studied in order to understand their
impact on the developers’ perceptions of relevance.

7.2 Helping Developers Relate Information More
Efficiently

Once developers found relevant code, our observations
suggest that they began navigating its dependencies, using
relevance cues in the programming environment to decide
whether to continue investigating and, if so, what depen-
dency to navigate. One reason that developers did not use
Eclipse navigation commands to perform these navigations
is the overhead that they incurred by opening new tabs and
requiring a return navigation. One way to reduce this
overhead is to make dependency navigations more provi-
sional. For example, nearly one-fifth of developers’ time was

spent reading code within a fixed view in the Eclipse editor
(Section 4.1), so it could be helpful to highlight dependencies
in the code automatically based on the current text caret
position or text selection (Eclipse does have basic support for
this, but it must be invoked). The developers also spent a lot of
time going back and forth between related code (Section 4.6),
so interaction techniques that allow developers to glance at
related code could be helpful. Tools such as FEAT [42]
might be a good place to start, by replacing the context
menus used to inspect dependencies with something that
requires fewer steps.

7.3 Helping Developers Collect Information More
Reliably

Collecting information was central to the developers’
success, but developers currently have a limited number
of ways to do it. Each has its own flaws: Memorizing
information tends to be unreliable [1]; writing it down is
reliable, slow, imprecise, and requires developers to
renavigate to relevant code; and, finally, using the
interactive state in Eclipse was precise, but unreliable
(Section 4.7). None of these approaches help developers
compare information side by side, which our study
suggests was quite important (Section 4.6).

The mockup in Fig. 7 illustrates one way that these
fragments could be collected and viewed. In this hypothe-
tical situation, the developer has already found all of the
code he thinks is relevant, and he has just copied the
rSlider setup code in order to create code to add a
thickness slider. He is in the middle of changing rSlider

to tSlider in the duplicated code. The basic concept of the
workspace is to provide a single place for developers to
view all relevant information for a single maintenance task
side by side, in order to eliminate much of the navigational
overhead that we observed in our study. In the rest of this
section, we will describe the features portrayed in our
conceptual workspace.

One issue with collection tools is how the workspace
refers to code and metadata internally. For example, some
tools have used a virtual file, which allows developers to
combine a set of line ranges [41] or methods [9] and edit it
as if it were a single file. Robillard proposed the concept of a
concern graph [43], which represents information as a set of
relationships between program elements (such as declares
and subclasses relationships). This approach is more robust
to changes to a program, but the tradeoff is that arbitrary
subparts of the smallest granularity element (such as parts
of a method) cannot be referenced (FEAT can reference the
calls and uses of a method, but not arbitrary lines of code).
The representation we envision in the workspace in Fig. 7
would involve regions of code that one could imagine a
developer circling on a code printout; this approach might
better match the granularity in which developers think
about code.

The interaction technique that developers might use to
add information to this workspace, once found, largely
depends on the representation used to refer to the
information (if information is collected as lines of code,
for example, the interaction technique must allow devel-
opers to select lines). However, it must also be simple
enough that developers can quickly specify the relevant

984 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

information and continue with their task, uninhibited. Tools
proposed in the past have tended to be heavyweight. For
example, Desert [41] requires users to know the line
numbers beforehand and enter them manually. FEAT [42]
requires users to navigate a program by its relationships
and add “relations” to a concern graph through a contextual
menu, which is a somewhat oblique way for a developer to
say “this code is important to me.” To add information to
our workspace, developers could use a keyboard shortcut to
add a single line, and possibly a gesturing technique with
the mouse to circle the relevant code and its surrounding
context. This would be quite similar to the snapshots of
code that developers claim they see when trying to recall
the shape and location of familiar code [39].

Given that nearly all of the navigational overhead we
saw was due to the way code and information was
organized on-screen, the visual representation of information
in collection tools is also an important issue. Desert [41]
presents relevant lines of code as a single integrated file;
FEAT [42] represents concern graphs as a hierarchical tree
and requires developers to select an element in this
hierarchy, and use a pop-up menu to request the source
file; Concern Highlight [36] highlights relevance code in a
conventional editor. There are several problems with these
approaches: 1) they treat all information as if it had the
same role in the task, 2) they do not support side-by-side
comparison of information, and 3) they incur much of the
same interactive overhead we observed in relying on file
tabs and scroll bars. Our proposal in Fig. 7 represents the
code and information that a developer deems relevant

concretely, rather than using abstract icons or names. Not
only does this avoid the navigational overhead of navigat-
ing to the information, but it affords other advantages: Code
can be placed side by side in order to aid comparison and
editing, views can be collapsed to the bar on the left of Fig. 7
in order to allow developers to focus on the subset of
information that is necessary for the current task, and code
and other information can be directly annotated, as seen
throughout Fig. 7.

Of course, there are some limitations to representing
code concretely, rather than summarizing it and allowing
users to navigate to it. One obvious concern is whether such
a workspace would be able to fit all of a developer’s
relevant information on a single screen. To consider a lower
bound, developers in our study found about 30 lines of code
relevant on average. To consider an upper bound, a study
of the CVS repository of GNOME, which is over a million
lines of code, found that the average check-in was about
28 lines of code, with a standard deviation of 38 and a
maximum of 237 [28]. This suggests that an average task,
even with a few lines of surrounding context for contiguous
fragment, would be likely to fit inside a full-screen window.
We are now constructing such a tool [10] and we will be
testing how well the tool scales.

8 CONCLUSIONS

In order to successfully complete a modification task,
developers must locate and understand the parts of the
software system relevant to the desired change. The
exploratory study presented in this paper, which investigated

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 985

Fig. 7. The 50 lines of code and other information that developer B indicated as relevant, portrayed in a mockup of a workspace that help developers

collect relevant information for a task in one place, independent of the structure of a program.

the strategies of 10 Java developers using Eclipse to perform

five maintenance tasks, inspired a new model of this

process that is based on searching, relating, and collecting,

driven by the developers’ perceptions of the relevance of

information cues throughout a software development

environment. This model is an extension of the more

general theory of information foraging [40] but applied to

software development. Our model is consistent with prior

models of program understanding, while accounting for

developers’ actions at a level of detail that prior models

have not. We also demonstrate how developers utilized

Eclipse to complete their tasks, and we show a number of

ways in which developers relied on valid but misleading

information cues in Eclipse. These findings lead to a

number of design ideas for more streamlined environments

that may better help developers to find, relate, and collect

task relevant code more quickly and effectively.

ACKNOWLEDGMENTS

The authors would like to thank Scott Hudson, James

Fogarty, Elspeth Golden, Santosh Mathan, Karen Tang, and

Duen Horng Chau for helping with the experiment design,

execution, and analyses. The authors also thank the

developers who participated in the study for their time

and efforts, and the reviewers for their thorough and

insightful comments about earlier drafts of this paper. This

work was funded in part by the US National Science

Foundation (NSF) under grant IIS-0329090 and part of the

EUSES consortium (End Users Shaping Effective Software)

under NSF grant ITR CCR-0324770. The first author was

also supported by a US National Defense Science and

Engineering Graduate Fellowship. Any opinions, findings,

and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily

reflect those of the NSF.

REFERENCES

[1] E.M. Altmann, “Near-Term Memory in Programming: A Simula-
tion-Based Analysis,” Int’l J. Human-Computer Studies, vol. 54,
pp. 189-210, 2001.

[2] J.R. Anderson, “Problem Solving,” Cognitive Psychology and Its
Implications, fifth ed., pp. 239-278. Worth, 2000.

[3] R.M. Baecker and A. Marcus, Human Factors and Typography for
More Readable Programs. Addison-Wesley, 1990.

[4] E.L.A. Baniassad, G.C. Murphy, C. Schwanniger, and M. Kircher,
“Managing Crosscutting Concerns during Software Evolution
Tasks,” An Inquisitive Study, Aspect-Oriented Software Development,
pp. 120-126, Enschede, 2002.

[5] L.M. Berlin, “Beyond Program Understanding,” A Look at
Programming Expertise in Industry, Empirical Studies of Programmers,
Fifth Workshop, pp. 6-25, 1993.

[6] B.W. Boehm, “Software Engineering,” IEEE Trans. Computers,
vol. 25, no. 12, pp. 1226-1242, Dec. 1976.

[7] D.A. Boehm-Davis, J.E. Fox, and B.H. Philips, “Techniques for
Exploring Program Comprehension,” Empirical Studies of Pro-
grammers Conf. Report, pp. 3-37, 1996.

[8] R. Brooks, “Towards a Theory of the Cognitive Processes in
Computer Programming,” Int’l J. Human-Computer Studies, vol. 51,
pp. 197-211, 1999.

[9] M. Chu-Carroll, J. Wright, and D. Shields, “Supporting Aggrega-
tion in Fine Grained Software Configuration Management,” Proc.
ACM SIGSOFT Int’l Symp. Foundations of Software Eng., pp. 99-108,
2002.

[10] M. Coblenz, JASPER: Facilitating Software Maintenance Activities
with Explicit Task Representations, Carnegie Mellon Univ., Pitts-
burgh, Penn., CMU-HCII-06-107, 2006.

[11] C.L. Corritore and S. Wiedenbeck, “Mental Representations of
Expert Procedural and Object-Oriented Programmers in a Soft-
ware Maintenance Task,” Int’l J. Human-Computer Studies, vol. 50,
no. 1, pp. 61-83, 1999.

[12] C.L. Corritore and S. Wiedenbeck, “An Exploratory Study of
Program Comprehension Strategies of Procedural and Object-
Oriented Programmers,” Int’l J. Human-Computer Studies, vol. 54,
pp. 1-23, 2001.

[13] D. Cubranic and G. Murphy, “Hipikat: Recommending Pertinent
Software Development Artifacts,” Proc. Int’l Conf. Software Eng.,
pp. 408-418, 2000.

[14] B. Curtis, “Substantiating Programmer Variability,” Proc. IEEE,
vol. 69, no. 7, p. 846, July 1981.

[15] S.P. Davies, “Models and Theories of Programming Strategy,” Int’l
J. Man-Machine Studies, vol. 39, pp. 236-267, 1993.

[16] S.P. Davies, “Knowledge Restructuring and the Acquisition of
Programming Expertise,” Int’l J. Human-Computer Studies, vol. 40,
no. 4, pp. 703-726, 1994.

[17] C. Douce, “Long Term Comprehension of Software Systems: A
Methodology for Study,” Proc. Psychology of Programming Interest
Group, 2001.

[18] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus,
“Does Code Decay? Assessing the Evidence from Change
Management Data,” IEEE Trans. Software Eng., vol. 27, no. 1,
pp. 1-12, Jan. 2001.

[19] J. Fogarty, A.J. Ko, H.H. Aung, E. Golden, K.P. Tang, and S.E.
Hudson, “Examining Task Engagement in Sensor-Based Statistical
Models of Human Interruptibility,” Proc. ACM Conf. Human
Factors in Computing Systems, pp. 331-340, 2005.

[20] M.A. Francel and S. Rugaber, “The Value of Slicing while
Debugging,” Science of Computer Programming, vol. 40, nos. 2-3,
pp. 151-169, 2001.

[21] G.W. Furnas, T.K. Landauer, L.M. Gomez, and S.T. Dumais, “The
Vocabulary Problem in Human-System Communication,” Comm.
ACM, vol. 30, pp. 964-971, 1987.

[22] V.M. Gonzalez and G. Mark, “Constant, Constant, Multi-Tasking
Craziness: Managing Multiple Working Spheres,” Proc. Conf.
Human Factors in Computer Systems (CHI ’04), pp. 113-120, 2004.

[23] T.R.G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments: A ’Cognitive Dimensions’ Frame-
work,” J. Visual Languages and Computing, vol. 7, pp. 131-174, 1996.

[24] A.J. Ko and B.A. Myers, “Designing the Whyline: A Debugging
Interface for Asking Questions about Program Behavior,” Proc.
Conf. Human Factors in Computing Systems, pp. 151-158, 2004.

[25] A.J. Ko, H. Aung, and B.A. Myers, “Design Requirements for
More Flexible Structured Editors from a Study of Programmers’
Text Editing,” Proc. ACM Conf. Human Factors in Computing
Systems, pp. 1557-1560, 2005.

[26] A.J. Ko, H. Aung, and B.A. Myers, “Eliciting Design Requirements
for Maintenance-Oriented IDEs: A Detailed Study of Corrective
and Perfective Maintenance Tasks,” Proc. Int’l Conf. Software Eng.,
pp. 126-135, 2005.

[27] A.J. Ko and B.A. Myers, “A Framework and Methodology for
Studying the Causes of Software Errors in Programming
Systems,” J. Visual Languages and Computing, vol. 16, no. 1-2,
pp. 41-84, 2005.

[28] S. Koch and G. Schneider, Results from Software Engineering
Research into Open Source Development Projects Using Public Data,
Wirtschaftsuniversität, p. 22, 2000.

[29] J. Koenemann and S.P. Robertson, “Expert Problem Solving
Strategies for Program Comprehension,” Proc. Conf. Human Factors
and Computing Systems, pp. 125-130, 1991.

[30] T. LaToza, G. Venolia, and R. DeLine, “Maintaining Mental
Models: A Study of Developer Work Habits,” Proc. Int’l Conf.
Software Eng., pp. 492-501, 2006.

[31] M.M. Lehman and L. Belady, Software Evolution—Processes of
Software Change. Academic, 1985.

[32] D.C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental
Models and Software Maintenance,” Proc. First Workshop Empirical
Studies of Programmers, pp. 80-98, 1986.

[33] J.R. Miara, J.A. Musselman, J.A. Navarro, and B. Shneiderman,
“Program Indentation and Comprehensibility,” Comm. ACM,
vol. 26, no. 11, pp. 861-867, 1983.

986 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 12, DECEMBER 2006

[34] G.C. Murphy, M. Kersten, M.P. Robillard, and D. Cubranic, “The
Emergent Structure of Development Tasks,” Proc. European Conf.
Object-Oriented Programming, pp. 34-48, 2005.

[35] R. Navarro-Prieto and J.J. Canas, “Are Visual Programming
Languages Better? The Role of Imagery in Program Comprehen-
sion,” Int’l J. Human-Computer Studies, vol. 54, pp. 799-829, 2001.

[36] E.C. Nistor and A. van der Hoek, “Concern Highlight: A Tool for
Concern Exploration and Visualization,” Proc. Workshop Linking
Aspect Technology and Evolution, 2006.

[37] N. Pennington, “Stimulus Structures and Mental Representations
in Expert Comprehension of Computer Programs,” Cognitive
Psychology, vol. 19, pp. 295-341, 1987.

[38] L. Perlow, “The Time Famine: Toward a Sociology of Work Time,”
Administrative Science Quarterly, vol. 44, pp. 57-81, 1999.

[39] M. Petre and A.F. Blackwell, “A Glimpse of Expert Programmers’
Mental Imagery,” Proc. Seventh Workshop Empirical Studies of
Programmers, pp. 109-128, 1997.

[40] P. Pirolli and S.K. Card, “Information Foraging,” Psychological
Rev., vol. 106, no. 4, pp. 643-675, 1999.

[41] S.P. Reiss, “The Design of the Desert Software Development
Environment,” Proc. Int’l Conf. Software Eng., pp. 398-407, 1996.

[42] M.P. Robillard and G.C. Murphy, “Concern Graphs: Finding and
Describing Concerns Using Structural Program Dependencies,”
Proc. Int’l Conf. Software Eng., pp. 406-416, 2002.

[43] M.P. Robillard, “Representing Concerns in Source Code,” PhD
thesis, Dept. of Computer Science, Univ. of British Columbia 2003.

[44] M.P. Robillard and G.C. Murphy, “Automatically Inferring
Concern Code from Program Investigation Activities,” Int’l Conf.
Automated Software Eng., pp. 225-234, 2003.

[45] M.P. Robillard, W. Coelho, and G.C. Murphy, “How Effective
Developers Investigate Source Code: An Exploratory Study,” IEEE
Trans. Software Eng., vol. 30, no. 12, pp. 889-903, Dec. 2004.

[46] M.P. Robillard, “Automatic Generation of Suggestions for
Program Investigation,” Proc. ACM SIGSOFT Symp. Foundations
of Software Eng., pp. 11-20, 2005.

[47] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An
Examination of Software Engineering Work Practices,” Proc. Conf.
Centre for Advanced Studies in Collaborative Research, pp. 209-223,
1997.

[48] B.E. Teasley, “The Effects of Naming Style and Expertise on
Program Comprehension,” Int’l J. Human-Computer Studies,
vol. 40, pp. 757-770, 1994.

[49] A. Vans and A. von Mayrhauser, “Program Understanding
Behavior during Corrective Maintenance of Large-Scale Soft-
ware,” Int’l J. Human-Computer Studies, vol. 51, no. 1, pp. 31-70,
1999.

[50] M. Weiser, “Programmers Use Slices When Debugging,” Comm.
ACM, vol. 26, pp. 446-452, 1982.

[51] S. Wiedenbeck, V. Fix, and J. Scholtz, “Characteristics of the
Mental Representations of Novice and Expert Programmers: An
Empirical Study,” Int’l J. Man-Machine Studies, vol. 39, pp. 793-812,
1993.

Amy J. Ko received the BS degrees in computer science and
psychology from Oregon State University in 2002. She is currently a
PhD student at the Human-Computer Interaction Institute in the
School of Computer Science at Carnegie Mellon University. Her
research inter-ests are in social and cognitive factors in
software development.

Brad A. Myers received the PhD degree in
computer science from the University of Tor-
onto. He is a professor in the Human-Computer
Interaction Institute in the School of Computer
Science at Carnegie Mellon University. His
research interests include user interface devel-
opment systems, user interfaces, handheld
computers, programming by example, program-
ming languages for kids, visual programming,
interaction techniques, window management,

and programming environments. He is an ACM fellow, a senior member
of the IEEE and a member of the CHI Academy, the IEEE Computer
Society, ACM SIGCHI, and Computer Professionals for Social
Responsibility.

Michael J. Coblenz received the BS and MS
degrees from Carnegie Mellon University in
2005 and 2006, respectively. He is interested
in improving the user experience for both end-
users and professional programmers and has
developed the SLATE and JASPER systems to
help users create software more quickly, easily,
and reliably. He currently works as a software
engineer in industry.

Htet Htet Aung received the MS degree in
human computer interaction from Carnegie
Mellon University in 2003. She was a research
associate with the Pebbles Project at the Human
Computer Interaction Institute of Carnegie Mel-
lon University from 2003 to 2004. Later, she was
a UI designer/usability Engineer at QuadraMed
Corporation from 2005 to 2006. She is currently
a senior product analyst at Siemens Medical
Solutions. She is a member of ACM SIGCHI.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

KO ET AL.: AN EXPLORATORY STUDY OF HOW DEVELOPERS SEEK, RELATE, AND COLLECT RELEVANT INFORMATION DURING... 987

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

