
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-li, NO. 11, NOVEMBER 1985

Foreword

What is AI? And What Does It Have to Do with
Software Engineering?

TRADITIONALLY, the funniest part of a journal is the
overview in which the editor pretends that the articles

have something to do with each other. Actually, I believe
that the articles in this special issue on Artificial Intelli-
gence and Software Engineering really are related, at least
within three rough groupings. Whether this belief is jus-
tified or simply continues the tradition of unintended ed-
itorial humor, I leave to the reader to decide.

WHAT IS ARTIFICIAL INTELLIGENCE?
The term "artificial intelligence" (AI) has suffered a

continuing identity crisis over the decades since it was
coined by John McCarthy (inventor of the Lisp language
[2]). One popular definition of Al is "getting machines to
do things that people would agree require intelligence"
[4]. By passing the buck to "people," this definition neatly
sidesteps the issue of defining "intelligence." However,
people are fickle: once someone gets a machine to do
something, they no longer think it requires intelligence-
after all, a mere machine can do it! For some intriguing
insights into this phenomenon, see Pamela McCorduck's
history of Al, provocatively entitled Machines Who Think
[3].

This is not the place to trace the detailed intellectual
development of the field, but the main lesson learned since
the pioneering work by Simon, Newell, McCarthy, Min-
sky, and their colleagues can be stated in four words: In-
telligent performance requires knowledge. Lots of it. Al-
though early attempts at general-purpose intelligent
programs like the General Problem Solver [5] appeared
promising at first, they proved to be limited by lack of
knowledge about the application domain, whether it was
chess, medical diagnosis, or natural language understand-
ing. Since then, Al research has focused on how to ac-
quire, represent, organize, and apply such knowledge to
a variety of applications. In fact, my current working def-
inition of frontier Al research is figuring out how to bring
more kinds ofknowledge to bear. I like this definition be-
cause the word "more" reflects the changing nature of the
endeavor: work considered Al several years ago would not
be considered Al today, because the target has moved. For
example, what was considered "automatic programming"
10 to 20 years ago is now just standard compiler technol-
ogy.
The context-sensitive, time-varying character of this

definition is illustrated by work on expert systems. Build-
ing the first few expert systems was properly considered
Al research, since it addressed for the first time the prob-
lem of how to bring heuristic judgmental knowledge or
"rules of thumb" to bear on problems like medical diag-
nosis [1]. Thanks to that work, the problem is now much

better understood; consequently, building an expert sys-
tem is no longer fundamental Al research per se, unless
it extends our understanding of issues like expert system
architecture or knowledge representation.

WHAT DOES AI HAVE TO Do WITH
SOFTWARE ENGINEERING?

Attempts to get the computer to shoulder more of the
software engineering burden are probably as old as pro-
gramming itself. The attempts reported in this special is-
sue can be split into three categories:
* Al programming environments;
* studies of the software design process; and
* knowledge-based software assistants.

If Al is the science of bringing diverse kinds of knowl-
edge to bear, then the first category deals with the exper-
imental apparatus developed to support the science, the
second category deals with discovering the kinds of
knowledge used in the task of software design, and the
third category deals with incorporating that knowledge in
useful systems.

AI Programming Environments
Al has been called a forcing function for the rest of com-

puter science, because its intensive computational de-
mands have required progress on so many fronts: inter-
active programs, timesharing, multiprocessing, faster
machines, larger memories, more flexible operating sys-
tems, higher-level languages, and so forth. In particular,
Al has encouraged the creation of sophisticated tools to
assist the rapid development of programs for the poorly
understood applications characteristic of Al.

In this evolutionary development process, aptly called
"exploratory programming" [6], implementation pre-
cedes specification. Typically an Al program and the un-
derstanding of the behavior it ought to produce evolve
simultaneously and synergistically; one cannot write an
accurate functional specification for, say, a medical diag-
nosis program without first developing and testing the pro-
gram. This point is further explored in the paper by Doyle.
To put it another way, Al programs are just like most soft-
ware, only more so: the development of an AI program
can be viewed as an accelerated form of perfective main-
tenance involving frequent specification changes. Tradi-
tional software engineering methods, both structured and
unstructured, work poorly in such unstable conditions, so
Al has required the development of alternative techniques
to support rapid program evolution.
As every programmer knows, the ease of programming

1253



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1I, NO. 11, NOVEMBER 1985

in a given language depends at least as much on the pro-
gramming environment as on the language itself. Subrah-
manyam's paper compares the two most popular Al lan-
guages-Lisp and Prolog-in terms of how well the
languages and their associated programming environ-
ments support the development of expert systems, both at
present and potentially.
A difficult part of developing an Al program lies in fig-

uring out how to express knowledge about the application
domain in the terms permitted by the programming lan-
guage. To, narrow the gap, recent Al languages have es-
caped from the procedural paradigm common to tradi-
tional programming languages, and provide alternative
paradigms like rules, logic, and object-oriented program-
ming, in which certain kinds of domain knowledge may
be easier to express. Bobrow's paper discusses what it
means for a computing environment to support one or more
programming paradigms.
Models of Software Design

Since its beginning, Al has overlapped with cognitive
psychology. From the psychology side, a useful way to in-
vestigate a model of how humans perform some task is to
implement the model in a program. From the Al side, a
useful way to automate a task is to find out how people
perform it. Three papers in this issue illustrate this ap-
proach in the case where the task is software design.
The paper by Adelson and Soloway describes a model

of software design based on an experimental study of pro-
fessional software engineers. The paper by Kant describes
a model of algorithm design based on an experimental
study of computer scientists. The companion paper by
Steier and Kant focuses on the use of various execution
and analysis techniques to guide the refinement of incom-
pletely designed algorithms.

Knowledge-Based Software Assistants
The bulk of this special issue is devoted to projects

aimed at developing knowledge-based assistance for soft-
ware engineering. Here "knowledge-based" character-
izes systems with explicit knowledge about the software
engineering process, as opposed to tools like editors that
cannot reason about the decisions they are used to imple-
ment.

Such systems can vary along many dimensions, includ-
ing:

* Scope: What kinds of software are addressed?
* Power: How much is automated?
* Level: What part of the route from informal require-

ments to machine language is addressed?
* Purpose: What parts of the software lifecycle are ad-

dressed?
* Knowledge: What kinds of knowledge are explicitly

used by the machine?

In general, these questions are easier to answer for a
particular system at a given point in time than for a general

approach. For example, should an approach be judged by
the claims made for it, or by the results achieved to date?
In fact, neither criterion seems appropriate; the real cri-
teria for judging an approach are its inherent strengths
and limitations, and those can be difficult to determine.
Comparison of the reported projects is further compli-
cated by the fact that they represent efforts at different
stages of implementation by different numbers of people
to solve different problems. Nonetheless, these questions
are a useful way to classify the v'arious approaches de-
scribed in the papers.

Balzer's paper summarizes the past 15 years of experi-
ence of a large automatic programming effort at USC In-
formation Sciences Institute (ISI). While the paradigm ad-
vocated in the paper spans the entire software lifecycle,
and previous work investigated the problem of interpreting
natural language specifications, the current emphasis of
the project is on the notion of developing a formal, very
high level (i.e., uncompilable) specification, implement-
ing it by applying a series of correctness-preserving trans-
formations, and maintaining the program by revising the
specification and replaying the recorded transformation
sequence.

Scope: general-purpose
Power: decisions made manually and performed auto-

matically
Level: from behavioral specification down to compila-

ble high-level program
Purpose: specify, implement, optimize, maintain
Knowledge: intended program behavior, transforma-

tions, recorded derivation

Fickas' paper describes the results of his dissertation
research, carried out as part of the ISI project just de-
scribed. His system automatically selected most of the
transformation steps needed to refine formal specifica-
tions into programs a page or two long.

Scope: general-purpose
Power: most decisions made automatically
Level: from behavioral specification down to compila-

ble high-level program
Purpose: implement, optimize
Knowledge: goals and methods of program develop-

ment process

The paper by Smith, Kotik, and Westfold reports on a
project by Cordell Green and his colleagues at Kestrel In-
stitute, also based on using correctness-preserving trans-
formations to refine a formal specification. The specifi-
cation is expressed in a high-level abstract programming
language which the group now uses for all its program-
ming. The project has largely focused on deriving so-
phisticated, efficient algorithms and on using the system
to derive its own implementation. Much efficiency is ob-
tained by interpreting transformations as constraints and
compiling them to eliminate runtime computation.

1254



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 11, NOVEMBER 1985

Scope: general-purpose
Power: automatic or interactive, depending on desired

efficiency of generated code
Level: from specification to code
Purpose: implement, optimize
Knowledge: transformations, domain axioms, logic

Waters' paper describes the Knowledge-Based Editor in
EMACS (KBEmacs), a demonstration system imple-
mented as part of the Programmer's Apprentice project at
M.I.T. Unlike the other projects, which are based on top-
down refinement of an abstract specification, KBEmacs
provides a library of programming "cliches" (fragments
of procedures). The programmer then combines these
building blocks into programs.

Scope: general-purpose
Power: interactive code-writing
Level:! Lisp code and coding plans
Purpose: implement
Knowledge: programming idioms

Barstow's paper reports on a project at Schlumberger-
Doll Research to automate the generation of application
software for oil exploration. Work so far has centered on
the analysis of the domain knowledge and implementation
decisions incorporated in some existing Fortran programs,
and the development of a framework for representing these
decisions in a machine. A key aspect is the use of domain
knowledge to translate informal specifications into precise
functional specifications.

Scope: domain-knowledge-intensive
Power: interactive
Level: informal specification to code
Purpose: specify, implement, optimize
Knowledge: domain model, mathematics, abstract data

structure implementations

The paper by Neches, Swartout, and Moore describes
an effort at ISI to make expert systems explainable and
maintainable by deriving them automatically and record-
ing the rationales for the decisions made along the way.
These rationales can be used to generate explanations for
users and subsequent maintainers, and encourage more
principled program design.

Scope: expert systems
Power: automatic
Level: informal specification to code
Purpose: implement, optimize, maintain, explain
Knowledge: domain model, problem-solving methods,

programming knowledge

CONCLUSION
An increasing body of work in Al has direct relevance

for software engineering. Al programming environments
are making possible the rapid development of complex, do-
main-knowledge-intensive applications that would be ex-

pensive to develop and exorbitant to maintain using con-
ventional technology. Experimental studies of software
design are improving our understanding of how that still
largely mysterious process is performed by humans and
might be carried out or at least assisted by machine. Fi-
nally, research on knowledge-based software assistants of-
fers the promise of dramatic improvements in software
productivity, reliability, and flexibility.

ACKNOWLEDGMENT
This special issue owes its existence to the efforts of

many people.
Cheerful and efficient editorial assistance by Audree

Beal and Toshiye Aogaichi kept things running smoothly
even when I relocated from ISI to Rutgers during the busi-
est period of preparation.

I would like to thank the referees for their expertise and
thoroughness. They helped select an outstanding collec-
tion of papers and provided a wealth of useful comments,
not only about the included papers but the others as well.
The referees for this issue were as follows:

Beth Adelson Van E. Kelly
David R. Barstow Casimir A. Kulikowski
Jim Bennett Curt Langlotz
Daniel G. Bobrow Robert London
Alex Borgida Leo Marcus
Tom Brown John McDermott
Stephanie J. Cammerata Matthew Morgenstern
Jaime Carbonell Mark Musen
Donald Cohen John Mylopoulos
Daniel Corkill Robert Neches
Jon Doyle Ramesh S. Patil
Lee D. Erman Tom Pressburger
Martin S. Feather Charles Rich
Stephen F. Fickas Paul Rosenbloom
Alan S. Fisher William Scherlis
Michael Fox Ted Shortliffe
Susan L. Gerhart Douglas R. Smith
Neil M. Goldman Reid G. Smith
Cordell Green Elliot Soloway
Sol J. Greenspan Randall Steeb
Walter C. Hamscher Louis Steinberg
David Heckerman William R. Swartout
Cliff Hollander Christopher Tong
Lewis Johnson Richard C. Waters
Elaine Kant David Wile

I am especially grateful to the referees who reviewed
papers on very short notice, and to the authors who re-
sponded with equally fast revisions.
The papers submitted for this issue were subjected to

the most stringent reviewing; only a small fraction were
accepted. In addition, I am pleased to have invited papers
from an impressive array of leading experts; these were
further improved by reviewers' comments. I am grateful
to all the authors for contributing such excellent papers.
In short, thanks to many people this is a very special issue
indeed!

JACK MOSTOW
Guest Editor

1255



1256 IEEE TRANSACT

REFERENCES

[1] R. Davis, B. Buchanan, and E. H. Shortliffe, "Production rules as a
representation for a knowledge based consultation system," Artificial
Intell., vol. 8, pp. 15-45, Spring 1977.

[2] J. McCarthy et al., LISP 1.5 Programmer's Manual. Cambridge, MA:
M.I.T. Press, 1963.

[3] P. McCorduck, Machines Who Think. San Francisco, CA: Freeman,
1979.

IONS ON SOFTWARE ENGINEERING, VOL. SE-II, NO. 11, NOVEMBER 1985

[4] M. Minsky, Ed., Semantic Information Processing. Cambridge, MA:
M.I.T. Press, 1968.

[5] A. Newell, J. Shaw, and H. Simon, "Report on a general problem-
solving program for a computer," in Proc. Int. Conf. Inform. Process-
ing, UNESCO, Paris, 1960, pp. 256-264.

[6] B. Sheil, "Power tools for programmers," in Interactive Programming
Environments, D. Barstow, H. Shrobe, and E. Sandewall, Eds. New
York: McGraw-Hill, 1984, pp. 19-30. Reprinted from Datamation, pp.
131-144, Feb. 1983.

Jack Mostow received the A.B. degree in applied mathematics from Harvard University,
Cambridge, MA, in 1974 and the Ph.D. degree in computer science from Carnegie-
Mellon University, Pittsburgh, PA, in 1981.

After a postdoctoral year at Stanford University's Heuristic Programming Project, he
joined the University of Southern California's Information Sciences Institute as a Re-
search Computer Scientist. In 1985 he became Assistant Professor of Computer Science
at Rutgers University, New Brunswick, NJ. He has authored over 40 articles, covering
his work in machine learning, VLSI design, program transformation, and speech un-
derstanding, and has published reviews of current research in learning, design, hardware
compilers, and knowledge-based systems.

Dr. Mostow serves on the Editorial Boards of Machine Learning and IEEE TRANS-
ACTIONS ON SOFTWARE ENGINEERING, reviews research proposals for the National Science
Foundation, and teaches at the Institute of Artificial Intelligence in Los Angeles, CA.


