tem, is equal to zero. It is important that for the network $\bar{\pi}$ the equilibrium state defined above is identical with the state obtained in the *DC* analysis and it isn't valid for the Lagrangian networks.

References

 L. O. Chua and J. D. Mc Pherson, "Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks," *IEEE Trans. Circuits Syst.*, vol. CAS-21, pp. 277-286, Mar. 1974.

Correction to "Kronecker Products and Matrix Calculus in System Theory"

JOHN W. BREWER

In the above paper,¹ the Kronecker sum sign was misprinted as a Kronecker product sign in three instances in Table II. The correct versions are shown below.

- T2.12 exp $(N \oplus M) = \exp(N) \otimes \exp(M)$.
- T2.14 $\beta_k \otimes \alpha_i$ is an eigenvector of $N \otimes M$ with eigenvalue $\lambda_i \mu_k$ and is also an eigenvector of $N \oplus M$ with eigenvalue $\lambda_i + \mu_k$.
- T2.16 If N and M are symmetric and sign definite of the same sign then $N \oplus M$ is also sign definite of that sign.

Manuscript received January 11, 1979.

The author is with the Department of Mechanical Engineering, University of California, Davis, CA 95616.

¹J. W. Brewer, "Kronecker products and matrix calculus in system theory," *IEEE Trans. Circuits Syst.*, vol. CAS-25, pp. 772–781, Sept. 1978.

Correction to "An Algebra of Transfer Functions for Distributed Linear Time-Invariant Systems"

F. M. CALLIER AND C. A. DESOER

In the above paper,¹ the following errors occurred in the Proof of Theorem 2.2 (p. 659, first column). For convenience, we count lines downward starting from the subtitle Proof of Theorem 2.2.

Line 1: $e^{\sigma_0 t}$ should read $e^{-\sigma_0 t}$.

- Line 3: $\hat{f}(\sigma + j\omega)$ should read $\hat{f}_{\rho}(\sigma + j\omega)$.
- Line 3: $L_2(\mathbf{R}_+)$ should read $L_2(\mathbf{R})$.
- Line 5: $e^{\sigma_0 t} f_p(t)$ should read $e^{-\sigma_0 t} f_p(t)$.

Line 5: g should read f (three times!).

Line 6: g(p) should read $\hat{f}(p)$.

Line 8: the top "t < 0" should read "t > 0".

Line 10: delete " $k \in L_1(\mathbf{R}) \cap L_{\infty}(\mathbf{R})$ and," and replace by "since Re $p > \sigma_0$ ".

Line 14: Replace " $e^{-\sigma_0 t}$," preceding the integral sign, by "_".

Line 14: Replace twice g by f.

Manuscript received January 8, 1979.

F. M. Callier is with the Department of Mathematics, Facultés Universitaires de Namur, B 5000 Namur, Belgium.

C. A. Desoer is with the Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory, University of California, Berkeley, CA 94720.

¹F. M. Callier and C. A. Desoer, "An algebra of transfer functions for distributed linear time-invariant systems," *IEEE Trans. Circuits Syst.*, vol. CAS-25, pp. 651–662, Sept. 1978.

FORTHCOMING CAS TRANSACTIONS SPECIAL ISSUES

		Deadline for	
Topic	Date of Issue	Paper Submission	Guest Editor
Computational Methods in Circuits and Systems	September 1979	past	S. W. Director Dep. Elec. Eng. Carnegie—Mellon Univ. Pittsburgh, PA 15213
			and
			R. K. Brayton IBM T. J. Watson Research Center Yorktown Heights, NY 10598
Integrated and Guided Wave Optical Circuits and Systems	December 1979	past	H. F. Taylor Rockwell International Science Center
	·		Thousand Oaks, CA 91360
Nonlinear Circuits and Systems	September 1980	January 15, 1980	R. W. Liu Dep. Elec. Eng. Univ. Notre Dame Notre Dame, IN 46556