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Introduction to the Feature Section on Cavity Solitons:
An Overview

SINCE the mid-1990s, there has been a lively interest in the
topic of cavity solitons (CSs) (see [1]–[3] and references

quoted therein). These belong to the wide class of spatial soli-
tons [4]–[6], but arise in a dissipative environment, in contrast
to standard spatial solitons, which emerge in the framework
of reversible Hamiltonian dynamics. For this reason, CSs ex-
hibit characteristic properties of their own. For example, CSs
are rigid, in the sense that, once the values of the system pa-
rameters are fixed, all their properties (e.g. their height, width,
their spatial profile) are simultaneously fixed. The interest in
CSs arose especially from the fact that they can be manipulated
(i.e., written and erased) individually by external control beams,
which makes them appropriate for application to optical infor-
mation processing. Such manipulation is possible because CSs
are independent of one another provided that they are not too
close to each other and are independent of the boundary, pro-
vided that they are not too close to the boundary. In addition,
it is possible to control the location and the velocity of CSs by
introducing phase or amplitude gradients in the background in
which CSs are embedded.

The idea is to consider the transverse planes, orthogonal to
the propagation direction of the beam, as a blackboard on which
light spots can be written and erased in any desired location and
in a controlled way. Transverse optical patterns [1] typically dis-
play an array of light spots, for example, with a hexagonal shape.
However, they are not suitable for this task because the intensity
peaks are strongly correlated to one another so that if, by any
means, one introduces a change into one element of the array, ei-
ther the entire array is affected, or the system spontaneously re-
stores the original configuration of the array. This task becomes
possible, instead, using cavity solitons.

The name “cavity solitons”, which has been introduced rela-
tively recently in the literature, is very appropriate to distinguish
this topic in the framework of the field of spatial solitons. We
will use this name in a broad sense to designate this topic, but
it is convenient to keep in mind that, from a theoretical stand-
point, this area is based on two distinct theoretical approaches,
the mutual relations of which are not yet completely understood.
One approach was developed by Rosanov and collaborators [7],
[8] with the name “diffractive autosolitons”. This phenomenon
develops in nonlinear optical systems which display bistability
between two stationary solutions which are homogeneous in
the transverse plane. In the case of one transverse dimension,
switching fronts may connect the two solutions. The autosoli-
tons form from the locking of two switching fronts under condi-
tions determined by a Maxwell rule. They are bright spots which
correspond to a portion of the higher intensity solution localized
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in the lower intensity solution background. A general theory of
front locking in one dimension has recently been formulated by
Coullet and collaborators [9]. Related to this approach is the
phenomenon of localized domain formation, theoretically de-
scribed for media [10]–[13], in which there is bistability
between two homogeneous solutions with opposite phase, under
conditions such that the Maxwell rule is automatically satisfied.
Again, the bright spot is an unmodulated solution localized by
locked fronts in a background corresponding to another solu-
tion. The same phenomenon occurs in a vectorial Kerr-medium
model as a consequence of field polarization [14].

The second theoretical approach is based, instead, on the gen-
eral phenomenon of localized structures, which has been previ-
ously described for nonoptical systems [15], [16]. Even if often
in the optical case this phenomenon arises in the presence of
plane-wave bistability, the latter is not necessary. Instead, the
presence of a modulational instability is necessary, i.e. a por-
tion of the homogeneous stationary branch must be unstable
against the formation of a spatial pattern. Localized structures
arise under conditions of coexistence (i.e. bistability), in a non-
linear dynamical system, of a stable homogeneous stationary
solution and a stable patterned stationary solution (technically
speaking, this coexistence requires that the modulational insta-
bility arisesvia a subcritical bifurcation). Coexistence means
that for the same values of the system parameters, according to
the initial condition, the system may approach a configuration
which is uniform in space or a pattern configuration. In this case,
one may meet the phenomenon of localized structures, which
are solutions intermediate between the homogeneous and the
pattern solutions, in the sense that they coincide with the pat-
tern solution in a certain restricted region of the plane, and with
the homogeneous solution in all the rest of the physical region
occupied by the system. Under conditions of translational in-
variance, the presence of localized structures implies that the
system displays the coexistence of a continuous infinity of co-
existing solutions, because the structure can be located in arbi-
trary positions. A CS corresponds to a localized structure with
a single peak, which sits over the pedestal of the stable homo-
geneous stationary solution and displays a tail with more or less
pronounced oscillations. The first example of CS formation fol-
lowing the localized structure scheme was provided by Tlidi et
al. [17], [18] and was followed by other theoretical papers by
Firth and Scroggie [19] and Brambillaet al.[20], which demon-
strated the plasticity and the manipulation of CSs. Precursors for
these theories can be considered the works of Moloney, Newell,
and McLaughlin [21]–[23] and McDonald and Firth [24].

CSs are usually produced by means of optical resonators con-
taining nonlinear materials (see Fig. 1). The energy is provided
to the system by a broad-area coherent and stationary holding
beam which is injected into the cavity and, in the case of semi-
conductor amplifiers, also by an electric current. The device is
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Fig. 1. A coherent, stationary, quasiplane-wave holding field drives an optical
cavity containing a nonlinear medium. The injection of narrow laser pulses
creates persistent localized intensity peaks in the output (cavity solitons).

operated under parametric conditions such that the output is ba-
sically uniform. However, by injecting a localized laser pulse,
one can write a CS where the pulse passes. It is very important
that the CS persists even after the pulse, until the holding beam
is kept on [20]. In this way, by injection of several pulses one
can write a number of CSs. They can be subsequently erased
by again injecting pulses in the locations where CSs lie; in most
cases, the erasing pulses must be coherent and out of phase with
respect to the writing pulse [20], [25]. Very important are the
properties of CSs concerning their mutual interaction and their
motion with respect to gradients in the holding beam. Two CSs
do not interact provided that their distance is larger than a cer-
tain minimal distance [20], [26]. Below this minimal distance,
there is the possibility that the two CSs reach an equilibrium
distance determined by the locking of their tails. Actually, there
may be more than one equilibrium distance. This circumstance
opens the possibility for the formation of clusters [27], [28]. Fi-
nally, when the distance is below a certain critical minimum, the
two CSs fuse into a single CS which has the same characteris-
tics (width, height, etc.) of the original CSs. Under conditions of
translational invariance in the transverse plane, a CS can move
in presence of noise, performing a slow random walk which, of
course, is undesired for applications. Another cause for the mo-
tion of CSs is the presence of amplitude or phase gradients in
the holding beam. Under the influence of an amplitude gradient,
CSs tend to move to the nearest local maximum of intensity. For
example, if the holding beam has a Gaussian configuration, all
CSs move to the top so that, finally, only one soliton remains
[25]. This effect is also undesired for applications. Under the
influence of a phase modulation, CSs move toward the nearest
local maximum with a velocity proportional to the gradient [19].
Phase gradients are very useful for applications, and can be used
to neutralize the negative effects arising from amplitude gra-
dients and from noise. For instance, by introducing a periodic
phase modulation in the holding beam, it is possible to create
an array of equilibrium positions for CSs, in which solitons can
be set on or off by injecting laser pulses. This constitutes a re-
configurable array of binary pixels.

The prediction of CSs, initially limited to materials,
was extended to media [29]–[32]. For an overview of both
cases, see [33].

Experimental observations of localized structures in macro-
scopic cavities have been obtained in photorefractive resonators
[34] and lasers with saturable absorbers [35], [36]. Similar phe-
nomena have been observed in other systems with feedback

[37]–[41]. In particular, the results of [39]–[41], obtained in
sodium vapor with a single feedback mirror show the main func-
tionalities of CS and belong to what might be considered one of
the most systematic and beautiful set of experiments in the field
of optical pattern formation.

Most interesting for practical applications is the realization
of CSs in semiconductor microresonators because of the minia-
turization and the fast response of the material. However, such
small and temporal scales make this realization a difficult and
challenging task. Theories which predict CSs in semiconductor
devices were formulated in [42]–[45] and [25], [26]. Optical
patterns in semiconductor cavities have been observed in
[46]–[50]. Interesting precursors of CSs [47] and soliton-like
structures [51]–[54] have been identified by Taranenko, Weiss,
and Kuszelewicz in passive (i.e. without population inversion)
semiconductor microcavities, but they are boundary dependent,
because the Fresnel number is too small to distinguish between
self-confinement and boundary confinement. In addition, most
of the observations are affected by thermal effects [54]. A
recent experiment by Tredicce, Barland, and Giudici [55]
attained a clear-cut observation of CSs using a broad-area
driven vertical-cavity semiconductor microlaser slightly below
threshold. In particular, two CSs are first written with the help
of an address beam and subsequently erased by flipping the
phase of the control beam by. This demonstrates that the two
are independent of one another and the large Fresnel number
ensures the independence of the boundary, as it must be for
CS. The experimental findings agree well with the theoret-
ical/numerical predictions, which provided a guideline for the
experiment. In particular, the connection with a modulational
instability and with the presence of a pattern is clear.

This Feature Section of the IEEE JOURNAL OF QUANTUM

ELECTRONICSgathers a number of papers from some of the main
contributors of the field. They, in part, review previous results
and in part publish new results. Hence, they provide a conve-
nient meeting forum for newcomers. An article by the Muenster
group reports on experimental results which illustrate the prop-
erties of feedback mirror solitons in a single-mirror experiment.
The remaining papers are theoretical.

The case of semiconductor microcavities is studied in two
contributions. One arises from a collaboration between the
Laboratoire de Photonique et Nanostructures (France) and
Bari Polytechnic (Italy), and discusses optical patterns and CS
in quantum-dot microresonators. The other is contributed by
Bari Polytechnic and the University of Strathclyde (U.K.), and
provides a general discussion of the link between patterns and
CS in semiconductor microcavities. Two contributions deal,
instead, with the case of materials. The first originates
from a collaboration between the University of Palma de Mal-
lorca (Spain) and the University of Strathclyde, and analyzes
the topics of stable droplets and dark-ring cavity solitons in
optical parametric oscillators and, in parallel, in vectorial Kerr
media. The second is contributed by Jena University (Germany)
and discusses quadratic CSs generated by second harmonic
generation.

Results on two-dimensional stationary and oscillatory soli-
tons in a wide-aperture laser with a saturable absorber are pre-
sented by University of St. Petersburg (Russia).
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Finally, general issues in the interface between optical pat-
terns and CS are discussed in a paper contributed by a collab-
oration between the Free University of Brussels (Belgium) and
the University of St. Petersburg.

LUIGI A. LUGIATO, Guest Editor
Università dell’Insubria
INFM, Dipartimento di Scienze
22100 Como, Italy
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