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Corrections to the Expression for Gain in GaAs 

R. H. YAN, S.  W. CORZINE, L. A. COLDREN, A N D  I .  SUEMUNE 
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Absfract-There have been many papers on the subject of theoretical 
gain calculations. However, in comparing the expressions for gain de- 
rived in various papers, we have found that a number of inconsisten- 
cies exist among several publications. These inconsistencies have prop- 
agated through the literature and continue to do so. This letter is spe- 
cifically devoted to explaining how these inconsistencies originated such 
that they will not be repeated in future work on the subject. 
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I. INTRODUCTION 
REDICTING the gain in bulk semiconductors and P quantum well material as a function of injection cur- 

rent and/or carrier density is of great importance to the 
proper design and optimization of semiconductor lasers. 
Consequently, many publications have been devoted to 
theoretical gain calculations throughout the years, provid- 
ing a firm basis for studying and understanding the prop- 
erties of gain in semiconductors (for example, see []]- 
[lo]). However, in comparing the expressions for gain in 
a few specific publications [5]-[lo], we have observed 
some inconsistencies. These inconsistencies are apparent 
in Table I ,  where we provide a list of prefactors that need 
to be included in the cited equations of [5]-[lo] to make 
them consistent with the work of others (for example, [2]- 
[4]). The purpose of the present letter is to explain how 
these inconsistencies originated such that they will not be 
repeated in future work on the subject. In addition to this, 
we would like to point out a 30 percent correction to the 
magnitude of the transition matrix element that was ex- 
perimentally determined over 10 years ago, but which is 
still being neglected by most authors including [ 11-[ lo]. 

Most of the inconsistencies listed in Table I can be 
traced back to the expression used for the transition ma- 
trix element in the cited publications. In Section 11, we 
provide a general discussion of the matrix element, in- 
cluding spin degeneracy considerations, the procedure 
typically used in estimating the magnitude of the momen- 
tum matrix element, as well as the enhancement of the 
matrix element in quantum well structures. In Section 111, 
we write down the correct expression for gain and spon- 
taneous emission in semiconductors within the framework 
of Fermi’s Golden Rule, for comparison purposes. We 
then conclude in Section IV. 
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TABLE I 

VARIOUS PUBLICATIONS 
PREFACTORS THAT SHOULD BE INCLUDED I N  T H E  CITED EQUA’TIONS OF 

213 

Reference Prefactor* Referred 
Equation 
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(9.4.2) 
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n 
2 (1, c.g.s.) 

161 1- 1.5 (heavy hole) 

* A factor of 1.27 should he multiplied to all 

11. THE INTERBAND TRANSITION MATRIX ELEMENT 
A .  Spin Degenerucy 

Within the framework of Fermi’s Golden Rule, the two 
major components of gain calculations are the electron 
and hole density of states (DOS), and the transition matrix 
element describing the interaction between the conduction 
and valence band states. The factor of two needed for spin 
degeneracy can be accounted for in either the DOS or the 
matrix element. However, it has become customary with 
some authors [5]-[  101 to use the expression for the matrix 
element derived by Casey and Panish ( 1 .33moE,) [ 11, 
without considering how the spin degeneracy was dealt 
with in obtaining the original expression. 

The derivation by Casey and Panish used a no k-selec- 
tion rule model which included a factor of two for both 
valence and conduction band DOS’S. However, transi- 
tions between states of opposite spin are not allowed. They 
corrected for this by adding a factor of 1/2 to their matrix 
element to obtain 1 .33m0 E,. In gain calculations involv- 
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ing k-selection rules, a reduced DOS is used which ac- 
counts properly for the spin degeneracy with a single fac- 
tor of two. It is therefore a mistake to use the matrix 
element of Casey and Panish in this case, without first 
removing the factor of 1 /2 .  Most of the correction factors 
of 2 that appear in Table I are due to this error. 
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B. Magnitude of the Momentum Matrix Element 
The method used to determine the magnitude of the mo- 

mentum matrix element comes from the theory of Kane 
[ 1 I]. In simple terms, an expression is derived in his k * 

p theory which describes the curvature of the conduction 
band in terms of, among other things, the transition mo- 
mentum matrix element. However, the expression is most 
commonly used in reverse to determine the magnitude of 
momentum matrix element from the measured value of 
the electron effective mass (which is a measure of the con- 
duction band curvature). This is the typical approach used 
by Casey and Panish and others. Below we will describe 
this method in more detail and then discuss known cor- 
rections to the presented model that have been reported in 
the literature [ 121-[14]. 

The matrix element can be modeled as a constant near 
k2 = 0, where k is the wave vector of the electron. It is 
common to approximate the matrix element by using 
Kane’s k p approach [l 11. By diagonalizing the 8 x 8 
interaction matrix which results from considering a four- 
band model (which only includes the conduction band and 
the three valence bands, neglecting all higher and lower 
bands), four double roots of the secular equation can be 
solved to yield the four band energies as a function of k. 
For small values of k2, the energy of the upper state, i.e., 
the conduction band is given by 

( 1 )  
A2k2 k2 2 1 

2m0 
E , = - + -  3 (<+-) 

where 

mo is the free electron mass, Eg is the direct band gap, M 
is the transition matrix element between conduction ( S 1 
and valence I Z )  states, and A represents the spin-orbital 
splitting energy of the valence band, experimentally de- 
termined to be equal to 0.341 eV [15]. The energy dis- 
persion of (1) as a function of k 2  is a straight line with 
the inverse of the slope being defined as an effective mass, 
as shown in Fig. 1 ,  where we use m* as the energy dis- 
persion of the conduction band due to the 8 X 8 interac- 
tion [that is, (l)]. The approach taken by Casey and Pan- 
ish (and many others) is to equate m* with the measured 
effective mass of the conduction band. However, the true 
curvature of the conduction band is affected not only by 
the four bands taken into account in Kane’s theory , but 
also by higher and lower bands. The true effective mass 
m, yields a curve shown by the solid line in Fig. 1, where 
we see that m, is larger than m*. The experimental work 

E 

x 2  - 
2m * 

0 

Fig. 1. The energy dispersion as a function of k 2 .  The dashed line with 
the slope of h 2 / ( 2 m * )  is the energy dispersion of the conduction band 
due to the 8 x 8 interaction matrix. However, the true curvature of the 
conduction band is affected not only by the four bands taken into account 
in Kane’s theory, but also by higher and lower bands. The true effective 
mass m, yields a curve shown by the solid line where we see that m* is 
smaller than m,. 

of Chadi [12] and, shortly afterwards, Hermann and 
Weisbuch [13], [14] can be used to estimate m*. It is 
found that m* = 0.053mo as opposed to the measured m, 
= 0.0665mo. The momentum matrix element can be ex- 
pressed in terms of m* using (1) and (2) as 

where the average denotes the fact that (2) is the momen- 
tum matrix element for optical transitions when the light 
is polarized along the z-direction. For unpolarized light 
(or equivalently, for electron k vectors randomly distrib- 
uted), we need to average over orthogonal directions re- 
sulting in a factor of 1 / 3  which has been included above 
[ 1 I], [ 161. Using the above quoted value of m* we obtain 
3.38moEg, or an increase of 1.27 over that obtained with- 
out considering the effects of other bands on the curvature 
of the conduction band [ 171. Thus, in Table I, all expres- 
sions for the matrix element in the quoted references 
should be multiplied by 1.27 (in addition to the factor of 
two mentioned earlier) except for [8], which analyzes the 
InGaAsP system. The factor of 1.27 contribution from 
higher bands is specific to GaAs. For higher band contri- 
butions in other systems, see [I31 and [14]. Regarding 
spin degeneracy, the above expression for the matrix ele- 
ment assumes that one factor of two will be included in 
the expression for the DOS. 

It should be noted that the measured absorption is higher 
than the calculated one, even if the correction factor of 
1.27 is included [ 11. This is thought to be due to the Cou- 
lomb interaction between electrons and holes [18]. Ac- 
tually, the excitonic effect changes the shape of the ab- 
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sorption spectrum from the simple one-particle picture. In 
high injection cases such as lasers, the Coulomb interac- 
tion is screened due to the presence of many charged car- 
riers [19]. 

C. The Matrix Element in Quantum Well Structures 
The factor of 1 / 3  included in (3) is a result of averag- 

ing the matrix element over orthogonal directions as men- 
tioned. For gain calculations, the averaging is over all 
electron k vector directions (for a fixed electric field po- 
larization). For spontaneous emission calculations, the 
averaging is over all polarizations of the emitted radiation 
(for a fixed electron k vector) [16]. Either case yields a 
factor of 1 / 3  in the final expression. However, in a quan- 
tum well, the matrix element used in gain calculations is 
only averaged over a restricted set of k vector directions 
for a given electric field polarization. Thus, the factor of 
1 / 3  needs to be modified 121, 1161, [20]. 

It has been shown that for gain calculations, the mo- 
mentum matrix element for a TE-polarized wave in a 
quantum well laser configuration provides a factor of 3 /2  
enhancement over the bulk momentum matrix element 
(the factor of 1 / 3  becomes 1 /2 )  for heavy-hole transi- 
tions near the band edge 121, [20]. The expression can be 
written as a function of the energy of the electron above 
the band edge for the heavy-hole transition as [2] 

where Ez is the quantized electron energy relative to the 
conduction band edge of GaAs, Eg, B ,  and E, is the total 
energy of the electron. Thus, the matrix element becomes 
energy dependent, decreasing for increasing electron 
energies in the case of heavy-hole transitions 1201. 

Some recent papers 151, 191, [IO] dealing with gain in 
quantum wells have ignored the above enhancement effect 
and used simply the bulk value of Casey and Panish, while 
others 161, [7] have actually used a wrong expression for 
the enhancement. In addition, the enhancement is differ- 
ent for the light-hole and heavy-hole transitions. Thus, 
when summing over both bands, different expressions 
should be used for each. All of these factors are important 
to consider, especially when making comparisons be- 
tween quantum well and bulk material [lo], because the 
gain scales directly with the matrix element. 

The above enhancement in the matrix element is unique 
to gain and absorption calculations. When considering to- 
tal spontaneous emission output (as is necessary for cal- 
culating the total radiative carrier recombination), we need 
to consider the radiation emitted into all polarization di- 
rections, regardless of whether or not the k vector direc- 
tions of the electrons are restricted. Therefore, the factor 
of 1 / 3  remains valid in (3), even in a quantum well struc- 
ture, for spontaneous emission calculations. This point has 
been mentioned in [4] and treated in detail in [16]. The 
implication is that if the radiative component of the cur- 
rent is properly calculated by using the integrated spon- 
taneous emission rate, while also using the quantum well 

__ 
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matrix element given by (4), one will overestimate the 
radiative current by approximately a factor of 3 / 2  [6], 
171. 

111. EXPRESSIONS FOR GAIN AND SPONTANEOUS 

A .  Gain 
Referring to Table I, we find that factors of 2, 1.27, 

and 3 / 2  are explained by the above discussions. Factors 
of (47reo)-' are assumed to be due to some authors use of 
cgs units instead of MKS units [6], [7] (although it is not 
explicitly mentioned). When including intraband scatter- 
ing of the electrons, the Lorentzian line shape used should 
include a factor of 1/7r for proper normalization. This 
possibly explains the correction factor of 1 /7r needed in 
[6] and [7] .  However, other inconsistencies are harder to 
explain (specifically in 171). Furthermore, there are prob- 
ably additional references which should be added to Table 
I that we have not found. Therefore, we have decided to 
write down the expression for gain (in the framework of 
Fermi's Golden Rule) for easy comparison to the litera- 
ture. 

For simplicity and purposes of illustration, we assume 
k-selection rules without consideration of the intraband 
relaxation time of the electrons (which is considered in a 
density matrix approach [2]-[4]). If no k-selection rules 
are assumed (or a mix of the two), then the electron and 
hole DOS are included separately and are typically mod- 
ified from the traditional parabolic band model to account 
for band tail states which might arise due to heavy doping 
of the material [I] .  However, when k-selection rules ap- 
ply as in the case of undoped active regions, the DOS is 
always given by a reduced DOS for bulk or quantum well 
material. The reduced DOS is given by using the reduced 
effective mass m, = me mh/(me + m h )  in the standard 
DOS expression. The correct expression for the gain for 

EMISSION 

bulk or quantum well material can be M 
as 

itten in MKS units 

vf-%ed ( E ) ]  

- J33 ( 5 )  

f, - A l ) .  ( 6 )  

In ( 5 ) ,  we have grouped meaningful terms together, and 
1 MI2 = I MaVg l 2  or 1 M,, 1 2 .  The term in large brackets is 
an expression for Fermi's Golden Rule which expresses 
the probability per unit time for transitions occuring from 
a filled state to an empty state. The second term is brack- 
ets converts the probability per unit time into probability 
per unit length. The third term in brackets represents the 
probability that the initial state is filled and the final state 
is empty (the two terms represent the stimulated emission 
minus the absorption). The Fermi-Dirac functionf, is de- 
fined as the electron occupation probability (it is occa- 
sionally defined as the hole occupation probability [5], 
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[SI, [9], in which casefi, above should be replaced by 1 

The expression for Fermi’s Golden Rule is obtained by 
assuming an A * p interaction Hamiltonian and hence uses 
the momentum matrix element (as opposed to the dipole 
matrix element, e2 1 x l 2  commonly used in a density ma- 
trix approach [ the two matrix elements are fundamentally 
related by e2 M 2  = mi w 2  e2 I x 1 2 ] ) .  The third term in the 
expression is the magnitude squared of the vector poten- 
tial for one photon (found by relating the electric field to 
the energy density of a single photon in a given volume). 
A factor of four exists in the denominator of this term 
because only one of the two cosine harmonics leads to a 
non-zero matrix element. The volume Vcancels out of the 
final equation converting the number of final states to a 
density of final states. 

B.  Spontaneous Emission 
The expression for the spontaneous emission rate is 

useful in calculating the current required to provide a 
given gain found in (6). Many authors use the simple bi- 
molecular recombination expression ( J  = qBnp) to ob- 
tain the radiative current from the carrier densities (which 
can be found from the quasi-Fermi levels used to specify 
the gain). However, this expression holds only for the 
case of no k-selection rules where the conduction and val- 
ence bands are integrated independently. For the case of 
k-selection, one must find the radiative component of the 
current density by evaluating the spontaneous emission 
rate integrated over all energies. The spontaneous emis- 
sion rate per unit energy at a given energy ( R,Tp ( E  ) has 
units of per unit time per unit volume per unit energy) is 
given by 

- f*). 

( 7 )  
where D (  E ) is the optical mode density, in the material 
with a refractive index of n ,  given by 

n3 E 2  
D ( E )  = ~ 

lr2 h3 c3’  

From this we have, by assuming the current is injected 
vertically, 

r 
J = qd I &,(E) dE (9)  

where d is the thickness of the active region (for a quan- 
tum well, d is the well width). It should be noted that the 
use of (7) in (9) will yield the proper magnitude of radia- 
tive current even if relaxation broadening is taken into 
account [4]. Thus, a double integration is not necessary 
in (9) when considering relaxation broadening effects 
(contrary to that implied by [6] and [7]). 

IV. CONCLUSION 
The inconsistencies between various publications indi- 

cated in Table I ,  are, we hope, resolved in this letter. Our 
general approach has been to point out some potentially 

confusing key features of gain and spontaneous emission 
calculations, which at the same time serve to explain why 
some of the inconsistencies presented in Table I exist in 
the literature. To summarize these, we pointed out that a 
factor of 1.27 should be included in the momentum matrix 
element in calculating optical transitions from valence to 
conduction band in GaAs when Kane’s model is adopted. 
As well, careful attention should be paid to the inclusion 
of the spin degeneracy: if the spin degeneracy of 2 is 
counted in the reduced density of states, the momentum 
matrix element should be taken as 3.38moEg (including 
1.27 correction), as opposed to 1.33moEg in Casey and 
Panish. Quantum well enhancement of the matrix element 
should also be included in gain calculations of quantum 
well material, but should not be included in spontaneous 
emission calculations. Incorrectly including it will lead to 
an overestimation of the radiative current by a factor of 
approximately 3 / 2 .  Correct expressions for the gain and 
spontaneous emission were also presented for comparison 
to the literature. 
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