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Abstract—In this paper, a theoretical analysis of unstrained
GeSn alloys as a laser gain medium was performed. Using the
empirical pseudopotential method, the band structure of GeSn al-
loys was simulated and verified against experimental data. This
model shows that GeSn becomes direct bandgap with 6.55% Sn
concentration. The optical gain of GeSn alloys with 0–10% Sn
concentration was calculated with different n-type doping concen-
trations and injection levels. It is shown theoretically that adding
Sn greatly increases the differential gain owing to the reduction
of energy between the direct and indirect conduction bands. For
a double-heterostructure laser, the model shows that at a cavity
loss of 50 cm−1 , the minimum threshold current density drops
60 times from Ge to Ge0 .9 Sn0 .1 , and the corresponding optimum
n-doping concentration of the active layer drops by almost two
orders of magnitude. These results indicate that GeSn alloys are
good candidates for a Si-compatible laser.

Index Terms—Diode lasers, GeSn alloy, infrared lasers, optoelec-
tronic materials, semiconductor lasers, semiconductor materials,
theory and design.

I. INTRODUCTION

A S ELECTRONIC devices continue to scale down in ac-
cordance with Moore’s law [1], a large portion of the per-

formance limitations in speed, crosstalk, dispersion, and power
consumption have been found to result from the electrical in-
terconnects for both intrachip and interchip data links [2]. In an
effort to overcome these limitations, optical interconnects have
been proposed [3]–[7]; however, this requires that electronic
and optical devices be integrated on the same chip. With the
ultimate goal of monolithic integration with the current silicon
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(Si) CMOS electronics platform, group-IV photonics has been
widely investigated, and significant progress has been made.
This has included the development of waveguides [8], [9] as
well as various types of modulators [2], [10]–[12] and pho-
todetectors [13]–[15]. However, the monolithic integration of
group-IV electrically injected laser diodes with the CMOS plat-
form remains a key component that has been missing thus far.

Silicon’s indirect bandgap presents the greatest challenge to
building an efficient light source. Therefore, other group-IV ma-
terials have been investigated for their potential to achieve di-
rect bandgap. In particular, germanium (Ge) has recently been
playing an increasingly important role in group-IV lasers be-
cause of its pseudodirect gap behavior: the energy difference
between its direct Γ and indirect L valleys is only 136 meV [16].
Thus far, three different approaches have been proposed to
achieve stimulated emission: biaxial tensile strain [17]–[19],
n-doping [18], [20], and GeSn alloys [21]–[25].

Over the past decade, enhanced photoluminescence from Ge
has been demonstrated, and in 2009 an MIT group demonstrated
direct bandgap electroluminescence [26] and optical gain [27].
In 2010, the same group demonstrated a room-temperature elec-
trically pumped Ge-on-Si laser using a combination of 0.25%
tensile strain and n-type doping of 4×1019 cm−3 [28], [29].
However, the laser’s threshold current density was unaccept-
ably high at 280 kA/cm2 , several orders of magnitude higher
than in current III–V lasers.

Highly tensile strained Ge (larger than 0.25%) can be
achieved by means of external mechanical force or lattice mis-
match [17], [18]. Although strain redshifts the peak wavelength,
it diminishes the requirement for large n-doping, thereby greatly
decreasing the Auger recombination and free carrier absorption
(FCA) responsible for the high-threshold current density [30].
However, the drawback in terms of the practicality of this ap-
proach is that highly strained Ge structures are difficult and ex-
pensive to fabricate [31]. Consequently, an approach in which
the need for mechanical straining is lessened, but with the same
lasing benefits, is highly desirable.

GeSn alloys have recently attracted considerable attention
because GeSn becomes a direct bandgap semiconductor with
around 6–10% Sn without external mechanical strain. This new
alloy has been successfully grown by MBE [23] and chemical
vapor deposition (CVD) [21], and enhanced direct bandgap lu-
minescence has been demonstrated up to 8% Sn [24], [32]. In
this paper, we show that alloying with Sn has effects analogous
to adding tensile strain to reduce the minimum threshold current
density and the optimum n-doping concentration [30].
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Fig. 1. Calculated direct and indirect bandgap energies of GeSn alloys as a
function of Sn fraction. The direct bandgap has the same bowing parameter as
that from experimental data.

II. THEORETICAL MODEL

In this effort, the empirical pseudopotential method (EPM)
with spin–orbit interaction was used to calculate semiconductor
band structures for GeSn alloys of varying Sn fractions. Recip-
rocal lattice vectors up to the eighth nearest neighbor from the
origin are considered in the calculation, which yields satisfac-
tory bulk Ge and bulk alpha-Sn band structures. The calculated
energies of the direct and indirect bandgaps as well as the spin
split band are consistent with the literature [33].

In order to accurately simulate the band structure of GeSn al-
loys, the virtual crystal approximation (VCA) with corrections
was used to account for alloy disorder-induced crystal potential
fluctuations [34]. As shown in Fig. 1, the simulated GeSn al-
loys’ bandgap dependence on Sn fraction has the same bowing
parameter b of 2.42 eV as experimental measurements [25]. As
a result, the simulated crossover point of the direct and indirect
band is at 6.55% Sn. This value is close to other predictions
made in the literature [22], [24], [35]. Using this model, band
structures of GeSn alloys with 0–10% Sn were calculated and
then utilized as the input for optical simulations.

To simulate the optical gain of GeSn alloys, we adopted the
method employed in [30]. The gain coefficient of the direct
band transition of GeSn alloys at a given photon energy hυ is
described by

γΓ(hυ) = |αΓ(hυ)|(fc − fv ) (1)

where (fc − fv ) is the population inversion factor for direct band
transition and is related to the carrier densities in the conduction
and the valence bands, and |αΓ(hυ)| is the absorption coefficient
of the direct band transition of the GeSn alloy. The experimental
absorption spectra of GeSn alloys from [36] were fitted using

|αΓ(hυ)| = A
√

hυ − EΓ
g (2)

where EΓ
g is the direct bandgap energy and A is a constant

related to the transition matrix element and the effective mass
of the material. Despite a small difference in Sn concentration,
the fitted prefactors are very similar, with A ≈ 2×104 cm−1

eV−0.5 . The FCA was calculated using the relation for pure
Ge [19].

Next, the recombination current in the material is calculated,
including Auger recombination, radiative recombination, and
defect-assisted recombination, using the unsaturated gain in ac-
cordance with accepted practices [37]. Under a steady state, the
carrier increase rate through electrical pumping is equal to the
recombination rate due to all recombination mechanisms. All
recombination coefficients in this calculation are adopted from
Ge, assuming that a small amount of Sn will not significantly
change the features of Ge [19]. All the carriers will recombine
in the active region.

From this, the threshold current density of an edge-emitting
Sn-Si/GeSn/p-Si double-heterostructure (DH) laser is calcu-
lated. The thickness of the GeSn active layer is assumed to be
300 nm. Since the light hole (LH) and heavy hole (HH) bands
are degenerate and most carriers are in the HH band, the trans-
verse electric (TE) mode dominates. The optical confinement
for the TE mode is simulated to be about 0.9 by photon design.
Thus, absorption out the active region was considered. Because
the emitted photon has less energy than Si bandgap, absorp-
tion by interband transitions in the top and bottom Si layers is
neglected. FCA from the Si regions, on the other hand, is consid-
ered with the doping concentrations of p+ and n+ Si of 1×1020

and 5×1019 cm−3 , respectively. Finally, mirror loss is a function
of the cavity length and mirror reflectivities. Here, we adopt a
device length of 100 μm for the DH structure and assume that
one end of the facet is coated with antireflection coating with
98% reflectivity, while the other is just an uncoated facet. The
corresponding mirror loss is about 50 cm−1 .

III. SIMULATION RESULTS: CARRIER DISTRIBUTION

In this simulation, the Fermi level was swept from midgap
to 0.5 eV above the conduction band edge and calculated the
electron distributions for GeSn alloys with different Sn concen-
trations. The ratio of the electron concentration in the Γ valley
to the total electron concentration is plotted in Fig. 2. With in-
creasing Sn concentration, the energy difference between the Γ
and L valleys reduces, so this ratio increases greatly. Especially,
at the low electron concentration range, where most of the elec-
trons stay in the L valley for low Sn concentration cases, this
ratio increases 103 times from Ge to GeSn alloy with 10% Sn.
Thanks to this feature, GeSn alloys can more easily reach direct
band population inversion with increasing Sn concentration.

Population inversion begins when the difference between the
electron and hole quasi-Fermi levels equals the direct bandgap
energy [38]. For undoped GeSn alloys, Fig. 3 shows the re-
quired injected carrier density to reach population inversion for
different Sn concentrations. The required injected carrier den-
sity drops from 4.58×1019 cm−3 for bulk Ge to 2.8×1018 cm−3

for 10% GeSn alloy. This large reduction of carrier density indi-
cates that the threshold current density of the GeSn laser will be
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Fig. 2. Ratio of Γ valley electron concentration to total electron concentration
for GeSn alloys with 0–10% Sn.

Fig. 3. Required injected carrier density to achieve population inversion as a
function of Sn concentrations.

reduced significantly as well, as will be shown in greater detail
in Section V.

IV. SIMULATION RESULTS—OPTICAL GAIN

The optical gain of GeSn alloys without FCA was simulated
for different n-type doping concentrations as well as for different
Sn concentrations. Fig. 4 shows the gain coefficients of 4%
GeSn as a function of photon energy with two injected carrier
densities: 2.63×1019 and 6.61×1019 cm−3 . The blue dashed

Fig. 4. Optical gain coefficients for the direct transition of 4% GeSn al-
loy at two different injected carrier densities and two different n-doping
concentrations.

Fig. 5. Maximum gain coefficient for different GeSn alloys with fixed n-
doping of 1×1017 cm−3 .

lines represent the alloy with n-doping of 5×1018 cm−3 , and
the red solid lines represent the alloy with n-doping of 2×1019

cm−3 . Unlike in strained Ge, the LH and HH bands are still
degenerate in GeSn alloys, and therefore, only one smooth curve
is observed in each scenario. Increasing the injected carrier
density and n-type doping can both increase the gain coefficient
and shift the maximum gain coefficient to occur at higher photon
energy.

First, the effect of Sn concentration to the gain coefficient is
studied. With a fixed n-doping concentration of 1×1017 cm−3 ,
Fig. 5 shows the maximum gain coefficient as a function of in-
jected carrier densities for different Sn concentrations. Negative
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Fig. 6. Threshold current density map for combination of Sn concentration
and n-doping concentration with a mirror loss of 50 cm−1 .

gain at lower injection levels is ignored. The peak gain data
can be linearly fit to the first order, and the slope of the line is
defined as the differential gain dγ/dΔn. The differential gain in-
creases two orders of magnitude, from 2.14×10−18 cm2 for Ge
to 1.77×10−16 cm2 for GeSn alloy with 10% Sn. In addition, the
injected carrier density to achieve transparency, i.e., where the
lines intercept with the x-axis, decreases greatly with increas-
ing Sn concentration as well. Thanks to such a huge increase
in differential gain and reduction in injected carrier density for
transparency, GeSn alloys can reach a high gain coefficient with
a much lesser injection level than Ge. The reduction of injection
level also decreases the FCA and Auger recombination, which
will further reduce the threshold current density. In comparison,
including n-type doping reduces the injected carrier density for
transparency, but it has little effect on the differential gain.

V. SIMULATION RESULTS—THRESHOLD CURRENT DENSITY

With the inclusion of FCA and the other loss mechanisms,
the threshold current density is plotted on a log scale in Fig. 6
for different combinations of n-doping and Sn concentration
for a mirror loss of 50 cm−1 . As shown in the figure, for each
Sn concentration, n-type doping helps reduce the threshold cur-
rent density, but doping becomes less advantageous at higher
Sn concentrations. Similar to the case of strained Ge, there is
an optimum n-type doping for each Sn concentration, and the
threshold current density increases again when the doping is
larger. The minimum threshold current density and the corre-
sponding optimum n-type doping concentration are plotted in
Fig. 7. When the Sn concentration increases from 0 to 10%, the
minimum threshold current density drops 60 times, from 143.6
to 2.4 kA/cm2 , while the optimum n-type doping concentration
also drops dramatically, from 1.82×1020 to 3.16×1018 cm−3 .
The blank white areas in the left bottom of Figs. 6 and 8 are
due to the cutoff of the simulation. In addition, alloying with Sn

Fig. 7. (a) Minimum threshold current density for different Sn concentra-
tions with a cavity loss of 50 cm−1 and (b) corresponding optimum n-doping
concentrations.

Fig. 8. Wavelength of the emitted photon at the condition of minimum thresh-
old current density.

increases the emitted wavelength to 2500 nm, as shown in Fig. 8.
The increase in wavelength unfortunately has a negative effect
because the FCA increases with wavelength but is more than
overcome by the benefit of increasing the fraction of carriers in
the direct valley.

VI. CONCLUSION

In this paper, band structures of GeSn alloys have been simu-
lated using EPM and corrected VCA. The model shows results
consistent with experimental data. GeSn alloys are shown to
become direct bandgap materials with 6.55% Sn concentration.
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Owing to the reduction of the energy difference between direct
and indirect conduction band with increasing Sn concentrations,
a larger ratio of electrons reside in the direct valley, and so the
differential gain increases two orders of magnitude from Ge
to GeSn alloys with 10% Sn. The threshold current density of
the DH laser was calculated for different combinations of Sn
and n-doping concentrations with a cavity loss of 50 cm−1 . The
results show that the minimum threshold current density drops
60 times from bulk Ge to 10% Sn, and the corresponding opti-
mum n-doping concentration drops greatly as well. Though not
considered in this analysis, GeSn alloys can be combined with
tensile strain to further improve laser performance. Thus, em-
ploying GeSn alloys is part of a viable path to a low-threshold
Si-compatible laser.
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