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Abstract—A simulation scheme based on nonequilibrium
Green’s functions for biased periodic semiconductor heterostruc-
ture devices is presented in detail. The implementation can de-
termine current and optical gain both for small and large optical
fields. Specific results for superlattices, quantum cascade lasers,
and quantum cascade detectors are shown which demonstrate the
capabilities of the approach.

Index Terms—Nonequilibrium Green’s functions (NEGF),
quantum cascade laser, simulation.

I. INTRODUCTION

QUANTUM cascade lasers (QCLs) [1] have become an
important source of radiation for infrared spectroscopy

[2]–[4]. In addition, lasing in the terahertz range [5] opens up
a wide range of further applications [6]–[10]. These devices
rely on a precise design of the underlying semiconductor het-
erostructure, so that the combination of electron tunneling and
scattering provides inversion in the population of the subbands.
While a first idea about the operation can be obtained by rela-
tively simple principles such as level alignments and scattering
rates [1], a full understanding of the operating requires a more
detailed quantum description.

Typically the operation of QCLs is modeled by rate equa-
tions [11] between the levels of the active regions, while the
current flow through the injector is taken into account phe-
nomenologically. The transition rates are evaluated microscopi-
cally within Fermi’s golden rule for phonon scattering [12], [13]
and partially for electron–electron scattering [14], [15]. In addi-
tion, confined phonon modes [16] and hot phonon effects [17]
have been studied. If one includes the injector states in such a
simulation, one obtains a self-consistent simulation of the entire
structure [18], [19] within the semiclassical carrier dynamics.

While rate equations only take into account the electron den-
sity of subbands, Monte Carlo simulations of the Boltzmann
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equation [20], [21] allow for a study of nonequilibrium dis-
tributions within the subbands [22]. Here, the importance of
electron–electron scattering [23] is debated. In [24], Iotti and
Rossi show that the impact of electron–electron scattering is
strong if no elastic scattering mechanism is taken into account.
In contrast the authors of [25] find that elastic impurity scattering
gives stronger effects than electron–electron scattering.

Density matrices include the correlations ραβ between dif-
ferent quantum states α �= β. These are of particular impor-
tance for the tunneling through the injection barrier, where
their neglect provides the wrong result, that is the peak tun-
nel current does not drop with the barrier width [26], [27]. In
a more phenomenological way, this can be done on the level
of densities [28]–[30], which is very cost effective. Taking into
account the k-resolution, the equations for the density matrix
ραβ (kx, ky ) become much more involved [24], [27], [31]. Here,
it is a well-known problem that unphysical negative occupations
may occur in frequently used approximation schemes; see [27]
for a thorough discussion. A possible solution by using further
approximations is outlined in [32] on the level of densities.

Nonequilibrium Green’s functions (NEGF) constitute a
higher step of sophistication. They can be viewed as energy-
resolved density matrices and allow for a consistent perturba-
tive treatment of scattering and quantum evolution. On the other
side, their numerical implementation is heavy, in particular if
electron–electron scattering is considered. They have been used
for QCL simulations by various groups in different types of
implementations [33]–[38].

The purpose of this paper is to present a detailed account of
our implementation of NEGF in Section II. On the one hand, this
complements earlier descriptions [34], [35] for the stationary
transport. Furthermore, we present our extension to include the
lasing field beyond linear response, which we recently applied
in [39]. We demonstrate the strength of the simulation tool
by applications for superlattices, QCLs, and quantum cascade
detectors (QCDs) in Sections III–V, respectively.

II. THEORETICAL FORMULATION

We consider a general sequence of heterostructure layers,
where z is the growth direction. For an ideal structure, the system
is translational invariant in the x and y directions and we use a
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complete set of states

Ψα,k(x, y, z) = ϕα (z)
ei(kx x+ky y )

√
A

(1)

where k = (kx, ky ) is a vector within the x, y plane of nor-
malization area A. The states ϕα (z) can be chosen in different
ways. Typical examples are eigenstates of the pure Hamiltonian
Ĥ0 (also called Wannier–Stark states) as used by most groups,
or a site representation as used in [37] and [38]. We usually
apply Wannier States; see [34, Appendix A], which allow for a
consistent description of periodic extended structures. In partic-
ular, their construction does not require any artificial boundary
conditions (such as the Wannier–Stark states) and they provide
reliable energy levels (while these energies are approximate in
a site representation with a manageable number of grid points).
Nevertheless, the following description can be used for any kind
of orthonormal states ϕα (z).

With in this basis, the total Hamiltonian can be written as
follows:

Ĥ = Ĥ0 + Ĥac(t) + ĤMF(t) + Ĥscatt . (2)

Here, Ĥ0 contains the kinetic energy, the heterostructure poten-
tial, and the constant electric field F due to the applied bias.

Ĥac(t) is due to a laser field with the electrical component
Fac�ez cos(ωt − kx). Here, k =

√
εrω/c with the refractive in-

dex
√

εr . Neglecting terms of order k (just as in the common
dipole approximation), we obtain the potentials [33]

Coulomb gauge �A(t) = −Fac

ω
�ez sin(ωt) φ(z, t) = 0

Lorenz gauge φ(z, t) = −Facz cos(ωt) �A(t) = 0

which allow us to construct Ĥac(t) in the standard way.
ĤMF(t) is the mean field due to the charge distribution ρ(z, t)

in the heterostructure, which is obtained by solving Poisson’s
equation. (Its time-independent part is frequently incorporated
into Ĥ0 .) Finally, Ĥscatt describes the interaction with impu-
rities, phonons, and other sources destroying the translational
invariance in x and y directions. Thus, this term is not diagonal
in k, in contrast to all other contributions to Ĥ .

Most physical observables can be expressed by the (reduced)
density matrix

ραβ (k, t) =
〈
a†

βk(t)aαk(t)
〉

= Tr
{

ρ̂a†
βk(t)aαk(t)

}
(3)

where the creation/annihilation operators a†
αk(t)/aαk(t) of the

single particle level Ψαk(x, y, z) have a time dependence in the
Heisenberg picture and ρ̂ is the density operator. Note that av-
eraging over impurity positions and phonon mode occupations
typically renders zero expectation values of 〈a†

βk ′(t)aαk(t)〉 for
k′ �= k. These density matrices ραβ (k, t) allow for the calcula-
tion of the relevant physical properties. For example, the electron
sheet density in level α is given by nα (t) = ρ̄αα (t), where

ρ̄αβ (t) =
2
A

∑
k

ραβ (k, t) (4)

sums over the lateral degrees of freedom and the spin. Even
more important is the current density in the growth direction

J(z, t) = e�
{〈

p̂z − eAz (z, t)
mc(z)

〉}

=
e

�

∑
α,β

[
iWβα (z) − eAz (z, t)d

�
Fβα (z)

]
ρ̄αβ (t) (5)

where Az (z, t) is the z component of the electrodynamic vector
potential (we tacitly assume that its x, y dependence is not of
relevance), e < 0 the charge of the electron, and

Wβα (z) = − �
2

2mc(z)

(
ϕ∗

β (z)
∂ϕα (z)

∂z
−

∂ϕ∗
β (z)
∂z

ϕα (z)
)

Fβα (z) =
�

2

d

ϕ∗
β (z)ϕα (z)
mc(z)

.

In practice, J(z, t) depends on the number of states used [40],
as the completeness relation is not entirely satisfied for a finite
basis. However, the spatial average over one period J(t) con-
verges much better and is used for almost all practical purposes.
In the presence of an ac field with amplitude Fac cos(ωt), we
find a time-periodic current density

J(t) =
∑

h

Jhe−ihωt . (6)

Here, J0 is the dc current and the material gain can be obtained
via the real part of the dynamical conductivity σ(ω) as

G(ω) = −�{σ(ω)}
cε0

√
εr

= − 1
cε0

√
εr

J1 + J−1

Fac
. (7)

Thus, the main task is to evaluate the density matrix ραβ (k, t)
in the presence of Hamiltonian (2). (In fact, for most purposes
it is sufficient to consider ρ̄αβ (t) as used in many recent density
matrix approaches [28]–[30], [32]). In this context, it is a major
problem that a standard perturbative treatment of the scatter-
ing Hamiltonian(see [24] and [27]) provides negative densities,
which is a general feature [41]. An outcome is to modify the
scattering terms in a clever way; see, e.g., [32]. However, such an
artificial procedure might mask relevant physical effects, where
details of the k-distribution matter [38]. Thus, it is of general
interest to have a formalism at hand, which is entirely based
on a systematic treatment of perturbation theory and avoids un-
physical outcomes. This justifies the far more evolved method
of NEGF as discussed here.

A. Green’s Functions

The formalism of NEGF [42]–[44] can be based on the fol-
lowing Green’s functions: the correlation function (or “lesser”
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Green’s function)

G<
α1 ,α2

(k; t1 , t2) = i〈â†
α2

(k, t2)âα1 (k, t1)〉 (8)

which can be regarded as an extension of the density matrix (3)
to different times, as well as the retarded and advanced Green
functions

Gr
α1 ,α2

(k; t1 , t2) = −iΘ(t1 − t2)
〈{

âα1 (k, t1), â†
α2

(k, t2)
}〉

Ga
α1 ,α2

(k; t1 , t2) = iΘ(t2 − t1)
〈{

âα1 (k, t1), â†
α2

(k, t2)
}〉

=
[
Gr

α2 ,α1
(k, t2 , t1)

]∗
(9)

where {Â, B̂} = ÂB̂ + B̂Â is the anticommutator. Using ma-
trix notation, where matrices like Gαβ are denoted by bold
capitals G, differentiating in time provides the equations of
motion(

i�
∂

∂t1
− Ek

)
Gr/a(k; t1 , t2) − U(t1)Gr/a(k; t1 , t2)

= �δ(t1 − t2)1 +
∫

dt

�
Σr/a(k; t1 , t)Gr/a(k; t, t2) (10)

where the matrix U refers to the k-diagonal part of the
Hamiltonian

Ĥ0 + Ĥac(t) + ĤMF(t) =
∑

α,β ,k

Uα,β (k, t)a†
α (k)aβ (k) (11)

and Ek = �
2k2/2m∗ is the in-plane energy, where we use the

effective mass m∗ of the well for simplicity. (Nonparabolic-
ity has been recently considered in the Green’s function model
of [45].) The self-energies Σ take into account Ĥscatt pertur-
batively. A similar equation of motion for the lesser Green’s
function is solved by the Keldysh relation [44]

G< (k; t1 , t2)

=
∫

dt

�

∫
dt′

�
Gr(k; t1 , t)Σ< (k; t, t′)Ga(k; t′, t2). (12)

In earlier work [34], [35], we focused on the stationary be-
havior, where the Green’s functions only depend on the time
difference t1 − t2 . Now, we consider a periodic solution, where
the system is allowed to oscillate at a frequency ω and its higher
harmonics as a consequence of the time periodicity of Ĥac(t)
(and consequently ĤMF(t)). Setting

U(t) =
∑

h

Uhe−ihωt (13)

and using the Fourier decomposition similar to [66]

F (k; t1 , t2) =
1
2π

∫
dE

∑
h

e−iE (t1 −t2 )/�Fh(k, E)e−ihωt1

(14)
both for self-energies and Green’s functions, we find the Dyson
equation

1δh,0 = (E + h�ω − Ek )Gr/a
h (k, E)

−
∑

l

(
Uh−l + Σr/a

h−l(k, E + l�ω)
)
Gr/a

l (k, E) (15)

and the Keldysh relation

G<
h (k, E) =

∑
l,l ′

Gr
h−l−l ′(k, E + (l + l′)�ω)

×Σ<
l ′ (k, E + l�ω)Ga

l (k, E) (16)

providing a set of equations to determine the Green’s functions
for given self-energies within the truncation |h| ≤ hmax . The
density matrix is then element wise reproduced by

ραβ (k, t) = −i
∫

dE

2π

∑
h

G<
αβ,h(k, E)e−ihωt (17)

allowing for the evaluation of current and gain as outlined
previously.

B. Self-Energies

For the self-energies, we use the self-consistent Born approx-
imation. In Appendix B, details on the scattering processes are
given. Here, we restrict to the main concept. For example, for
elastic scattering

Ĥelast
scatt =

∑
αkβk ′

Vαβ (k − k′)a†
αkaβk ′ (18)

we have

Σ< / r
αα ′ ,h (E,k) =

∑
β β ′,k ′

〈Vαβ (k − k′)Vβ ′α ′(k′ − k)〉G
< / r
β β ′,h (E,k′)

(19)

where 〈〉 averages over different realizations of the scattering
potential, which restores the spatial homogeneity. For the same
reason, the Green’s function and self-energy do only depend on
the absolute value |k|, which is conveniently expressed by Ek .
Then, (19) can be rewritten as

Σ< / r
αα ′ ,h (E, Ek ) =

∑
β β ′

∫ ∞

0
dEk ′ Xαα ′ ,β β ′(Ek , Ek ′)G< / r

β β ′,h (E, Ek ′).

(20)

Assuming that G
</r
ββ ′,h(E,Ek ′) peaks at Ek ′ ≈E − (Eβ +Eβ ′)/

2 = E′
typ , and Σ</r

αα ′,h(E,Ek ) is mostly needed at Ek ≈ E −
(Eα + Eα ′)/2 = Etyp , we may approximate Xαα ′,ββ ′(Ek ,Ek ′)
by Xαα ′,ββ ′(Etyp , E′

typ), which effectively corresponds to
delta-like scattering potentials. Here, we usually chose the value
of E such that Min{Etyp , E′

typ} = 1meV + 0.3kB T . This con-
stant k approximation provides an essential simplification of the
numerics, as the self-energies do not depend any longer on k.

The k-dependence of Σ has been shown to be of relevance for
longitudinal optical phonon scattering [46], [47], so the results
have to be taken with some care. However, with our choice of
a level-dependent Etyp , E′

typ , we obtained reasonable results
for all cases studied so far. A comparison with an exact treat-
ment of intersubband absorption for roughness scattering [48]
showed that our approach reproduced the peak very well, but
overestimated the absorption tails at high energies, where the
momentum dependence of the matrix elements is crucial.
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C. Boundary Conditions and Iteration Scheme

We consider a periodic system, where the same sequence of
layers is repeated infinitely (d is the length of the period). We
tacitly assume that the solution follows this periodicity.1 Taking
into account a potential drop eFd per period due to the external
dc bias, this implies in Coulomb gauge

Σαβ ,h(E) = Σα ′β ′,h(E + eFd)

if the states α′β′ are shifted by one period with respect to αβ.
(For the Lorenz gauge, the transformation is more complex and
mixes terms with different h.) Thus, it is sufficient to evaluate
the self-energies Σαβ ,h(E), where the state α is located in a
given central period.

In order to obtain a solution, we determine Gr/a by solving
(15) for a given Σαβ ,h(E) taking into account the states of the
central period as well as Nper periods on either side. Then, we
determine G< via (16). Based on these Green’s functions, we
calculate the new self-energies Σαβ ,h(E) for α being located in
the central period. If the new self-energies do not agree with the
starting ones, we choose new values by the Broyden algorithm
[49] and repeat the iteration. Convergence with an accuracy
of typically 5 × 10−4 (or even smaller) is obtained after 30–
100 iterations. Finally, the quantities of interest are evaluated
from the Green’s functions in the central region. By increasing
hmax and Nper , the quality of the respective truncations can be
verified.

D. Meanfield

The electron charge density ρel(z, t) is directly obtained from
the density matrix. Solving Possion’s equation together with the
doping density for periodic boundary conditions φ(z) = φ(z +
d) provides the potential φ(z, t), which determines ĤMF(t).

III. COMPARISON WITH ANALYTICAL RESULTS FOR

SUPERLATTICES

Semiconductor superlattices represent the simplest periodic
structures and provide an excellent testing ground for the code.
Here, we consider the structure of [50], which has a rather large
miniband width Δ = 26.4 meV. Fig. 1(a) shows the calculated
current-bias relation using the nominal system parameters and
neglecting interface roughness (which should be small, as wells
and barriers are binary systems and carefully chosen to con-
sist of an integer number of monolayers). All calculations are
done at a lattice temperature of 300 K and we use Nper = 3.
The peak height and position agree reasonably well with the
measured characteristics. The data can be fitted very well by a
simple expression J(F ) = 2JmaxeFdΓ/((eFd)2 + Γ2) based
on the Esaki–Tsu characteristics [51] where Γ = 18 meV is the
average scattering rate multiplied by �. This is expected, as the
miniband model is good for Δ � Γ and Δ � |eFd| [52]. In-
deed, minor deviations are seen for larger bias drops Fd per
period. Following the work of [53], analytical expressions can

1Recently nonperiodic solutions have been discussed in [65]. As this effect
appears in direct connection to the injecting contact, it is not clear whether this
is of relevance far inside the periodic structure.

Fig. 1. Results of the NEGF simulation for the superlattice of [50]. The thick
gray line gives the analytic solution of the simplified miniband model for com-
parison. The NEGF solutions are displayed for one miniband (mb) (full/dashed
line) and two minibands (dotted/dash–dotted line) for Lorenz/Coulomb gauge,
respectively. In panels (c) and (d), different choices of hm ax are shown for
Lorenz gauge and one miniband, while all other curves are solutions with suf-
ficiently high hm ax . In panel (b), the gain value at ω → 0 obtained from the
NEGF conductance in panel (a) is marked by a dot.

be obtained within the Esaki–Tsu model even for a finite ac
field (see [54, Section VI.2] for details), which can be used for
comparison.

In Fig. 1(b) the gain is shown for a weak ac field at a dc bias
dropping over one period of Fd = 30 mV. Here, we are in the
region of negative differential conductivity of the superlattice,
and consequently, gain occurs for �ω � |eFd|. The NEGF solu-
tions are in reasonable agreement with the simple model, which
can be seen as a validation for both approaches. We note that
the choice of gauge does not affect the result much. However, it
can be seen that the inclusion of the second subband (i.e., letting
α run over two states per well) changes the result slightly for
the Coulomb gauge. (The current–voltage characteristics are
not affected as the second miniband, located 300 meV above
the first miniband, is essentially empty.) Finally, we see that the
gain approaches the value G0 = − σd c

cε0
√

εr
= 205/cm for ω → 0,

where the dc conductivity σdc is obtained from the slope of the
current–voltage characteristics.

Fig. 1(c) shows the dc current at Fd = 15 mV as a func-
tion of the ac-field strength. We find that the current drops as
a result of dynamical localization [55]. The result in Lorenz
gauge and the analytic miniband model agree very well. For the
Coulomb gauge, the agreement is only good if two minibands
are taken into account. For the Lorenz gauge, we have shown
simulations with different numbers hmax . As expected, with in-
creasing eFacd a larger number of h-components is needed in
order to reach convergence.

Finally, Fig. 1(d) shows the gain for �ω = 10 meV at a dc bias
of Fd = 15 mV as a function of the ac-field strength. The be-
havior is less dramatic. Here, the agreement between the NEGF
solution and the analytic miniband model is only of qualitative
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Fig. 2. Energetically and spatially resolved electron density ρ(E, z) and
the Wannier–Stark states of the QCL in [56] for a bias drop per period
F d = 48.25 mV.

nature. A better agreement would be surprising, as the high
fields F + Fac in combination with the high frequency ω are
limiting the validity of the miniband model. The disagreement
between the gauges is stronger and again, the result in Coulomb
gauge depends on the number of minibands included.

These findings indicate that the NEGF model provides rea-
sonable results in Lorenz gauge. In Coulomb gauge, the results
depend strongly on the number of states included, even, if they
are not directly involved. This may be attributed to the Az term
in the current (5). Technically, the equivalence between the two
gauges requires the completeness relation for the basis used. For
any finite basis, the completeness relation is only approximate,
and thus, the equivalence between the approaches is not guar-
anteed. The data shown here indicate that the Lorenz gauge is
more reliable.

IV. QCL RESULTS

A. Characterization of a QCL

In order to test the validity of our model, we present simula-
tion results on the QCL structure of [56]. The structure is shown
in Fig. 2, with the Wannier–Stark states and the energetically
and spatially resolved electron density ρ(E, z), directly found
from the Green’s function by

ρ(E, z) =
2e

2πiA

∑
k

∑
αβ

G<
αβ,h=0(E,k)ϕ∗

β (z)ϕα (z). (21)

Fig. 3 shows the current-bias relation without an external
ac field at a lattice temperature of 50 K. The peak current
∼350 A/cm2 is reached at 49 mV/period, which corresponds
well with the experimentally observed peak at lasing at about
48 mV/period, where the current for a nonlasing device was
measured to be ∼ 400 A/cm2 . The relatively large peak around
34 mV/period is of much smaller magnitude in the measure-
ments. It corresponds to tunneling over two barriers. We think
that dephasing is underestimated in our model here, probably
due to the neglect of electron–electron scattering.

The simulated gain spectra for two gauges of a weak applied
ac field are shown in Fig. 4. As discussed previously, the gauge
transformations should in principle leave the results unchanged,

Fig. 3. Current-bias relation for the QCL in [56]. The circles mark the oper-
ating points where the gain is simulated and the conductivity is calculated.

Fig. 4. Gain spectrum for Facd = 1 mV at different biases for the QCL in [56]
at two different gauges (solid lines: Lorenz; dashed lines: Coulomb). Circles
mark the gain coefficients at ω → 0 calculated from the conductivity.

but the incompleteness of the basis used gives rise to minor
numerical differences. However, the results for different gauges
agree fairly well for low ac bias as in the case for the superlattice
discussed previously.

Again, we validate our model by comparing the theoretical
value of the gain coefficients with the simulated gain spectra. In
Fig. 4, the gain coefficients at ω → 0 are marked with circles.
These have been calculated from the slope of the IV curve at the
bias points indicated in Fig. 3 (using a quadratic fit) to be −9.09,
−4.59, and −7.523/cm for increasing bias. The gain at low ω
can be seen to approach the calculated values. Experimentally,
lasing is observed at �ω = 11.5 and 13.3 meV at lower bias and
at �ω = 16 meV for higher bias, which agrees well with our
gain spectrum.

B. Integrated Absorption

The physics of gain in a QCL is essentially the physics
of intersubband absorption and stimulated emission. The to-
tal absorption of all states in the conduction band, which we
will here denote the integrated absorption, can be estimated
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Fig. 5. Simulated absorption on a structure presented in [59]. Results from
two different simulations are compared, one using 5 states per period and one
using 8 states per period. As a reference, the conduction band offset in this
structure is about 135 meV.

following [57] and [58] to

∫ ∞

0
dω αintersubband(ω) = nav

πe2

2m∗cε0
√

εr
(22)

with nav =
∑

i ni/d as the average 3-D carrier distribution and√
εr again the refractive index. Note that this expression depends

neither on the structure nor on the applied bias.
The constant property of the integrated absorption provides

an excellent opportunity to test the model. To do this, we investi-
gate a structure presented in [59]. This is a four-well QCL where
the main transport properties can be retrieved from simulations
by taking the first five states in each period into account. For
this structure, simulations were carried out over a wide range of
frequencies, and the results are shown in Fig. 5. The integrated
absorptions for the two cases are found via numerical integration
over the frequency interval to yield 2.23 eV/cm (1.62 eV/cm)
when including 8 (5) states. Here, the errors in the numerical
calculation can be severe as the number of points in the critical
regions are few, and then exaggerated by the numerical integra-
tion. The simulated integrated absorption should be compared
to the theoretical value of 2.41 eV/cm from (22).

As seen in the figure, the inclusion of states not contributing to
transport is crucial in order to reproduce the correct integrated
absorption. It is worth noting that the difference between a
noncomplete basis set of five states and one almost complete
of eight states is large. This shows again the importance of
the completeness relation in the model, as we see here that an
incomplete basis does not nearly reproduce the theoretically
predicted result. The ninth state is in the continuum, and its
importance is so far neglected.

Looking closer at (22), we note that the effective mass m∗ is
in fact z-dependent, as it is not the same in the barriers as in the
wells. However, absorption will occur where the electrons are
localized, as this is the argument for approximating the mass
in these calculations with the effective mass of the wells of the
heterostructure. Therefore, we expect the theoretical estimate
to slightly overshoot the real value. Although the electrons are
most probably found in one of the wells, we would find a certain
percentage in the barriers, effectively raising the average mass
and thus contributing to lower integrated absorption. This should

Fig. 6. Simulations with different hm ax for three ac field strengths. An esti-
mate of the critical frequency for each calculation is shown with a line.

also be taken into account when interpreting the results given
previously.

C. High Intensity

Recently, we showed the relevance of nonlinear effects on the
gain spectrum of a QCL [39]. In this context, it is important to
study the convergence of the solution depending on the trun-
cation parameter hmax . Obviously, for low intensity of the ac
field, a sharp truncation is very reasonable but when the photon
energy is comparable to the ac field strength higher harmonics
are needed in order to expand the space of allowed response
functions of the system.

This criterion can be expressed as eFacd � hmax �ω, for
Nper = 1 used here. More orders of the response function must
be taken into account when calculating with low photon ener-
gies �ω. This can be understood as including higher orders of
absorption phenomena, as several photons of low energy can
give the same absorption effect in the electronic system as one
photon at the exact transition energy. These effects are naturally
more important as intensity is increased.

The lowest truncation possible is hmax = 0 which cannot treat
any external light field at all but gives the stationary behavior
of the system. Second lowest would then be hmax = 1, where
response at the fundamental frequency is seen. This gives the
main part of the system dynamics, making it possible to retrieve
quantities such as gain and absorption. Higher orders hmax > 1
provide higher accuracy as more dynamical effects are taken
into account as more Fourier components of the Green’s func-
tion enter the system. This is important for low photon energies
as discussed before. For terahertz QCLs, which operate at typ-
ical photon energies of 10 meV, large parts of the gain spectra
are actually in the regime where the higher harmonics play an
important role. In order to illustrate the importance, simulations
of a QCL described in [59] are displayed in Fig. 6. The main
effect, as discussed in detail in [39], is the reduction of gain with
the intensity of the optical field due to bleaching.

The simulations show that it is not trivial to approach the low-
frequency part of the spectra with a finite ac field strength. At
the energy scale of the transport dynamics, the photon energies
are now small, and a number of photons would be required in
order to affect the system on the same premises as in the cases
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Fig. 7. Current at the same points as in Fig. 6 for hm ax = 2 plotted for
the three different intensities. Data only taken at points where we estimate the
simulations to be accurate.

of higher photon energy. This is why hmax is such an important
parameter in the results shown in Fig. 6.

Here, the simulations with hmax = 3 are the best cases and
closest to the would-be exact calculation. For this system, it is
on the limit of what is at the moment possible for us to do and
only a few points are shown for the hmax = 3 case, plotted as
dashed lines in the figure. The simulations for different cases of
hmax eventually coincide at higher photon energies as expected,
early for low ac field strength and later for high ac field strength.
It is clear from the results that the higher harmonics are of im-
portance at operating intensities above eFacd = 6 meV. In the
plot we also show, for each ac field strength and hmax , an esti-
mation of the critical frequency. At this frequency, one should
start being restrictive in trusting the results of the simulations.

In a QCL under operating conditions, the laser field will drive
the current as the frequency of the photons is matched to the
energy difference of the upper and lower laser state, stimulating
emission and thus destroying the inversion of the carriers. This
will result in a higher current through the system, and this can
be seen in Fig. 7 where current is plotted at the same points
as in Fig. 6 for hmax = 2. The general trend is that for a given
ac field strength the current increases with decreasing photon
energies. This can be attributed to the fact that with decreasing
photon energy, the number of photons increases for a fixed
intensity. Therefore, more stimulated transitions occur, which
provide extra channels for the electron transport.

Characteristic features can also be seen at the absorption
peak at �ω ∼ 7 meV and at the gain peak at �ω ∼ 10 meV,
compared with Fig. 6. We attribute the first peak in current to
a redistribution of carriers from localized states to more mobile
ones. At the gain peak at �ω ∼ 10 meV, the stimulated emission
provides an enhanced current along the common current path
through the structure. This is commonly seen experimentally as
a change of conductance at the onset of lasing.

Finally, above �ω > 13 meV, the current is hardly affected
by the laser field. This is just the region without any significant
absorption/gain, as can be seen in Fig. 5.

V. QUANTUM CASCADE DETECTOR

A suitable application of our model other than the QCL is
the QCD [60], which is an alternative to the quantum well

Fig. 8. (a) Basis states of the QCD, numbered from bottom to top. (b) Maxima
of the density of states and the electron density.

Fig. 9. Absorption (blue) and response current (red) as functions of the applied
ac field frequency. The optical transitions causing the absorption and response
peaks are indicated.

infrared photodetector (QWIP) for detecting infrared radiation.
In contrast to the QWIP and many other photodetectors, the
QCD operates at zero (or very small) bias, and therefore has
minimal dark currents, in addition to having a narrow detection
wavelength width.

We will now study the QCD presented in [61], shown in
Fig. 8(a) with the calculated basis states. In Fig. 8(b), we show
the density of states (lines) at the energies where it has maxima.
The reason for doing this is that the Wannier–Stark states, con-
ventionally used as basis states that here contain mean field, are
not defined at zero bias, and that the Wannier states do not in-
clude these effects. The density of states allows for determining
which transitions are most probable with respect to populated
and empty states.

Light is detected when an electron in the ground state of the
widest, heavily doped well, |1〉, absorbs a photon with an energy
matching the transition |1〉 → |8〉. The electron will thereby oc-
cupy state |8〉. Tunneling and scattering then allow for a cascad-
ing current from |8〉 down to the ground state of the neighboring
period, to the right in Fig. 8. This gives an overall current flow-
ing through the device (consisting of 50 periods or so) that is
detected at the terminals.

Fig. 9 shows the simulated absorption and the response cur-
rent arising from the photon-absorbing carriers. This current is
a second-order effect, since it arises from carriers excited by
the applied ac field. The main peaks are located at (going from
low to high �ω) 69, 119, 138, 159, and 226 meV. Using the
labeling in Fig. 8 (a) and taking the energy differences between
the density of states maxima in Fig. 8 (b), the response peaks are
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attributed to the transitions shown in Fig. 9. The QCD current
response agrees almost exactly with the absorption peaks.

The experimentally measured QCD [61] showed the same
structure for both absorption and response current as the pre-
sented simulations. The simulated peaks are shifted to higher
frequencies by about 5 meV (more for larger transitions, and
less for smaller transitions) with respect to the measured peaks.
We attribute this to the neglect of nonparabolicity in our current
scheme. In general, nonparabolicity reduces the energy of high
energy states.

VI. CONCLUSION

We have presented our implementation of NEGF for the sim-
ulations of heterostructure devices in detail. Our model allows
for a reliable determination of the current-field relation in most
cases. However, some problems exist with extra peaks due to
long range tunneling, which indicates that some dephasing chan-
nels are still missing. The main advance compared to previous
implementations is the possibility to treat the radiation field even
beyond linear response. This allows for studying a variety of im-
portant effects such as dynamical localization in superlattices,
gain bleaching in quantum cascade lasers, and photon-assisted
currents in QCDs. For small optical fields, the choice of the
gauge does not matter much. However, the Coulomb gauge
seems to require the inclusion of higher minibands in a super-
lattice even if they do not contribute explicitly. This effect is
particularly strong for large optical fields.

APPENDIX A

ANGLE AVERAGED SCATTERING MATRIX ELEMENTS

Using the self-consistent Born approximation in (19), we
already argued for the use of only the absolute value |k| for the
potentials. This means that when transforming the self-energies
into a function of Ek = �

2k2/2m∗ and Ek ′ instead of k and k′,
we have to write the self-energy as

Σ</ret
αα ′,h (E,Ek ) =

∑
ββ ′

∫ ∞

0
dEk ′

A

(2π)2

m∗

�2

×
∫ 2π

0
dφ〈Vαβ (Ek ,Ek ′ , φ)Vβ ′α ′(Ek ,Ek ′ , φ)〉

× G
</ret
ββ ′,h (E,Ek ′)

where we now have converted the sum over k′ into a 2-D integral
of E ′

k and the angle φ = ∠(k,k′). Now, we identify the second-
rank tensor Xαα ′,ββ ′ as the angle averaged part of the scattering
matrix elements as a function of Ek ,Ek ′ in the following way:

Σ</r
αα ′,h(E,Ek ) =

∑
ββ ′

∫ ∞

0
dEk ′ Xαα ′,ββ ′(Ek ,Ek ′)

×G
</r
ββ ′,h(E,Ek ′) (23)

where also the constants are included in Xαα ′,ββ ′ . As discussed
previously, these tensors are evaluated at certain typical energies
Etyp and Etyp ′ which allow us to take the tensors outside the in-

tegral leaving an expression where we only need the k-integrated
Green’s function for the evaluation of the self-energies.

APPENDIX B

DETAILS FOR THE SCATTERING MATRIX ELEMENTS USED

Here, we describe in detail how the different scattering pro-
cesses are included in the formalism. The alloy scattering matrix
elements are evaluated to describe the procedure of these cal-
culations, and then the other scattering mechanisms are shown
for completeness. These can be derived by the interested reader
in the spirit of [34] with only minor changes with respect to the
formalism presented here.

A. Elastic Scattering

Alloy scattering is treated here as the disturbing potential
arising from alternating one of the atoms in a binary alloy, and
the treatment follows [62]. The strength of this potential will
depend on the mixing parameter x and the difference in the
conduction-band edge ΔV between the compounds with x = 0
and x = 1. The potential from one fluctuating species located
at �ri = ri + zi�ez is given by

V i(�r) = Cx
i δ(�r − �ri)

where Cx
i is a random variable such that

〈Cx
i 〉alloy = 0

〈
Cx

i Cx
j

〉
alloy = δijx(1 − x)(ΔV Vmol)2

and Vmol is the volume of one dimer (i.e., a fourth of the cubic
unit cell for zincblende lattices). These properties determine the
averages for the matrix elements in our basis, which read

〈V i
αkα ,βkβ

V j
γkγ ,δkδ

〉alloy =
δijx(1 − x)(ΔV Vmol)2

A2

×ϕ∗
α (zi)ϕβ (zi)ϕ∗

γ (zi)ϕδ (zi)e−i(kα −kβ +kγ −kδ )·ri (24)

showing that this is a local scattering process. Summing over all
unit cells, effectively turning the sum into an integral

∑
i

→ 1
Vmol

d3ri

gives

〈V i
αkα ,βkβ

V j
γkγ ,δkδ

〉alloy

=
Vmol

A
δkα −kβ ,kδ −kγ

∫
dz ϕ∗

α (z)ϕβ (z)ϕ∗
γ (z)ϕδ (z)

× x(z)(1 − x(z))ΔV 2(z) (25)

which provides us with the squared matrix element used in (19)
for the alloy scattering. The φ-integral provides a factor of 2π
giving the final expression

Xαα ′,ββ ′ =
Vmolm

∗

2π�2

∫
dz ϕ∗

α (z)ϕβ (z)ϕ∗
β ′(z)ϕα ′(z)

×x(z)(1 − x(z))ΔV 2(z). (26)



1200611 IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 19, NO. 5, SEPTEMBER/OCTOBER 2013

Now we proceed with the tensors for the other elastic scat-
tering matrix elements. For interface roughness scattering, we
assume the correlation functions

〈ξi(r)〉 = 0 〈ξi(r)ξj (r′)〉 = δij η
2e−|r−r ′|/λi

for the deviation ξi(r) of the interface i from its nominal posi-
tion. Here, η is the average (RMS) height of the interface rough-
ness and λ lateral correlation. Then, we obtain approximately
(analogously to [34, Appendix B])

Xrough
αα ′ββ ′(Ek ,Ek ′) =

∑
j

ΔE2
c η2

j

2Eλj

1
(aj − bj )

√
aj + bj

×ϕ∗
α (zj )ϕβ (zj )ϕ∗

β ′(zj )ϕα ′(zj ) (27)

where

a = 1 +
Ek + Ek ′

Eλ

b = 2
√

EkEk ′

Eλ

ΔEc is the conduction band offset in energy, η is the average
(RMS) height of the interface roughness, and Eλ = �

2/2m∗λ2 .
Scattering at ionized dopants is treated as scattering from a

number of delta-doping layers at positions zi and areal density
Ni

2D :

X im p
αα ′ ,β β ′(Ek , Ek ′) =

∑
i

N i
2D

e4

16πε2
s ε

2
0

1
2π

∫ 2π

0
dφ

{
1

Ek + Ek ′ − 2
√

Ek Ek ′ cos φ + Eλ

×
∫

dz1 ϕ∗
α (z1 )ϕβ (z1 )e−q (φ ) |z 1 −z i |

×
∫

dz2 ϕ∗
β ′(z2 )ϕα ′(z2 )e−q (φ ) |z 2 −z i |

}

where �
2q2(φ)/2m∗ = Ek + Ek ′ − 2

√
EkEk ′ cos φ + Eλ and

Eλ = �
2λ2/2m∗. The inverse screening length λ is determined

by an interpolation between Debye and Tomas–Fermi screen-
ing for the average 3-D electron density. Even for very inho-
mogeneous distributions of the electrons along the period, this
approximation is good as long as λd � 1 [63].

B. Inelastic Scattering

In our current implementation, inelastic scattering processes
are only due to the phonons. For the longitudinal optical
phonons, we assume a constant frequency ωLO . We consider
the perturbation potential for the electron due to phonons with
wave vector �q = q + qz�ez :

Vphon(�r, t) =
∑
qqz

g(�q)eiq·r+iqz z
[
b(�q, t) + b†(−�q, t)

]
(28)

where b(�q, t) and b†(�q, t) are the bosonic annihilation and cre-
ation operators in the Heisenberg picture. For the polar interac-
tion of the longitudinal optical phonons, we have the standard
expression

|g(�q)|2 = g(�q)g(−�q) =
1

AL

e2

|�q|2
�ωLO

2ε0

(
1

ε(∞)
− 1

ε(0)

)

where L is the normalization length for the phonons in the
z-direction. Essentially following [44] and [64], we find in Born
approximation (see also [54, Section IV.1.2])

Σ<
αα ′(E,k) =

∑
ββ ′

∑
qz q

|g(�q)|2Mαβ (qz )Mβ ′α ′(−qz )

×
[
G<

ββ ′(E − �ωLO ,k − q)nB

+ G<
ββ ′(E + �ωLO ,k − q)(nB + 1)

]

where nB is the Bose distribution for the optical phonons at
lattice temperature and

Mαβ (qz ) =
∫

dz ϕ∗
α (z)eiqz zϕβ (z).

The retarded self-energy reads

Σr
αα ′(E,k) =

∑
ββ ′

∑
qz q

|g(�q)|2Mαβ (qz )Mβ ′α ′(−qz )

×
[
Gr

ββ ′(E − �ωLO ,k − q)(nB + 1)

+ Gr
ββ ′(E + �ωLO ,k − q)nB

+
1
2
G<

ββ ′(E − �ωLO ,k − q) − 1
2
G<

ββ ′(E + �ωLO ,k − q)
]

where a term containing a principal value integral [(127) of [54]]
has been neglected. Using the fact that the Green’s functions and
self-energies do only depend on |k|, the individual terms can be
rewritten in the form

Σαα ′(E,Ek ) =
∑
ββ ′

∫ ∞

0
dEk ′Xopt

αα ′ββ ′(Ek ,Ek ′)

× Gββ ′(E ± �ωLO , Ek ′) × [nB or (nB + 1)]

(29)

with

X opt
αα ′ ,β β ′ (Ek , Ek ′ ) =

e2
�ωLO

16π2 ε0

(
1

ε(∞)
− 1

ε(0)

)

×
∫

dqz

Mαβ (qz )Mβ ′α ′ (−qz )√
(�2 q2

z /2m + Ek + Ek ′ )2 − 4Ek Ek ′
.

(30)

As in the elastic case, we apply the constant k approx-
imation setting Ek ≈ E − (Eα + Eα ′)/2 = Etyp and Ek ′ ≈
E ± �ωLO − (Eβ + Eβ ′)/2 = E ′

typ in the Green’s functions
with the corresponding energy argument E ± �ωLO . Again,
the typical energy E is chosen such that Min{Etyp , E′

typ} =
1meV + 0.3kB T .

For the deformation potential scattering with longitudinal
acoustic phonons, we have

|g(�q)|2 = Ξ2
c

�ω(�q)
2ρm ALc2

L

in (28), where Ξc is the deformation potential of the conduc-
tance band, ρm is the mass density of the crystal, and cL is
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the longitudinal sound velocity. In general, these matrix ele-
ments are much smaller than the ones for optical phonon scat-
tering or impurity scattering. However, we want to take acous-
tic phonons into account at least phenomenologically, so that
there is some energy dissipation if optical phonon emission is
energetically not allowed for. We make the essential simplifica-
tions to set �ω(�q) → �ωac = kB T in the energy arguments of
the Green’s functions and nB (�q) → nB (�ωac) ∗ �ωac/�ω(�q) as
well as nB (�q) + 1 → (nB (�ωac) + 1) ∗ �ωac/�ω(�q) to mimic
the q dependence of the occupation functions. This prefactor
actually cancels with ω(�q) in |g(�q)|2 and we find an expression
completely analogously to (29) with

Xac
αα ′β ′β = �ωac

Ξ2
c mem

∗

4π�2ρm c2
L

1
L

∑
qz

Mαβ (qz )Mβ ′α ′(−qz ).

(31)
This expression does not depend on Ek and Ek ′ , so the con-
stant k approximation is already included in the aforementioned
approximations.
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